共查询到20条相似文献,搜索用时 0 毫秒
1.
A continuous supply of fusion-competent synaptic vesicles is essential for sustainable neurotransmission. Drosophila mutations of the dicistronic stoned locus disrupt normal vesicle cycling and cause functional deficits in synaptic transmission. Although both Stoned A and B proteins putatively participate in reconstituting synaptic vesicles, their precise function is still unclear. Here we investigate the effects of progressive depletion of Stoned B protein (STNB) on the release properties of neuromuscular synapses using a novel set of synthetic stnB hypomorphic alleles. Decreasing neuronal STNB expression to < or =35% of wild-type level causes a strong reduction in excitatory junctional current amplitude at low stimulation frequencies and a marked slowing in synaptic depression during high-frequency stimulation, suggesting vesicle depletion is attenuated by decreased release probability. Recovery from synaptic depression after prolonged stimulation is also decelerated in mutants, indicating a delayed recovery of fusion-ready vesicles. These phenotypes appear not to be due to a diminished vesicle population, since the docked vesicle pool is ultrastructurally unaffected, and the total number of vesicles is only slightly reduced in these hypomorphs, unlike lethal stoned mutants. Therefore, we conclude that STNB not only functions as an essential component of the endocytic complex for vesicle reconstitution, as previously proposed, but also regulates the competence of recycled vesicles to undergo fusion. In support of such role of STNB, synaptic levels of the vesicular glutamate transporter (vGLUT) and synaptotagmin-1 are strongly reduced with diminishing STNB function, while other synaptic proteins are largely unaffected. We conclude that STNB organizes the endocytic sorting of a subset of integral synaptic vesicle proteins thereby regulating the fusion-competence of the recycled vesicle. 相似文献
2.
3.
Vesicular glutamate transporters in the brain 总被引:3,自引:0,他引:3
Glutamate is an excitatory amino acid that acts as a major neurotransmitter throughout the brain. Although its neurotransmitter
action has been evidenced by the identification of various receptor subtypes at synapses, a cellular mechanism by which this
amino acid accumulates in synaptic vesicles has long been in doubt until the discovery in recent years of specific vesicular
transporters. Three kinds of transporter isoforms have so far been cloned and their transport properties and distribution
in the brain have been studied extensively. In contrast with the apparently similar ability of all transporter isoforms to
highly selectively transport glutamate and their presence in synaptic vesicles, their regional distribution of gene expression
and immunoreactivity in the rodent or human brain are surprisingly different from one another. This indicates that the glutamatergic
neuron system of mammalian brains is substantially comprised of at least three different neuron subpopulations, each of which
uses a unique transport system for the vesicular storage of glutamate. Thus, we now have highly useful and reliable tools
for a comprehensive understanding of the glutamatergic neuron system in the brain from a new viewpoint different from that
of other components, such as receptors. The scope of the present review is to provide an overview of the history and present
status of the study of vesicular glutamate transporters and to highlight some unresolved issues requiring clarification for
the progress of future brain function research. 相似文献
4.
A. L. Zefirov A. V. Zakharov R. D. Mukhametzyanov A. M. Petrov G. F. Sitdikova 《Neuroscience and behavioral physiology》2009,39(3):245-252
Experiments on the mouse diaphragm muscle using intracellular microelectrode recordings and fluorescence microscopy were performed
to study the dynamics of transmitter secretion and synaptic vesicle recycling processes (the exocytosis-endocytosis cycle)
in motor nerve endings (NE) during prolonged rhythmic stimulation (20 impulses/sec). During stimulation, there were triphasic
changes in the amplitude of endplate potentials (EPP): an initial rapid reduction, followed by prolonged (1–2 min) stabilization
of amplitude, i.e., a plateau, and then a further slow decrease. Restoration of EPP amplitude after stimulation for 3 min
occurred over a period of several seconds. Loading of synaptic vesicles with the fluorescent endocytic stain FM1-43 showed
that rhythmic stimulation led to a gradual (over 5–6 min) decrease in NE fluorescence, demonstrating exocytosis of synaptic
vesicles. Quantum analysis of the electrophysiological data and comparison of these data with results from fluorescence studies
suggested that mouse NE have a high rate of endocytosis and reutilization of synaptic vesicles (the mean recycling time was
about 50 sec), which may support the maintenance of reliable synaptic transmission during prolonged high-frequency activity.
The sizes of the release-ready and recycling pools of synaptic vesicles were determined quantitatively. It is suggested that
vesicle recycling in mouse NE occurs via a short, rapid pathway with incorporation into the recycling pool. Vesicles of the
reserve pool are not used for transmitter secretion in the stimulation conditions used here.
Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 2, pp. 129–141, February, 2008. 相似文献
5.
6.
The basal forebrain (BF) comprises morphologically and functionally heterogeneous cell populations, including cholinergic and non-cholinergic corticopetal neurons that are implicated in sleep–wake modulation, learning, memory and attention. Several studies suggest that glutamate may be among inputs affecting cholinergic corticopetal neurons but such inputs have not been demonstrated unequivocally. We examined glutamatergic axon terminals in the sublenticular substantia innominata in rats using double-immunolabeling for vesicular glutamate transporters (Vglut1 and Vglut2) and choline acetyltransferase (ChAT) at the electron microscopic level. In a total surface area of 30,000 μm2, we classified the pre- and postsynaptic elements of 813 synaptic boutons. Vglut1 and Vglut2 boutons synapsed with cholinergic dendrites, and occasionally Vglut2 axon terminals also synapsed with cholinergic cell bodies. Vglut1 terminals formed synapses with unlabeled dendrites and spines with equal frequency, while Vglut2 boutons were mainly in synaptic contact with unlabeled dendritic shafts and occasionally with unlabeled spines. In general, Vglut1 boutons contacted more distal dendritic compartments than Vglut2 boutons. About 21% of all synaptic boutons (n=347) detected in tissue that was stained for Vglut1 and ChAT were positive for Vglut1, and 14% of the Vglut1 synapses were made on cholinergic profiles. From separate cases stained for Vglut2 and ChAT, 35% of all synaptic boutons (n=466) were positive for Vglut2, and 23% of the Vglut2 synapses were made on cholinergic profiles. On average, Vglut1 boutons were significantly smaller than Vglut2 synaptic boutons. The Vglut2 boutons that synapsed cholinergic profiles tended to be larger than the Vglut2 boutons that contacted unlabeled, non-cholinergic postsynaptic profiles. The presence of two different subtypes of Vgluts, the size differences of the Vglut synaptic boutons, and their preference for different postsynaptic targets suggest that the action of glutamate on BF neurons is complex and may arise from multiple afferent sources. 相似文献
7.
目的:以PPE-GFP转基因小鼠为研究工具,观察绿色荧光蛋白(GFP)阳性的脑啡肽(ENK)能神经元与1型囊泡膜谷氨酸转运体(VGLUT1)在脊髓的分布及共存情况。方法:利用免疫组织化学和原位杂交双标染色的方法。结果:GFP标记的ENK能神经元主要位于脊髓背角,在I-ⅡI层最为密集,背角深层内侧部及中央管周围呈中等密度分布,散在分布于前角。VGLUT1 mRNA阳性细胞广泛分布在脊髓各层。GFP/VGLUT1双标细胞主要分布在脊髓背角,I-ⅡI层双标细胞占GFP阳性细胞的22.95±1.10%,占VGLUT1阳性细胞的27.91±2.42%;IV-VI层中21.49±4.99%GFP阳性细胞表达VGLUT1,10.35±2.81%VGLUT1阳性细胞表达GFP;前角双标细胞占VGLUT1阳性细胞的1.07±0.37%,占GFP阳性细胞的32.08±13.15%。结论:双标结果表明脊髓内部分ENK能神经元表达1型囊泡膜谷氨酸转运体,推测ENK能神经元可能通过调控谷氨酸的释放发挥感觉信息调控作用。 相似文献
8.
Accumulating evidence underscores the immune synapse (IS) of naive T cells as a site of intense vesicular trafficking. At variance with helper and cytolytic effectors, which use the IS as a secretory platform to deliver cytokines and/or lytic granules to their cellular targets, this process is exploited by naive T cells as a means to regulate the assembly and maintenance of the IS, on which productive signaling and cell activation crucially depend. We have recently identified a role of the intraflagellar transport (IFT) system, which is responsible for the assembly of the primary cilium, in the non-ciliated T-cell, where it controls IS assembly by promoting polarized T-cell receptor recycling. This unexpected finding not only provides new insight into the mechanisms of IS assembly but also strongly supports the notion that the IS and the primary cilium, which are both characterized by a specialized membrane domain highly enriched in receptors and signaling mediators, share architectural similarities and are homologous structures. Here, we review our current understanding of vesicular trafficking in the regulation of the assembly and maintenance of the naive T-cell IS and the primary cilium, with a focus on the IFT system. 相似文献
9.
We have investigated factors which may affect accumulated glutamate levels in synaptic vesicles and glutamate efflux. Agents which dissipate the electrochemical proton gradient resulted in a rapid reduction of steady-state vesicular glutamate levels, which was prevented by N-ethylmaleimide. Glutamate efflux was found to occur even in the presence of an electrochemical proton gradient, but was effectively inhibited by N-ethylmaleimide. These results suggest that accumulated glutamate levels in synaptic vesicles are not maintained unless glutamate is taken up continuously by an active transport mechanism, and they could provide an explanation for the lack of convincing evidence for the enrichment of endogenous glutamate in isolated synaptic vesicles. 相似文献
10.
《Journal of neurogenetics》2013,27(3):104-114
Abstract: Fluctuations in extracellular pH occur in the nervous system in response to a number of physiological and pathological processes, such as ischemia, hypercapnea, and high-frequency activity. Using the Drosophila larval neuromuscular junction, the author has examined acute effects of low and high pH on excitability and synaptic transmission. Acidification rapidly and reversibly reduces the size of electrically evoked excitatory junctional currents (EJCs) in a concentration-dependent manner, with transmission nearly abolished at pH 5.0. Conversely, raising pH to 7.8 increases EJC amplitude significantly. Further elevation to pH 8.5 causes an initial increase in amplitude, followed by profound, long-lasting depression of the synapse. Amplitudes of spontaneous miniature EJCs (mEJCs) are modestly, but significantly reduced at pH 5.0. It is therefore the number of quanta released per action potential, rather than the size of individual quanta, that is most strongly affected. Decay times of both EJCs and mEJCs are dramatically lengthened at low pH, suggesting that glutamate remains in the synaptic cleft for much longer than normal. Presynaptic excitability is also reduced, as indicated by increased latency between nerve shock and EJC onset. The response to low pH was not altered by mutations in genes encoding Transient Receptor Potential, Mucolipin subfamily (TRPML) and Slowpoke ion channels, which had previously been implicated as possible targets of extracellular protons. The author concludes that extracellular protons have strong effects on the release of glutamate and the time course of synaptic currents. These phenotypes can be exploited to study the mechanisms of acid-mediated changes in neuronal function, and to pursue the way in which pH modulates synaptic function in normal and pathophysiological conditions. 相似文献
11.
S. Holmseth H.A. Scott K. Real K.P. Lehre T.B. Leergaard J.G. Bjaalie N.C. Danbolt 《Neuroscience》2009
The neurotransmitter glutamate is inactivated by cellular uptake; mostly catalyzed by the glutamate transporter GLT1 (slc1a2, excitatory amino acid transporter [EAAT2]) subtype which is expressed at high levels in brain astrocytes and at lower levels in neurons. Three coulombs-terminal variants of GLT1 exist (GLT1a, GLT1b and GLT1c). Their cellular distributions are currently being debated (that of GLT1b in particular). Here we have made antibodies to the variants and produced pure preparations of the individual variant proteins. The immunoreactivities of each variant per amount of protein were compared to that of total GLT1 immunoisolated from Wistar rat brains. At eight weeks of age GLT1a, GLT1b and GLT1c represented, respectively 90%±1%, 6±1% and 1%±0.5% (mean±SEM) of total hippocampal GLT1. The levels of all three variants were low at birth and increased towards adulthood, but GLT1a increased relatively more than the other two. At postnatal day 14 the levels of GLT1b and GLT1c relative to total GLT1 were, respectively, 1.7±0.1 and 2.5±0.1 times higher than at eight weeks. In tissue sections, antibodies to GLT1a gave stronger labeling than antibodies to GLT1b, but the distributions of GLT1a and GLT1b were similar in that both were predominantly expressed in astroglia, cell bodies as well as their finest ramifications. GLT1b was not detected in nerve terminals in normal brain tissue. The findings illustrate the need for quantitative measurements and support the notion that the importance of the variants may not be due to the transporter molecules themselves, but rather that their expression represents the activities of different regulatory pathways. 相似文献
12.
Zeitz C Forster U Neidhardt J Feil S Kälin S Leifert D Flor PJ Berger W 《Human mutation》2007,28(8):771-780
Mutations in the GRM6 gene, which encodes the metabotropic glutamate receptor 6 (mGluR6), lead to autosomal recessive congenital stationary night blindness (CSNB), which is characterized by loss of night vision due to a defect in signal transmission from photoreceptor to the adjacent ON-bipolar cells in the retina. So far, the sequence variations that have been described in six different families include nonsense, frameshift, and missense mutations. Here we investigated the impact of missense mutations in the ligand-binding domain, a conserved cysteine-rich domain, and the intracellular domain on the localization of the protein. We visualized and discriminated between surface and intracellular protein. Here we demonstrate that the wild-type (wt) protein localizes to the cell surface, and to endoplasmic reticulum (ER) and Golgi compartments. This also holds true for a mGluR6 variant containing a polymorphic, nondisease-associated amino acid exchange in the ligand-binding domain. In contrast, all disease-associated missense mutations lead to retention of the protein in the ER, while dimerization seems not to be affected. This is the first report that shows that CSNB-associated mutations in three different domains of mGluR6 abolish proper protein trafficking. We propose that the ligand-binding and the poorly characterized cysteine-rich domains, in addition to the intracellular domains, have a pivotal role in correct trafficking of metabotropic glutamate receptors to the cell surface. 相似文献
13.
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal. 相似文献
14.
Fast neurotransmitter release at presynaptic terminals occurs at specialized transmitter release sites where docked secretory vesicles are triggered to fuse with the membrane by the influx of Ca2+ ions that enter through local N type (CaV2.2) calcium channels. Thus, neurosecretion involves two key processes: the docking of vesicles at the transmitter release site, a process that involves the scaffold protein RIM (Rab3A interacting molecule) and its binding partner Munc-13, and the subsequent gating of vesicle fusion by activation of the Ca2+ channels. It is not known, however, whether the vesicle fusion complex with its attached Ca2+ channels and the vesicle docking complex are parts of a single multifunctional entity. The Ca2+ channel itself and RIM were used as markers for these two elements to address this question. We carried out immunostaining at the giant calyx-type synapse of the chick ciliary ganglion to localize the proteins at a native, undisturbed presynaptic nerve terminal. Quantitative immunostaining (intensity correlation analysis/intensity correlation quotient method) was used to test the relationship between these two proteins at the nerve terminal transmitter release face. The staining intensities for CaV2.2 and RIM covary strongly, consistent with the expectation that they are both components of the transmitter release sites. We then used immunoprecipitation to test if these proteins are also parts of a common molecular complex. However, precipitation of CaV2.2 failed to capture either RIM or Munc-13, a RIM binding partner. These findings indicate that although the vesicle fusion and the vesicle docking mechanisms coexist at the transmitter release face they are not parts of a common stable complex. 相似文献
15.
A glutamatergic end-bulb synapse in the avian nucleus magnocellularis relays temporal sound information from the auditory nerve. Here, we show that presynaptic Na+/K+-ATPase (NKA) activity at this synapse contributes to the maintenance of the readily releasable pool (RRP) of vesicles, thereby preserving synaptic strength. Whole-cell voltage clamp recordings were made from chick brainstem slices to examine the effects of NKA blocker dihydroouabain (DHO) on synaptic transmission. DHO suppressed the amplitude of EPSCs in a dose-dependent manner. This suppression was caused by a decrease in the number of neurotransmitter quanta released because DHO increased the coefficient of variation of EPSC amplitude and reduced the frequency but not the amplitude of miniature EPSCs. Cumulative plots of EPSC amplitude during a stimulus train revealed that DHO reduced the RRP size without affecting vesicular release probability. DHO did not affect [Ca2+]i-dependent processes, such as the paired-pulse ratio or recovery time course from the paired-pulse depression, suggesting a minimal effect on Ca2+ concentration in the presynaptic terminal. Using mathematical models of synaptic depression, we further demonstrated the contribution of RRP size to the synaptic strength during a high-frequency stimulus train to highlight the importance of presynaptic NKA in the auditory synapse. 相似文献
16.
17.
Histamine, a ubiquitous aminergic messenger throughout the body, also serves as a neurotransmitter in both vertebrates and invertebrates. In particular, the photoreceptors of adult arthropods use histamine, modulating its release to signal increases and decreases in light intensity. Strong evidence from various arthropod species indicates that histamine is synthesized and stored in photoreceptors, undergoes Ca-dependent release, inhibits postsynaptic interneurons by gating Cl channels, and is then recycled. In Drosophila, the synthetic enzyme, histidine decarboxylase, and the subunits of the histamine-gated chloride channel have been cloned. Possible histamine transporters at synaptic vesicles and for reuptake remain elusive. Indeed, the mechanisms that remove histamine from the synaptic cleft, and that help terminate histamine's action, are unexpectedly complex, their details remaining unresolved. A major pathway in Drosophila, and possibly other arthropod species, is by conjugation of histamine to beta-alanine to form carcinine in adjacent glia. This conjugate then returns to the photoreceptors where it is hydrolysed to liberate histamine, which is then loaded into synaptic vesicles. Evidence from other species suggests that direct reuptake of histamine into the photoreceptors may also occur. Light depolarizes the photoreceptors, causing histamine release and postsynaptic inhibition; dimming hyperpolarizes the photoreceptors, causing a decrease in histamine release and an "off" response in the postsynaptic cell. Further pursuit of histamine's action at these highly specialized synapses should lead to an understanding of how they signal minute changes in presynaptic membrane potential, how they reliably extract signals from noise, and how they adapt to a wide range of presynaptic membrane potentials. 相似文献
18.
A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling 下载免费PDF全文
A stochastic lateral signaling interaction between two developing Caenorhabditis elegans AWC olfactory neurons causes them to take on asymmetric patterns of odorant receptor expression, called AWC(OFF) and AWC(ON). Here we show that the AWC lateral signaling gene tir-1 (previously known as nsy-2) encodes a conserved post-synaptic protein that specifies the choice between AWC(OFF) and AWC(ON). Genetic evidence suggests that tir-1 acts downstream of a voltage-gated calcium channel and CaMKII (UNC-43) to regulate AWC asymmetry via the NSY-1(ASK1) p38/JNK MAP (mitogen-activated protein) kinase cascade. TIR-1 localizes NSY-1 to post-synaptic regions of AWC, and TIR-1 binds UNC-43, suggesting that it assembles a synaptic signaling complex that regulates odorant receptor expression. Temperature-shift experiments indicate that tir-1 affects AWC during a critical period late in embryogenesis, near the time of AWC synapse formation. TIR-1 is a multidomain protein with a TIR (Toll-interleukin-1 receptor) domain that activates signaling, SAM repeats that mediate localization to post-synaptic regions of axons, and an N-terminal inhibitory domain. TIR-1 and other TIR proteins are implicated in vertebrate and invertebrate innate immunity, as are NSY-1/ASK1 kinases, so this pathway may also have a conserved function in immune signaling. 相似文献
19.
We have previously demonstrated that the transformation of the caudal spinal cord through the conus medullaris to the filum terminale takes place in three steps. In the conus medullaris the twin layers of CGRP-immunoreactive and IB4-labeled primary afferent fibers as well as the translucent portion of the superficial dorsal horn equivalent to the substantia gelatinosa discontinue before the complete removal of the dorsal horn. Parallel with these changes VGLUT1-immunoreactive myelinated primary afferent fibers arborize not only in the deep layers but also in the entire extension of the remaining dorsal horn, while scattered CGRP fibers still remains at the margin of and deep in the dorsal horn. PKCgamma-immunoreactive dorsal horn neurons discontinue parallel with the disappearance of the IB4-labeled nerve fibers. These observations suggest that in the dorsal horn certain neurons are linked to the substantia gelatinosa, while others are substantia gelatinosa-independent neurons. 相似文献
20.
Pedarzani Paola Storm Johan F. 《Pflügers Archiv : European journal of physiology》1996,431(5):723-728
Muscarinic and metabotropic glutamate receptor agonists increase the excitability of hippocampal and other cortical neurons by suppressing the Ca2+-activated K+current,I
AHP, which underlies the slow afterhyperpolarization (AHP) and spike frequency adaptation. We have examined the mechanism of action of a muscarinic agonist (carbachol) and a metabotropic glutamate receptor agonist (1-Aminocyclopentane-trans-1,3-dicarboxylic acid; t-ACPD) onI
AHP in hippocampal CA1 neurons in slices, by using highly specific protein kinase inhibitors. We found that inhibition of protein kinase A (PKA) with the adenosine 3,5-cyclic monophosphate (cAMP) analogue Rp-adenosine-3,5-cyclic phosphorothioate Rp-cAMPS, did not prevent the muscarinic and glutamatergic suppression ofI
AHP. In contrast, two specific peptide inhibitors of Ca2+/calmodulin-dependent protein kinase II (CaM-K II), each partially blocked the effect of carbachol, but not the effect of t-ACPD onI
AHP. We conclude that CaM-K II, but not PKA, is involved in mediating the muscarinic suppression ofI
AHP, although other pathways may also contribute. In contrast, neither CaM-K II nor PKA seems to mediate the metabotropic glutamate receptor action onI
AHP. 相似文献