首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:制备利培酮口溶膜剂,并评价其质量。方法:采用流延法制备利培酮口溶膜,以成膜性、外观形状、溶化时限为指标,筛选优化处方。结果:以枸橼酸为稳定剂、羟丙甲基纤维素E15为成膜材料、微晶纤维素和麦芽糊精为填充剂的膜剂可在30 s内溶化,与国外上市产品Risperidon Sandoz® Solufilm的溶化时限一致,自制样品与国外上市产品在体外4种介质中的溶出行为基本一致,5 min内基本释放完全。结论:利培酮可溶膜处方工艺合理。  相似文献   

2.
Abstract

The purpose of this study was to prepare orally disintegrating films containing nanoparticles loaded with acetaminophen. Nanoparticles were prepared by the emulsion-solvent evaporation method where acetone phase containing acetaminophen and poly(lactide-co-glycolide acid) (PLGA) was added to water phase containing hydroxypropyl methyl cellulose, poly ethylene glycol, polyvinyl alcohol (PVA) and aspartame in a rate of 1.5 drop?s?1 and agitated at 1200?rpm. The size, polydispersity index (PI) and drug entrapment (DE) were measured. The emulsions were cast to form films, which were evaluated physico-mechanically. The effect of different degrees of hydrolization of PVA and polymerization of PLGA and the effect of different ratios of PVA to PLGA was studied. Films with acceptable physico-mechanical properties were further studied. The size and PI of the nanoparticles was dependent on PVA hydrolization, PLGA polymerization and the ratio of PVA to PLGA. All films disintegrated in less than one minute, but acetaminophen was not free in the dissolution media even after six days. These results may indicate that although the nanoparticles released from the films immediately when impressed in solution the drug is sustained in the nanoparticles for longer time, which is to be clarified in future work.  相似文献   

3.
Ketorolac tromethamine, the non-steroidal anti-inflammatory drug, was formulated onto buccoadhesive films to overcome the limitations in the currently available dosage and routes of administration which in sequence will increase patients’ compliance. Films were cast from organic and aqueous solvents using various bioadhesive polymers namely: sodium carboxymethyl cellulose (Na-CMC), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The prepared films were subjected to investigations for their physical and mechanical properties, swelling behaviors, in vitro bioadhesion, drug permeation via bovine buccal mucosa and in vitro drug release. These properties were found to vary significantly depending on the preparation methods, the type of the polymers and the ratio of addition of both plasticizer (i.e. polyethylene glycol) and film forming agent (ethyl cellulose and polyvinylpyrolidene). Formula number K10 containing carbopol 0.5% and HPMC 0.5% was found to be the best film as it shows good adhesion, acceptable pH, and gives a reasonable ketrolac release (about 85-90% at 6 h). In addition, this film was subjected to in vitro and in vivo release. The obtained results indicate that the concentration of ketorolac in the oral cavity was maintained above 4.0 μg/mL for a period of at least 6 h. This film shows promising results for using the ketrolac buccoadhesive route of administration topically and systemically, and thus it will be subjected to clinical evaluation in future work.  相似文献   

4.
Polymerized rosin: novel film forming polymer for drug delivery   总被引:3,自引:0,他引:3  
Polymerized rosin (PR) a novel film forming polymer is characterized and investigated in the present study for its application in drug delivery. Films were produced by a casting/solvent evaporation method from plasticizer free and plasticizer containing solutions. Films prepared from different formulations were studied for their mechanical (tensile strength, percent elongation and Young's modulus), water vapour transmission and moisture absorption characteristics. Neat PR films were slightly brittle and posed the problem of breaking during handling. Hydrophobic plasticizers, dibutyl sebacate and tributyl citrate, improved the mechanical properties of free films with both the plasticizers showing significant effects on film elongation. Release of diclofenac sodium (model drug) from coated pellets was sustained with high coating levels. Concentration of plasticizer was found to affect the release profile. PR films plasticized with hydrophobic plasticizers could therefore be used in coating processes for the design of oral sustained delivery dosage forms.  相似文献   

5.
谢燕萍  吴杏梅 《中国药房》2011,(13):1193-1196
目的:采用正交试验筛选布南色林分散片的处方。方法:以内崩解剂微晶纤维素的用量、填充剂乳糖的用量、外崩解剂羧甲基淀粉钠的用量、黏合剂羟丙基甲基纤维素溶液的浓度为考查因素,以分散片的崩解时间、脆碎度和分散均匀性为评价指标进行正交试验,确定最佳处方;并对优化的处方进行工艺验证及质量评价。结果:优选处方为含微晶纤维素30%、乳糖50%、羧甲基淀粉钠0.5%,羟丙基甲基纤维素溶液浓度为2%;所制样品平均崩解时间为10.8s,脆碎度为0.29%,分散均匀性合格,30min药物累积溶出百分率超过75%。结论:布南色林分散片处方设计较为合理。  相似文献   

6.
Mucoadhesive films containing curcumin‐loaded nanoparticles were developed, aiming to prolong the residence time of the dosage form in the oral cavity and to increase drug absorption through the buccal mucosa. Films were prepared by the casting method after incorporation of curcumin‐loaded chitosan‐coated polycaprolactone nanoparticles into plasticized chitosan solutions. Different molar masses of mucoadhesive polysaccharide chitosan and concentrations of plasticizer glycerol were used to optimize the preparation conditions. Films obtained using medium and high molar mass chitosan were found to be homogeneous and flexible. Curcumin‐loaded nanoparticles were uniformly distributed on the film surface, as evidenced by atomic force microscopy and high‐resolution field‐emission gun scanning electron microscopy (FEG‐SEM) images. Analyses of film cross sections using FEG‐SEM demonstrate the presence of nanoparticles inside the films. In addition, films proved to have a good rate of hydration in simulated saliva solution, displaying a maximum swelling of around 80% and in vitro prolonged‐controlled delivery of curcumin. These results indicate that the mucoadhesive films containing nanoparticles offer a promising approach for buccal delivery of curcumin, which may be particularly useful in the treatment of periodontal diseases that require a sustained drug delivery.  相似文献   

7.
Different non-ionic cellulose ethers like methyl cellulose (MC), hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose (HPMC) were investigated. The characterization of the cellulose ethers was carried out by thermogravimetry and sorption/desorption isotherms. Differences in the properties of the cellulose ether films were described by time-dependent contact angle measurements. Changes in molecular structure of the raw materials, gels and films caused by water contact were studied using Raman spectroscopy. Differences between the substitution types and changes due to the gel or film formation were observed. An environmental scanning electron microscopy (ESEM) technique was used to distinguish the morphological behaviour of the cellulose ether films in contact with water. Based on in-situ ESEM experiments, the swelling and drying behaviour of the various stages of cellulose ether films (film-hydrated film-dried film) were quantified by using image analysis.  相似文献   

8.
Recent work has established polymer strip films as a robust platform for delivery of poorly water-soluble drugs via slurry casting, in particular using stable drug nanosuspensions. Here, a simpler, robust method to directly incorporate dry micronized poorly water-soluble drug, fenofibrate (FNB), is introduced. As a major novelty, simultaneous surface modification using hydrophilic silica along with micronization was done using fluid energy mill (FEM) in order to reduce FNB hydrophobicity and powder agglomeration. It is hypothesized that silica coating promotes easy, uniform dispersion of micronized and coated FNB (MC-FNB) during direct mixing with aqueous hydroxypropyl methylcellulose (HPMC-E15LV) and glycerin solutions. Uniform dispersion leads to improved film critical quality attributes (CQAs) such as appearance, drug content uniformity and drug dissolution. The impact of polymer solution viscosity (low and high), mixer type (low versus high shear), and FNB surface modification on film CQAs were also assessed. Films with as-received FNB (AR-FNB) and micronized uncoated FNB (MU-FNB) were prepared as control. When MC-FNB powders were used, films exhibited improved appearance (thickness uniformity, visible lumps/agglomerates), better drug content uniformity (expressed as relative standard deviation), fast and immediate drug release, and enhanced mechanical properties (tensile strength, elongation percentage), regardless of the polymer solution viscosity or mixer type. These results compare favorably with those reported using nanosuspensions of FNB, establishing the feasibility of directly incorporating surface modified-micronized poorly water-soluble drug powders in film manufacturing.  相似文献   

9.
The objective of the present research was to ensure safety during oral administration of medications to dysphagia patients, by preparing fast disintegrating films (FDF) containing anastrozole (ANS) which disintegrate rapidly when placed on the tongue. Films were prepared by solvent-casting method using various polymers such as hydroxyl propyl methyl cellulose (HPMC E5 LV), hydroxy propyl cellulose (HPC), poly vinyl alcohol (PVA) and sodium alginate (Na Alginate). Among the formulations examined, film prepared using HPMC E5 LV (F1) exhibited shorter disintegration time (15 sec) with satisfactory mechanical properties. Fourier transformer infrared (FTIR) & differential scanning calorimetry (DSC) analysis revealed no chemical incompatibility between drug and excipients used in the formulation. Surface morphology revealed even distribution of ANS in the film. Dissolution of drug from F1 formulation was rapid with more than 90% drug release in 240 sec. Pharmacokinetic parameters showed no statistical difference between F1 (test) and drug solution (control) indicating comparable plasma level-time profiles. The film showed an excellent stability for 24 weeks when stored at refrigerated temperature (2–8°C). These findings suggest that the fast disintegrating film as a promising candidate for delivery of ANS in dysphagic patients.  相似文献   

10.
Hot-melt extrusion technology was used to produce thin films containing a model drug, lidocaine, and the cellulosic polymers hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC). Two film formulations were extruded and compared, one containing only HPC and the other containing HPC:HPMC (80:20). Thermal analysis of the films using differential scanning calorimetry (DSC) suggested that the drug existed in the amorphous condition, which was confirmed by wide angle X-ray diffractometry. Sustained release of the drug was observed from both of the polymer matrices. Dissolution profiles suggested that HPMC retarded the drug release from HPC:HPMC (80:20) films. However, the mechanism of drug release from both of the films was predominantly diffusion of the drug through the polymer matrices. Incorporation of HPMC also increased both adhesive strength and work of adhesion as compared to the HPC-only films.  相似文献   

11.
目的制备制霉菌素口腔双层贴膜并建立其质量考察方法。方法采用乙基纤维素作为空白隔离层成膜材料,采用聚乙烯醇和羧甲基纤维素钠作为成膜材料制备含药膜,采用紫外分光光度法测定其中制霉菌素的含量。结果制霉菌素在1.02~20.40μg.mL-1内呈良好的线性关系(r=0.9999),平均回收率为100.12%,(RSD=0.32%,n=6)。结论该膜剂制备方法简单可行,质量可控。  相似文献   

12.
Coevaporates of prochlorperazine maleate were prepared using different polymers by solvent evaporation technique. Ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose phthalate were used in preparation of coevaporates. The coevaporates were characterized by X-ray diffraction studies, IR spectrophotometry and Differential scanning calorimetry. Dissolution behavior of coevaporates was studied using buffer solution with pH 1.2 and 6.8 by half change method. A two level, two factor factorial design was used to quantitate effect of polymers on dissolution profile of PCPM. Dissolution of drug in pH 6.8 buffer improved with increasing content of hydroxypropyl methyl cellulose phthalate in coevaporates.  相似文献   

13.
Objective: To develop a fast dissolving film strip containing epinephrine HCl for the potential treatment of pediatric anaphylaxis.

Methods: Four different films have been prepared by solvent casting technique where the percentages of the polymer (Lycoat RS720) were optimized. The polymer percentages were (20%, 25%, 27% and 30%) of the total formulation weighs. The thickness and elastic modulus of the optimized film was evaluated using dynamic mechanical analyzer. Epinephrine content uniformity was assessed using UV at wavelength 280?nm. For the dissolution test, fast dissolving films (FDFs) were evaluated in 500 Simulated Saliva, with 50?rpm. In vivo taste and disintegration evaluation was performed on six healthy volunteers.

Results: Films formed by formulations 1, 2 and 3 were too sticky after drying, while formulation 4 that has 30% polymer content formed smooth, transparent, flexible and uniform film, and therefore, it was selected for further testing. The value of elastic modulus was determined at 1.325?MPa. The thickness of the film at different locations was measured at 0.29?mm. Drug content in film was measured at 93%?±10. More than 90% of epinephrine was released from the film within 7.2?min. Bitterness of epinephrine was masked efficiently according to volunteer’s comments with average disintegration time of 20?s.

Conclusion: This study presents potential proof for using FDFs as a replacement therapy of epinephrine injections for pediatrics.  相似文献   

14.
Abstract

Nisoldipine is a calcium channel blocker with low and variable oral bioavailability. This was attributed to slow dissolution and presystemic metabolism. Accordingly, the objective of this work was to enhance the dissolution rate of nisoldipine to formulate fast disintegrating tablets with rapid dissolution. Binary solid dispersions (SD) were prepared for the drug with hydroxypropyl methyl cellulose E5 (HPMC), polyvinylpyrrolidone (PVP), Pluronic F68 or polyethylene glycol 6000 (PEG 6000). SD formation increased the dissolution rate compared to pure drug with the corresponding physical mixtures failing to provide the same dissolution enhancement. This indicates that the SD enhanced dissolution is not due to the solubilizing effect of the polymer and can be due to physical change in the drug crystal which was confirmed by thermal analysis. SD with HPMC and PVP were selected for preparation of fast disintegrating tablets as they liberated most of the drug in the first 5?min. HPMC-based tablets disintegrated rapidly and released most of the drug in the first 2?min which correlated with the corresponding SD. In contrast, PVP-based tablets disintegrated slowly with gradual dissolution. This can be attributed to the binding effect of PVP. The study developed fast disintegrating tablet for intra-oral administration.  相似文献   

15.
Hot-melt extrusion technology was used to prepare thin polymer films containing hydroxypropyl cellulose and clotrimazole (CT). Films containing hydroxypropyl celluloses of different molecular weight and the drug were investigated for moisture-sorption, mechanical properties, and release characteristics. Stability of the films was also studied at 25 degrees C/60% relative humidity (RH) and 40 degrees C/75% RH for up to 3 months. To study the moisture-sorption of the hot-melt extruded films, a rapid dynamic vapor sorption technique was used. Mechanical properties were evaluated using the Texture Analyzer. The molecular weight of the polymer had a significant effect on the mechanical and release characteristics of the films but did not influence the equilibrium moisture content in the films stored at RHs ranging from 0 to 90%. However, the time to reach equilibrium was longer for the higher molecular weight polymers. The drug release rate was dependent on the rate of erosion, which in turn depended on the molecular weight of the polymer. The films were stable at 25 degrees C/60% RH for up to 3 months with no significant degradation or recrystallization of CT. However, recrystallization of the drug was observed within the films stored in accelerated stability conditions at the end of 3 months in which only 92.9% (+/-1.9) CT remained.  相似文献   

16.
The delivery of drugs via fast dissolving films is an effective alternative for drugs with low bioavailability when administered by other routes. This is the case of domperidone (DMP) an anti-emetic drug with low water solubility and vulnerable to extensive first-pass effect. To overcome these limitations, in this work, we designed and produced fast dissolving muco-adhesive buccal films of domperidone using varying amount polyvinylpyrrolidone (PVP K-90) using the solvent casting method. Films loaded with more than 10% of drug were not homogenous and opaque as indicated by white patches of drug in the film matrix. Formulation of DMP in the film form resulted in conversion of the drug from crystalline state to the semi-crystalline state as indicated by X-ray powder diffraction analysis. Moreover, about 40% of drug loaded within the films was released during the first five minutes compared to only about only 6.5% of pure drug in drug dissolution assays in vitro. In vivo pharmacokinetics analysis revealed that the DMP-loaded film had higher maximum plasma concentration (Cmax) and shorter time to reach Cmax (Tmax) than a commercially available tablet formulation. In conclusion, the produced DMP buccal film formulation showed high absorption rate, rapid onset of action, and improved bioavailability compared with the conventional tablet. Our findings may support the development of novel dosage forms for the transmucosal delivery of DMP for convenient, rapid, and effective treatment of nausea and vomiting.  相似文献   

17.
The objective of the present work is to design sustained release matrix tablets of cefixime trihydrate by incorporating drug in a matrix made up of release retardant polymers, which prolong drug release leading to minimization of the peak and valley effect in the plasma and provide patient convenience. The effect of combination of polymers on parameters like release pattern, release mechanism of the drug were studied. Total nine formulations each containing 200 mg of drug were prepared by direct compression method. The formulations F-1, F-2, F-3 were prepared with a 1:1 drug to polymer ratio using hydroxypropyl methylcellulose, carboxymethyl cellulose sodium and ethyl cellulose. F-4 was prepared with a 1:1 ratio of hydroxypropyl methylcellulose, carboxymethyl cellulose sodium, F-5 as prepared with a 1:1 ratio of hydroxypropyl methylcellulose and ethyl cellulose, F-6 was prepared with a 1:1 ratio of carboxymethyl cellulose sodium and ethyl cellulose, F-7, F-8, F-9 were prepared by using polymers hydroxypropyl methylcellulose, carboxymethyl cellulose sodium and ethyl cellulose in the ratios of 0.5:0.5:1, 0.5:1:0.5, and 1:0.5:0.5. Designed matrix tablets were evaluated for various pre-compression and post-compression parameters. Formulation F-5 showed 102.15 % release at the end of 12 h and it is selected as the best formulation. All Formulations followed zero order with non-Fickian diffusion method.  相似文献   

18.
The formulation of active pharmaceutical ingredients (API) as orodispersible films is gaining interest among novel oral drug delivery systems due to their small size, enhanced flexibility and improved patient compliance. The aim of this work was the preparation and characterization of orodispersible films containing loperamide hydrochloride (LPH) as model drug. As loperamide hydrochloride is poorly soluble in water it was used in crystalline form with a loading of 2 mg/6 cm2 film.Hydroxypropyl methylcellulose (HPMC) and different types of hydroxypropyl cellulose (HPC) in different concentrations were used as film forming polymers whereas arabic gum, xanthan gum and tragacanth served as thickening agents. Films were characterized with respect to the content uniformity, morphology, thermal behavior and crystallinity. Suspensions were investigated regarding their viscosity using a rotational rheometer and the crystal structure of the Active Pharmaceutical Ingredient (API) was analyzed using polarized light microscopy. The development of flexible, non-brittle and homogeneous films of LPH was feasible.Two polymorphic forms of LPH appeared in the film formulations dependent on the utilized polymer. While in presence of HPMC the original polymorphic form I remained stable in suspension and films, the polymorphic form II occurred in presence of HPC. Both polymorphic forms were prepared separately and a solid state characterization was performed. Polymorph I showed isometric crystals whereas polymorph II showed needle shaped crystals. Tragacanth was able to prevent the transformation to polymorph II, if it was dissolved first before HPC. When HPC was added first to the suspension, the conversion to form II occurred irreversibly also after further addition of tragacanth.  相似文献   

19.
Polymeric films containing salicylic acid or propranolol HC1 were prepared by casting and drying a drug-containing, aqueous colloidal polymer dispersion (Eudragit NE 30D) as an alternative to films cast from organic polymer solutions. The drug was either dissolved (salicylic acid) or dissolved/ dispersed (propranolol HC1) in the polymeric matrix. Incompatibilities (flocculation or coagulation) between salts of basic drugs and two ethylcellulose latexes were overcome by substituting the anionic surfactants with a nonionic surfactant (Pluronic P103). The drug release was studied as a function of drug loading, film thickness, amount of hydrophilic additive (hydroxypropyl methylcellulose), and storage humidity. The release of propranolol HC1 (monolithic dispersion) was a combination of diffusion through the polymer and pores or channels; the extent of each release mechanism depended on the drug loading. On DSC thermograms, melting transitions were obtained with monolithic dispersions but not with monolithic solutions. The heat of fusion was linearly correlated to the amount of drug in the films. The amount of drug remaining in the film after the dissolution study was not detectable and corresponded to the drug dissolved in the polymer. The drug release increased with increased drug loading and increased amount of hydroxypropyl methylcellulose but was independent of film thickness and relatively insensitive to different storage humidities.  相似文献   

20.
Hydrosoluble emodin-borate (EmB) nanoparticles (NPs) were fabricated by a simple solvent exchange method to address emodin’s poor water solubility. As the result, negative charges were introduced in the surface of EmB NPs. In addition, layer-by-layer assembled multilayer films containing cation-rich polymeric microgels (named PAHD) and sodium carboxymethyl cellulose (NaCMC) were employed as drug carrier. Anionic EmB can be loaded into the PAHD/CMC multilayer films. The influences of various experimental parameters on cargo capacity of the PAHD/CMC film were studied in detail. The loaded EmB can be released in the form of emodin molecule in presence of isotonic sodium bicarbonate (ISB) solution. Gratifyingly, EmB did not almost release in presence of water, PBS buffer solution, 0.9% normal saline, and 5% glucose solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号