首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Objectives The aim of this study was to examine the effects of bile on the oral absorption of the poorly water‐soluble compound, halofantrine, when administered to rats in vehicles consisting of the co‐solvent polyethylene glycol 400 (PEG 400) alone or in mixtures with the surfactant polysorbate 80 (PS 80) (95 : 5; 85 : 15; 75 : 25 PEG 400 : PS 80). Methods Halofantrine (17.5 mg/kg) was administered to bile duct cannulated (BDC) and sham‐operated rats in a fixed vehicle volume of 5 ml/kg. Key findings The bioavailability of halofantrine was significantly lower in BDC rats when dosed with 0–5% PS 80 in PEG 400 compared with BDC rats dosed with >15% PS 80. Increasing the concentration of PS 80 to 15–100% eliminated this difference. A possible explanation for the lower bioavailability of halofantrine in BDC rats when dosed in pure PEG 400 could be the dilution of the vehicle by intestinal fluids, decreased transit time and precipitation in the gastrointestinal tract upon dilution of PEG 400. Conclusions The addition of PS 80 to the formulation increased its solubilising power upon dilution and may have inhibited precipitation and substituted the absence of bile above a certain level. Adjusting the level of surfactant in drug formulations could therefore be used to minimise variability in the bioavailability from co‐solvent systems based upon differences in bile concentration between individuals.  相似文献   

2.
The preformulation, solubilization and pharmacokinetic evaluation of antalarmin, a stress inhibitor, have been conducted. Antalarmin has a poor water solubility of less than 1 microg/mL and is weakly basic with an experimentally determined pK(a) of 5.0. Multiple solubilization approaches including pH-control either alone or in combination with cosolvents, surfactants and complexing agents have been investigated. The applicability of lipid-based systems has also been explored. Four formulations, each with a targeted drug loading capacity of 100 mg/mL, show potential for oral administration. Three of these formulations are aqueous solutions (10% ethanol + 40% propylene glycol; 20% cremophor EL; 20% sulfobutylether-beta-cyclodextrin) each buffered at pH 1. The fourth formulation is a lipid-based formulation comprising of 20% oleic acid, 40% cremophor EL and 40% Labrasol. No precipitation was observed following dilution of the four formulations with water and enzyme free simulated gastric fluid. However, only the lipid-based formulation successfully resisted drug precipitation following dilution with enzyme free simulated intestinal fluid. Pharmacokinetic analysis conducted in rats revealed that the 20% cremophor EL solution formulation has a fivefold higher oral bioavailability compared to a suspension formulation. The lipid-based formulation resulted in over 12-fold higher bioavailability as compared to the suspension formulation, the highest amongst the formulations examined.  相似文献   

3.
Gui SY  Wu L  Peng DY  Liu QY  Yin BP  Shen JZ 《Die Pharmazie》2008,63(7):516-519
The principal aim of this study was to develop an oral microemulsion formulation of berberine in order to improve its bioavailability. The Microemulsion was prepared with pharmaceutically acceptable ingredients such as oleic acid, Tween 80 and PEG400. Phase diagrams were drawn to elucidate the phase behavior of systems, which were composed of Tween 80 as surfactant and PEG400 as cosurfactant. A single isotropic region, considered to be a bicontinuous microemulsion, was detected in the pseudo ternary phase diagrams. The berberine-loaded microemulsion was characterized by viscosity, refractive index, electrical conductivity and particle size. In vivo pharmacokinetic profile and oral bioavailability were also investigated in rats. The optimized formulation was as follows: 15 wt.% oleic acid, 17 wt.% Tween-80, 17 wt.% PEG400, and 51 wt.% water. The formulated microemulsion was found to be relatively uniform in size (24.0 nm). The in vivo study indicated that the bioavailability of the oral berberine-loaded microemulsion formulation was 6.47 times greater than that of the berberine tablet suspensions. The results suggest that the microemulsion is a promising oral drug delivery system for berberine.  相似文献   

4.
Purpose. To investigate the effect of co-administered polyethylene glycol 400 (PEG 400), a pharmaceutical excipient previously shown to accelerate small intestinal transit, on the absorption characteristics of ranitidine from the gastrointestinal tract. Methods. Ten healthy male volunteers each received, on two separate occasions, an immediate-release pellet formulation of ranitidine (150 mg) encapsulated within a hard gelatin capsule and a liquid preparation consisting of 150 ml orange juice (control) or 150 ml orange juice containing 10 g PEG 400 (test). The liquid preparations were also radiolabelled with indium-111 to allow their transit through the gastrointestinal tract to be followed using a gamma camera. On a further occasion an intravenous injection of ranitidine (50 mg) was administered. Blood samples were taken over a 12 h period on each study day to allow a ranitidine plasma and subsequent absorption rate profile to be generated for each oral formulation. Urine was collected for 24 h and assessed for PEG 400 concentration. Results. The absolute bioavailability of ranitidine from the pellet formulation was significantly reduced by 31% (from 51% to 35%) and small intestinal liquid transit time was significantly shortened by 37% (from 226 min to 143 min) as a consequence of PEG 400 in the test preparation. PEG 400 also affected the rate of ranitidine absorption, with major differences noted in the mean absorption time and Cmax parameters. The appearance of double peaks were less evident in the ranitidine pharmacokinetic profiles in the presence of PEG 400, and little or no correlation was observed between the absorption of ranitidine and PEG 400. Conclusions. These results clearly demonstrate that PEG 400 adversely influences the gastrointestinal absorption of ranitidine. This in turn has ramifications for the use of PEG 400 as a pharmaceutical excipient in oral formulations.  相似文献   

5.
Response surface methodology (RSM) was applied to optimize the self‐emulsifying drug delivery system (SEDDS) containing 25% (w/w) Drug A, a model drug with a high lipophilicity and low water solubility. The key objective of this study was to identify an optimal SEDDS formulation that: 1) possesses a minimum concentration of the surfactant and a maximum concentration of lipid and 2) generates a fine emulsion and eliminates large size droplets (≥ 1 µm) upon dilution with an aqueous medium. Three ingredient variables [PEG 400, Cremophor EL, and a mixture of glycerol dioleate (GDO), and glycerol monooleate (GMO)] were included in the experimental design, while keeping the other ingredients at a fixed level (25% Drug A, 6% ethanol, 3% propylene glycol, 4% water, and 2% tromethamine) in the SEDDS formulation. Dispersion performance of these formulations upon dilution with a simulated gastrointestinal fluid was measured, and the population of the large droplets was used as the primary response for statistical modeling. The results of this mixture study revealed significant interactions among the three ingredients, and their individual levels in the formulation collectively dictated the dispersion performance. The fitted response surface model predicted an optimal region of the SEDDS formulation compositions that generate fine emulsions and essentially eliminates large droplets upon dilution. The predicted optimal 25% Drug A–SEDDS formulations with the levels of Cremophor EL ranging from 40–44%, GDO/GMO ranging from 10–13%, and PEG 400 ranging from 2.7–9.0% were selected and prepared. The dispersion experiment results confirmed the prediction of this model and identified potential optimal formulations for further development. This work demonstrates that RSM is an efficient approach for optimization of the SEDDS formulation.  相似文献   

6.
This paper deals with the formulation of the mucoadhesive films containing nystatin. The design and formulation of the films were based on the mucoadhesive properties of carbomer 934P (CB) and carboxymethycellulose (NaCMC), and also on the plasticizer properties of polyethyleneglycol 400 (PEG400). A surfactant (ascorbyl palmitate, ASC16) was added to the system to aid in nystatin dispersion. Addition of these last two components produced a significant improvement in physical-mechanical properties (flexibility and strength) as well as an increase in the nystatin release rate. X-ray powder diffraction (XRPD) and scanning electronic microscopy (SEM) were used to evaluate the morphological changes in the films while PEG400 and ASC16 were added to the formulations. Furthermore, the in vitro nystatin profile release was determined.  相似文献   

7.
A precipitation screening method using a 96-well microtiter plate was developed to evaluate in vitro drug precipitation kinetics of liquid formulations for poorly water-soluble compounds, using milligram quantities of compounds and milliliter volumes of biorelevant media. By using this method we identified three formulations showing distinct in vitro precipitation kinetics (fast, slow, and no precipitation) for a model new molecular entity (JNJ-25894934). The in vitro precipitation profiles in simulated intestinal fluid (SIF), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) were compared with those measured by a USP dissolution method, and with in vivo absorption at the fasted and fed states in canine pharmacokinetic (PK) studies. The precipitation kinetics of all three formulations in the initial hours measured by the screening method correlated to those determined by the USP method (R(2) = 0.96). The PK results showed that the fast-precipitation formulation had the lowest bioavailability. However, a similar bioavailability was observed for the slow- and no-precipitation formulations. The oral bioavailability of JNJ-25894934 at the fed state was also significantly higher than that at the fasted state for all three formulations (p < 0.05). In addition, the in vitro precipitation profiles in FeSSIF correlated better with in vivo absorption than those in SIF and FaSSIF.  相似文献   

8.
To improve the bioavailability of a poorly water-soluble drug, RP 69698 (1), solid dispersion formulations were investigated in beagle dogs. The formulations were prepared by a melting method with water-soluble carriers in which 1 is highly soluble. When incorporated into a solid dispersion formulation composed of polyethylene glycol (PEG) 3350, Transcutol and Labrasol, the bioavailability of 1 was determined to be 11.8%. This represented about 2-fold improvement over 6% bioavailability observed previously with an aqueous suspension of the drug in 0.5% methylcellulose. When the formulation contained only Labrasol, in which 1 was completely solubilized, the bioavailability of 1 was 12.9%. Addition of a surfactant, polysorbate 80, at a strength of 10% to the dispersion with PEG 3350 and Labrasol as carriers increased the bioavailability of 1 from 11.8 to 27.6%. This result was attributed to the ability of the surfactant to increase the wettability and spreadability of the drug in a solubilized state once released in the gastrointestinal medium. Increase in the concentration of the surfactant did not further increase the bioavailability of 1. DSC and powder XRD data demonstrated that the major fraction of drug was dissolved in the carrier. A possible explanation for the maximum achievable bioavailability of about 25% with solid dispersion preparation may be that once released, a significant fraction of drug may precipitate in the GI tract. Re-solubilization of the precipitated drug for the absorption is likely to be difficult due to its very low aqueous solubility.  相似文献   

9.
Solid dispersions and physical mixtures of Zolpidem in polyethylene glycol 4000 (PEG 4000) and 6000 (PEG 6000) were prepared with the aim to increase its aqueous solubility. These PEG based formulations of the drug were characterized in solid state by FT-IR spectroscopy, X-ray powder diffraction, and differential scanning calorimetry. By these physical determinations no drug-polymer interactions were evidenced. Both solubility and dissolution rate of the drug in these formulations were increased. Each individual dissolution profile of PEG based formulation fitted Baker-Lonsdale and first order kinetic models. Finally, significant differences in ataxic induction time were observed between Zolpidem orally administered as suspension of drug alone and as solid dispersion or physical mixture. These formulations, indeed, showed almost two- to three-fold longer ataxic induction times suggesting that, in the presence of PEG, the intestinal membrane permeability is probably the rate-limiting factor of the absorption process. Copyright  相似文献   

10.
Danazol was dissolved in non-aqueous mixtures containing either polyethylene glycol 400 or polysorbate 80, and filled into hard gelatin capsules at 50 mg concentrations. The bioavailability of these formulations was compared with commercial danazol capsules in a two-way crossover study using young female beagle dogs. Both formulations showed greater oral bioavailability when compared with either the 100 or 200 mg commercial brand of danazol. The bioavailability of the polyethylene glycol 400 and polysorbate 80 formulations was enhanced 3.7 and 15.8 times, respectively, when compared at the 100 mg dose level.Copyright  相似文献   

11.
Response surface methodology (RSM) was applied to optimize the self-emulsifying drug delivery system (SEDDS) containing 25% (w/w) Drug A, a model drug with a high lipophilicity and low water solubility. The key objective of this study was to identify an optimal SEDDS formulation that: 1) possesses a minimum concentration of the surfactant and a maximum concentration of lipid and 2) generates a fine emulsion and eliminates large size droplets (> or = 1 microm) upon dilution with an aqueous medium. Three ingredient variables [PEG 400, Cremophor EL, and a mixture of glycerol dioleate (GDO), and glycerol monooleate (GMO)] were included in the experimental design, while keeping the other ingredients at a fixed level (25% Drug A, 6% ethanol, 3% propylene glycol, 4% water, and 2% tromethamine) in the SEDDS formulation. Dispersion performance of these formulations upon dilution with a simulated gastrointestinal fluid was measured, and the population of the large droplets was used as the primary response for statistical modeling. The results of this mixture study revealed significant interactions among the three ingredients, and their individual levels in the formulation collectively dictated the dispersion performance. The fitted response surface model predicted an optimal region of the SEDDS formulation compositions that generate fine emulsions and essentially eliminates large droplets upon dilution. The predicted optimal 25% Drug A-SEDDS formulations with the levels of Cremophor EL ranging from 40-44%, GDO/GMO ranging from 10-13%, and PEG 400 ranging from 2.7-9.0% were selected and prepared. The dispersion experiment results confirmed the prediction of this model and identified potential optimal formulations for further development. This work demonstrates that RSM is an efficient approach for optimization of the SEDDS formulation.  相似文献   

12.
Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.  相似文献   

13.
Mixtures of poly(ethylene glycols) (PEGs) with polysorbate 80 are often used to dissolve poorly water-soluble drugs in dosage forms, where polysorbate 80 helps either in enhancing dispersion or in inhibiting precipitation of drugs once the solution is mixed with water. Binary phase diagrams of polysorbate 80 with several low molecular weight PEGs and a ternary phase diagram of polysorbate 80 with PEG 400 and water are presented. Two phases were observed in the binary mixtures when the concentration of PEG 200, PEG 300, PEG 400, or PEG 600 was >55%(w/w). The miscibility of the binary mixtures increases with an increase in temperature; the upper consolute temperatures of PEG 200-polysorbate 80, PEG 300-polysorbate 80, PEG 400-polysorbate 80, and PEG 600-polysorbate 80 mixtures were 100, 85, 75, and 40 degrees C, respectively. The upper consolute temperature of PEG 1000-polysorbate 80 could not be determined because the melting temperature of the mixtures is approximately 40 degrees C and the consolute temperature appeared to be less than this temperature. The decrease in upper consolute temperature with an increase in PEG molecular weight indicated a greater miscibility of the two components. In the ternary system, phase separation of polysorbate 80 was observed when the concentration of PEG 400 was >50-60 % (w/w), possibly because of the high exclusion volume of PEG 400.  相似文献   

14.
The water-miscible co-solvents polyethylene glycol 400 (PEG400), N-methyl-2-pyrrolidone (NMP), and N, N-dimethylacetamide (DMA) exhibit the potential to increase the solubility of poorly water-soluble compounds and therefore they represent promising vehicles for compound delivery using osmotic pumps in early discovery experiments. Thus, the selected co-solvents were investigated for their compatibility with the interior of ALZET osmotic pumps. Moreover, 1-week pumps were filled with mixtures of either the co-solvents with water (60:40, v/v), with neat PEG400, or with PEG400/water mixtures of different concentrations. It was determined whether the composition of an experimental formulation could have an impact on the overall pump rate with 14C-mannitol being used as the model compound. It was found that neat PEG400 was compatible with the reservoir material, whereas NMP and DMA were tolerable only in aqueous solutions up to 60%. PEG400, NMP, and DMA mixtures with water (60:40) resulted in release rates comparable to those of water and PEG400/water mixtures of lower co-solvent concentration. Moreover, as demonstrated using the various PEG400/water mixtures, the amount of co-solvent in the formulation had no significant impact on the overall release profile. By contrast, the use of neat PEG400 resulted in a significant decrease in the pump rate.  相似文献   

15.
This study investigated solid solutions of itraconazole, a water insoluble antifungal, for improved dissolution and improved bioavailability. Influence of processing factors on drug and carrier properties in solid solution and subsequently on drug dissolution behavior was also studied. An optimized solid solution formulation was compared with marketed product in healthy human subjects under fasted and fed conditions for bioequivalency. Polyethylene glycol (PEG) and drug were made into a solid solution at 120 degrees C. The cooled, solid solution was then ground into granules of different sizes. Solid solutions of lower drug concentration dissolved at a faster rate, and drug dissolution improved considerably with increasing molecular weight of PEG. Initial treatment of itraconazole with the wetting agent/cosolvent glycerol prior to making itraconazole into a solid solution improved drug dissolution, and also reduced the PEG amount required to dissolve drug to form solid solution. Addition of a polymer such as HPMC to the solid solution eliminated precipitation of drug following dissolution. As the granule size of the solid solution was reduced, precipitation of drug during dissolution became prominent. Equivalence of two formulations could not be shown for pharmacokinetic parameters C(max) and AUC, under both fasting and fed conditions.  相似文献   

16.
Saturated solubility and reaction rate constants for the decomposition of benzoyl peroxide in solution and suspension were determined for use in formulation development. The solvents studied included ethanol, propylene glycol, and cosolvent mixtures of PEG 400 and water. The solubility of benzoyl peroxide was inversely related to the solvent polarity, with greater solubility occurring with semipolar solvents. The stability of benzoyl peroxide in solution was dependent on the solvent, concentration of benzoyl peroxide, and temperature. The compound was least stable in PEG 400. Stability was improved when water was added to PEG 400. Similar solvent effects were observed in suspension. In benzoyl peroxide suspensions of PEG 400 and PEG 400/water blends, benzoyl peroxide stability was dependent on solubility, with improved stability occurring in blends where the benzoyl peroxide was least soluble. Thus, solution formulations of benzoyl peroxide in pharmaceutically acceptable solvents are unlikely to show good stability; however, suspension formulations should be reasonably stable if the vehicle is selected to provide low benzoyl peroxide solubility.  相似文献   

17.
Abstract

A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8?±?4.0?nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.  相似文献   

18.
Cellular delivery of PEGylated PLGA nanoparticles   总被引:1,自引:0,他引:1  
Objectives The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide‐co‐gycolide (PLGA) nanoparticles by breast cancer cells. Methods Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%–15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin‐6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Key findings Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114–335 nm) with zeta potentials ranging from ?2.8 mV to ?26.2 mV. While PLGA‐PEG di‐block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA‐PEG‐PLGA tri‐block (10% PEG), PLGA‐PEG di‐block (5% PEG) and PLGA‐PEG di‐block (10% PEG) nanoparticles. Conclusion These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential.  相似文献   

19.
Poorly water-soluble weakly basic compounds which are solubilized in gastric fluid are likely to precipitate after the solution empties from the stomach into the small intestine, leading to a low oral bioavailability. In this study, we reported an approach of combining solubilization agents and precipitation inhibitors to produce a supersaturated drug concentration and to prolong such a drug concentration for an extended period of time for an optimal absorption, thereby improving oral bioavailability of poorly water-soluble drugs. A weakly basic compound from Johnson and Johnson Pharmaceutical Research and Development was used as a model compound. A parallel microscreening precipitation method using 96-well plates and a TECAN robot was used to assess the precipitation of the tested compound in the simulated gastric fluid (SGF) and the simulated intestinal fluid (SIF), respectively, for lead solubilizing agents and precipitation inhibitors. The precipitation screening results showed vitamin E TPGS was an effective solubilizing agent and Pluronic F127 was a potent precipitation inhibitor for the tested compound. Interestingly, the combination of Pluronic F127 with vitamin E TPGS resulted in a synergistic effect in prolonging compound concentration upon dilution in SIF. In addition, HPMC E5 and Eudragit L100-55 were found to be effective precipitation inhibitors for the tested compounds in SGF. Furthermore, optimization DOE study results suggested a formulation sweet spot comprising HPMC, Eudragit L 100-55, vitamin E TPGS, and Pluronic F127. The lead formulation maintained the tested compound concentration at 300 μg/mL upon dilution in SIF, and more than 70% of the compound remained solubilized compared with the compound alone at <1 μg/mL of its concentration. Dosing of the solid dosage form predissolved in SGF in dogs resulted in 52% of oral bioavailability compared to 26% for the suspension control, a statistically significant increase (p = 0.002). The enhanced oral bioavailability of the tested compound could be attributed to generation and prolongation of a supersaturated drug concentration in vivo by the solubilizing agents and precipitation inhibitors. The study demonstrates that the combination approach of solubilization agents and precipitation inhibitors provides improved oral bioavailability for a poorly water-soluble weakly basic compound.  相似文献   

20.
Physicochemical factors involved in the development of a topical solution of a novel corticosteroid, tipredane (1), are described. A cosolvent system consisting of polyethylene glycol 400 (PEG 400), propylene glycol, and water was used to dissolve the concentration (0.1% w/w) of 1 required for the formulation. The solvent mixture was also nonirritating to the skin. Buffering agent, antioxidant, and metal-chelating agent were required to stabilize the drug. Solubilities of hydrophilic and lipophilic excipients were ensured by careful adjustment of their concentrations, as well as that of PEG 400. Two formulations, one containing potassium citrate and the other tromethamine as the buffering agents, were identified. Upon storage, sodium metabisulfite, an antioxidant used in the formulation, oxidized to form K2SO4 in the formulation containing potassium citrate. Potassium citrate decreased the solubility and resulted in the precipitation of K2SO4 by exerting a common ion effect. Lowering of the concentrations of potassium citrate, sodium metabisulfite, and PEG 400 ensured the solubility of K2SO4 formed. There was no such precipitation of K2SO4 in the formulation buffered with tromethamine, thus indicating that tromethamine is a good buffering agent in cosolvent systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号