首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinases constitute attractive therapeutic targets for development of new prototypes to treat different chronic diseases. Several available drugs, like tinibs, are tyrosine kinase inhibitors; meanwhile, inhibitors of serine/threonine kinases, such as mitogen‐activated protein kinase (MAPK), are still trying to overcome some problems in one of the steps of clinical development to become drugs. So, here we reported the synthesis, the in vitro kinase inhibitory profile, docking studies, and the evaluation of anti‐inflammatory profile of new naphthyl‐N‐acylhydrazone derivatives using animal models. Although all tested compounds ( 3a–d ) have been characterized as p38α MAPK inhibitors and have showed in vivo anti‐inflammatory action, LASSBio‐1824 ( 3b ) presented the best performance as p38α MAPK inhibitor, with IC50 = 4.45 μm , and also demonstrated to be the most promising anti‐inflammatory prototype, with good in vivo anti‐TNF‐α profile after oral administration.  相似文献   

2.
Abstract: βN‐tert‐butyloxycarbonyl‐N‐carboxyanhydrides are very reactive β‐amino acid derivatives. They react cleanly and smoothly with different nucleophiles like aminoesters, enolates, N‐methyl‐d ‐glucamine, amidoximes to afford in good to excellent yields peptides, β‐amino ketocompounds, β‐aminosugars and functionalized disubstituted 1,2,4‐oxadiazoles.  相似文献   

3.
1‐[11C]‐β‐hydroxybutyrate was produced by conversion from 1‐[11C]‐acetoacetate using (D)‐β‐hydroxybutyrate dehydrogenase in the presence of nicotinamide adenine dinucleotide with purification by ion exchange column chromatography. Radiochemical yield at the end of the synthesis was 10% for a total synthesis time of 36 min. High‐performance liquid chromatography analysis showed ≤4% impurities, principally unconverted acetoacetate. Residual tetrahydrofuran (34±11 ppm) and ethanol (77±30 ppm) were well under the tolerable limits for human studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
Abstract: A new and efficient method for the synthesis ofNα‐Fmoc‐/Boc‐/Z‐β‐amino acids using the two‐step Arndt‐Eistert approach is described. Fmoc‐/Boc‐/Z‐α‐Amino acid fluorides were used for the acylation of diazomethane synthesizing Fmoc‐/Boc‐/Z‐α‐aminodiazoketones as crystalline solids with good yield and purity. They were then converted to the corresponding β‐amino acids using PhCOOAg/dioxane/H2O.  相似文献   

7.
8.
The enzyme, 15,15′‐β‐carotene dioxygenase (BCDOX), facilitates the oxidation of β‐carotene to yield retinal. This is a remarkable process in which one of 11 double bonds in β‐carotene is selectively oxidized. To further probe the mechanistic aspects of BCDOX, the synthesis of all‐trans‐[10′‐3H]‐8′‐apo‐β‐carotenoic acid is reported. This compound will be used as a photoaffinity labeling reagent to probe the β‐carotene binding pocket within BCDOX. The synthesis outlines a simple and efficient route for the incorporation of tritium at the 10′ olefinic carbon of 8′‐apo‐β‐carotenoic acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
5‐((1‐[11C]‐methyl‐2‐(S)‐pyrrolidinyl)methoxy)‐2‐chloro‐3‐((E)‐2‐(2‐fluoropyridin‐4‐yl)‐vinyl)pyridine ([11C]‐FPVC) was synthesized from [11C]‐methyl iodide and the corresponding normethyl precursor. The average time of synthesis, purification, and formulation was 42 min with an average non‐decay‐corrected radiochemical yield of 19%. The average specific radioactivity was 359 GBq/µmol (9691 mCi/µmole) at end of synthesis (EOS). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract: A protected tridehydropeptide containing (Z)‐β‐(3‐pyridyl)‐α,β‐dehydroalanine (ΔZ3Pal) residue, Boc‐Leu‐ΔZ3Pal‐Leu‐OMe ( 1 ), was synthesized via Erlenmeyer azlactone method. X‐ray crystallographic analysis revealed that the peptide 1 adopts an extended conformation, which is similar to that of a ΔZPhe analog, Boc‐Leu‐ΔZPhe‐Leu‐OMe ( 2 ).  相似文献   

11.
The use of peptides as drugs in pharmaceutical applications is hindered by their susceptibility to proteolysis and therefore low bioavailability. β‐Peptides that contain an additional methylene group in the backbone, are gaining recognition from a pharmaceutical stand point as they are considerably more resilient to proteolysis and metabolism. Recently, we reported two new classes of β ‐peptides, β 3‐ and β2‐peptides derived from l ‐aspartic acid and l ‐diaminopropionic acid, respectively. Here, we report the proteolytic stability of these β‐peptidic compounds and a mixed α /β‐peptide against three enzymes (pronase, trypsin and elastase), as well as, human serum. The stability of these peptides was compared to an α‐peptide. Peptides containing β‐linkages were resistant to all conditions. The mixed α /β‐peptide, however, exhibited proteolysis in the presence of trypsin and pronase but not elastase. The rate of degradation of the mixed α /β‐peptide was slower than that would be expected for an α‐peptide. In addition, these β‐peptides were not toxic to HeLa and COS‐1 cell lines as observed by MTT cytotoxicity assay. These results expand the scope of mixed α /β‐peptides containing β‐amino acids or small β‐peptide fragments as therapeutic peptides.  相似文献   

12.
Abstract: During the manufacture of a proprietary peptide drug substance a new impurity appeared unexpectedly. Investigation of its chemical structure established the impurity as a β‐Ala insertion mutant of the mother peptide. The source of the β‐Ala was identified as contamination of the Fmoc‐Ala‐OH raw material with Fmoc‐β‐Ala‐Ala‐OH. Further studies also demonstrated the presence of β‐Ala in other Fmoc‐amino acids, particularly in Fmoc‐Arg(Pbf)‐OH. In this case, it was due to the presence of both Fmoc‐β‐Ala‐OH and Fmoc‐β‐Ala‐Arg(Pbf)‐OH. It is concluded that β‐Ala contamination of Fmoc‐amino acid derivatives is a general and hitherto unrecognized problem to suppliers of Fmoc‐amino acid derivatives. The β‐Ala is often present as Fmoc‐β‐Ala‐OH and/or as a dipeptide, Fmoc‐β‐Ala‐amino acid‐OH. In collaboration with the suppliers, new specifications were introduced, recognizing the presence of β‐Ala‐related impurities in the raw materials and limiting them to acceptable levels. The implementation of these measures has essentially eliminated β‐Ala contamination as a problem in the manufacture of the drug substance.  相似文献   

13.
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid‐β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid‐β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β‐sheet breaker α/β‐hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40‐induced neurotoxicity in human neuroblastoma SH‐SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+, and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40‐induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro‐apoptotic protein Bax and up‐regulating antiapoptotic protein Bcl‐2. These results suggest that α/β‐hybrid peptide has neuroprotective effects against Aβ40‐induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.  相似文献   

14.
Intravenous injection of ferulidilol (0.5, 1.0, 1.5 mg kg−1) produced dose‐dependent hypotensive and bradycardia responses in pentobarbital‐anesthetized Wistar rats. Ferulidilol competitively antagonized (‐)isoprenaline‐induced positive inotropic and chronotropic effects of the atria and tracheal relaxation responses on isolated guinea pig tissues. The parallel shift to the right of the concentration–response curve of (‐)isoprenaline suggested that ferulidilol was a β‐adrenoceptor antagonist. The apparent pA2 values were 8.04 ± 0.09 for the right atria, 8.03 ± 0.15 for the left atria, and 7.51 ± 0.06 for the trachea, respectively. Ferulidilol was more potent than labetalol. In thoracic aorta experiments, ferulidilol also produced a competitive antagonism of norepinephrine‐ and CaCl2‐induced contraction with pA2 and pKCa−1 values of 7.05 ± 0.03 and 6.04 ± 0.05, respectively. Ferulidilol produced cumulative relaxation responses on isolated tracheal strips from reserpine‐treated guinea pigs. The effects were competitively antagonized by ICI 118,551 (10−8–10−6 M), a relatively selective β2‐adrenoceptor antagonist. The results implied that ferulidilol had partial β2‐agonist activity. In the radioligand binding assay, ferulidilol produced dose‐dependent inhibition of [3H]CGP‐12177 binding to rat ventricle and lung membranes with Ki values of 3.40 and 17.94 nM, respectively. In addition, ferulidilol also antagonized [3H]prazosin and [3H]nitrendipine binding to rat brain membrane with Ki values of 32.48 and 305.01 nM, respectively. These results further confirmed the α/β and calcium entry blocking activities of ferulidilol described in functional studies. Furthermore, ferulidilol (10−8–10−5 M] inhibited lipid peroxidation induced by Fe2+ and ascorbic acid, indicating that it possesses the antioxidant activity inherent in ferulic acid. Our results demonstrate that ferulidilol is a new generation α/β‐adrenoceptor blocker with ancillary calcium entry blockade, partial β2‐agonist activities and additional antioxidant effects. Drug Dev. Res. 47:77–89, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
In our previous experiments, we found β‐catenin was highly expressed in the tumor area with high invasive ability and poor prognosis. In this study, we have examined the mechanism by which ERα regulates β‐catenin expression as well as the metastasis ability of hepatocellular cancer HA22T cells. To identify whether the anticancer effect of estrogen and ERα is mediated through suppression of β‐catenin expression, we co‐transfected pCMV‐β‐catenin and ERα into HA22T cells, and determined the cell motility by wound healing, invasion, and migration assays. Results showed that estrogen and/or ERα inhibited β‐catenin gene expression and repressed HA22T cell motility demonstrated that similar data was observed in cells expressing the ERα stable clone. Moreover, we examined the protein‐protein interaction between ERα and β‐catenin by immunostain, co‐immunoprecipitation, and Western blotting. E2 enhanced the binding of ERα with β‐catenin and then triggered β‐catenin to bind with E3 ligase (βTrCP) to promote β‐catenin degradation. Finally by employing systematic ChIP studies, we showed ERα can interact directly with the β‐catenin promoter region following E2 treatment. All our results reveal that estrogen and ERα blocked metastatic function of HA22T cells by modulating GSK3β and βTrCP expression and further enhanced β‐catenin degradation and suppressed its downstream target genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 519–529, 2017.  相似文献   

16.
A series of novel 3‐(furo[2,3‐b]pyridin‐3‐yl)‐4‐(1H‐indol‐3‐yl)‐maleimides were designed, synthesized, and biologically evaluated for their GSK‐3β inhibitory activities. Most compounds showed favorable inhibitory activities against GSK‐3β protein. Among them, compounds 5n , 5o , and 5p significantly reduced GSK‐3β substrate tau phosphorylation at Ser396 in primary neurons, indicating inhibition of cellular GSK‐3β activity. In the in vitro neuronal injury models, compounds 5n , 5o , and 5p prevented neuronal death against glutamate, oxygen–glucose deprivation, and nutrient serum deprivation which are closely associated with cerebral ischemic stroke. In the in vivo cerebral ischemia animal model, compound 5o reduced infarct size by 10% and improved the neurological deficit. The results may provide new insights into the development of novel GSK‐3β inhibitors with potential neuroprotective activity against brain ischemic stroke.  相似文献   

17.
Recent studies have demonstrated that inhibition of p38α MAP kinase could effectively inhibit pro‐inflammatory cytokines including TNF‐α and interleukins. Thus, inhibition of this enzyme can prove greatly beneficial in the therapy of chronic inflammatory diseases. A new series of N‐[3‐(substituted‐4H‐1,2,4‐triazol‐4‐yl)]‐benzo[d]thiazol‐2‐amines ( 4a–n ) were synthesized and subjected to in vitro evaluation for anti‐inflammatory activity (BSA anti‐denaturation assay) and p38α MAPK inhibition. Among the compounds selected for in vivo screening of anti‐inflammatory activity ( 4b , 4c , 4f , 4g , 4j , 4m , and 4n ), compound 4f was found to be the most active with an in vivo anti‐inflammatory efficacy of 85.31% when compared to diclofenac sodium (83.68%). It was also found to have a low ulcerogenic risk and a protective effect on lipid peroxidation. The p38α MAP kinase inhibition of this compound (IC50 = 0.036 ± 0.12 μM) was also found to be superior to the standard SB203580 (IC50 = 0.043 ± 0.27 μM). Furthermore, the in silico binding mode of the compound on docking against p38α MAP kinase exemplified stronger interactions than those of SB203580.
  相似文献   

18.
19.
2‐Methoxy‐3,17β‐estradiol, an endogenous estrogen metabolite, showed cytotoxicity in various cancer cell lines and also has antiangiogenic and proapoptotic activities. Clinical I and II trials of 2‐methoxy‐3,17β‐estradiol for multiple myeloma, advanced solid tumors, metastatic breast and prostate cancer are underway. We prepared 2‐[11C]methoxy‐3,17β‐estradiol to measure the pharmacokinetics and organ distribution of 2‐methoxy‐3,17β‐estradiol in clinical trials. 2‐[11C]Methoxy‐3,17β‐estradiol was synthesized from a precursor, 2‐hydroxy‐3,17β‐O‐bis(methoxymethyl)estradiol, in two steps with over 99% radiochemical purity. The overall reaction time was 45 min and the decay‐corrected radiochemical yield was 32.9%. The distribution coefficient (logP7.4) of 2‐[11C]methoxy‐3,17β‐estradiol at pH 7.4 was measured as 2.95. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号