首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is growing evidence that alterations in calcium (Ca2+) homeostasis may play a role in processes of brain aging and neurodegeneration. There also is evidence that some of the altered Ca2+ homeostasis in hippocampal neurons may arise from an increased density of L-type voltage sensitive Ca2+ channels (L-VSCC). In the present studies, we tested the possibility that previously observed increases in functional L-VSCC with aging might be related to up-regulated gene/mRNA expression for Ca2+ channel subunits. A significant aging-related increase in mRNA content for the alpha1D subunit of the L-type VSCC was observed in hippocampus of aged F344 rats (25 months old) relative to young (4 months old) and middle-aged animals (13 months old), as assessed by both in situ hybridization analyses (densitometry and grain density) and ribonuclease protection assay (RPA). In RPA analyses, the alpha1C subunit mRNA also showed a significant increase in 25-month-old rats. No age changes were seen in mRNA for the beta1b subunit of VSCC or for GAPDH, a standard control. The clearest increases in alpha1D mRNA expression were observed in subfield CA1, with little or no change seen in dentate gyrus. Although these results alone do not demonstrate that mRNA/gene expression changes contribute directly to changes in functional Ca2+ channels, they clearly fulfill an important prediction of that hypothesis. Therefore, these studies may have important implications for the role of gene expression in aging-dependent alterations in brain Ca2+ homeostasis.  相似文献   

2.
There is growing evidence that alterations in calcium (Ca2+) homeostasis may play a role in processes of brain aging and neurodegeneration. There also is evidence that some of the altered Ca2+ homeostasis in hippocampal neurons may arise from an increased density of L-type voltage sensitive Ca2+ channels (L-VSCC). In the present studies, we tested the possibility that previously observed increases in functional L-VSCC with aging might be related to up-regulated gene/mRNA expression for Ca2+ channel subunits. A significant aging-related increase in mRNA content for the α1D subunit of the L-type VSCC was observed in hippocampus of aged F344 rats (25 months old) relative to young (4 months old) and middle-aged animals (13 months old), as assessed by both in situ hybridization analyses (densitometry and grain density) and ribonuclease protection assay (RPA). In RPA analyses, the α1C subunit mRNA also showed a significant increase in 25-month-old rats. No age changes were seen in mRNA for the β1b subunit of VSCC or for GAPDH, a standard control. The clearest increases in α1D mRNA expression were observed in subfield CA1, with little or no change seen in dentate gyrus. Although these results alone do not demonstrate that mRNA/gene expression changes contribute directly to changes in functional Ca2+ channels, they clearly fulfill an important prediction of that hypothesis. Therefore, these studies may have important implications for the role of gene expression in aging-dependent alterations in brain Ca2+ homeostasis.  相似文献   

3.
A decrease in the excitability of CA1 pyramidal neurons contributes to the age related decrease in hippocampal function and memory decline. Decreased neuronal excitability in aged neurons can be observed as an increase in the Ca(2+)- activated K(+)- mediated post burst afterhyperpolarization (AHP). In this study, we demonstrate that the slow component of AHP (sAHP) in aged CA1 neurons (aged-sAHP) is decreased ~50% by application of the reducing agent dithiothreitol (DTT). The DTT-mediated decrease in the sAHP was age specific, such that it was observed in CA1 pyramidal neurons of aged (20-25 mo), but not young (6-9 mo) F344 rats. The effect of DTT on the aged-sAHP was blocked following depletion of intracellular Ca(2+) stores (ICS) by thapsigargin or blockade of ryanodine receptors (RyRs) by ryanodine, suggesting that the age-related increase in the sAHP was due to release of Ca(2+) from ICS through redox sensitive RyRs. The DTT-mediated decrease in the aged-sAHP was not blocked by inhibition of L-type voltage gated Ca(2+) channels (L-type VGCC), inhibition of Ser/Thr kinases, or inhibition of the large conductance BK potassium channels. The results add support to the idea that a shift in the intracellular redox state contributes to Ca(2+) dysregulation during aging.  相似文献   

4.
There is growing evidence that the selective neuronal cell death observed in Alzheimer's Disease (AD) is the result of dysregulation of intracellular calcium (Ca2+) homeostasis. In the present study, L-type voltage sensitive calcium channels (L-VSCCs) were examined in the cerebellum and hippocampus of AD (n = 6; postmortem interval less than 5 h) and age-matched control (n = 6) tissue by homogenate binding techniques and quantitative in vitro receptor autoradiography using [3H]isradipine (PN200-110). Saturation analyses of the cerebellum revealed unaltered [3H]isradipine binding parameters (Kd and Bmax) between AD and control subjects. Analysis of AD and control hippocampus demonstrated significant differences as [3H]isradipine binding increased (62%) in AD, whereas hippocampal cell density decreased (29%) in AD, relative to control subjects. Moreover, AD differentially affected L-VSCC in area CA1 and dentate gyrus. The dentate gyrus had greatly increased binding (77%) with little cell loss (16%) in AD brains, whereas area CA1 had increased binding (40%) with significant cell loss (42%) in AD brains, relative to controls. The results of the present study suggest that hippocampal area CA1 may experience greater cell loss in response to increased L-VSCCs in AD relative to other brain regions.  相似文献   

5.
Disruption of Ca(2+) homeostasis is hypothesized to mediate several electrophysiological markers of brain aging. Recent evidence indicates that estradiol can rapidly alter Ca(2+)-dependent processes in neurons through nongenomic mechanisms. In the current study, electrophysiological effects of 17beta-estradiol benzoate (EB) on the Ca(2+)-activated afterhyperpolarization (AHP) were investigated using intracellular sharp electrode recording in hippocampal slices from ovariectomized Fischer 344 female rats. The AHP amplitude was enhanced in aged (22-24 mo) compared with young (5-8 mo) rats and direct application of EB (100 pM) reduced the AHP in aged rats. The age-related difference was due, in part, to the increased AHP amplitude of aged animals, since an EB-mediated decrease in the AHP could be observed in young rats when the extracellular Ca(2+) was elevated to increase the AHP amplitude. In aged rats, bath application of EB occluded the ability of the L-channel blocker, nifedipine (10 microM), to attenuate the AHP. The results support a role for EB in modifying hippocampal Ca(2+)-dependent processes in a manner diametrically opposite that observed during aging, possibly through L-channel inhibition.  相似文献   

6.
Voltage-gated Ca(2+) channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca(2+) channels, but not L-type Ca(2+) channels. The interaction is insensitive to Ca(2+). Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels, as determined by immunostaining. Furthermore, disruption of the tctex1-Ca(2+) channel interaction significantly reduces the Ca(2+) current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca(2+) channels with different functionalities.  相似文献   

7.
6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)hexanoic acid ryanodine (BODIPY-ryanodine) binding and Ca(2+) imaging were used to study the properties of ryanodine receptors (RyRs) and cytoplasmic Ca(2+) (Ca) changes in neurons cultured from the embryonic rat hippocampus during the earliest stages of differentiation. Baseline Ca levels declined from 164 +/- 5 (SD) nM at early stages to 70 +/- 4 nM in differentiated neurons. Fluorescent BODIPY-ryanodine binding signals identified activated RyRs in somata, which were eliminated by removal of external Ca(2+) or by blockage of Ca(2+) entry through L-type but not N-type Ca(2+) channels. The GABA synthesis inhibitor 3-mercaptopropionic acid completely abolished ryanodine binding. Caffeine or K(+)-depolarization inhibited the activity of RyRs at very early stages of differentiation but had stimulatory effects at later stages after a network of processes had formed. BayK-8644 stimulated RyRs throughout all regions of all differentiating cells. The results suggest that in differentiating embryonic hippocampal neurons the activity of RyRs is maintained via Ca(2+) entering through L-type Ca(2+) channels. The mode of activation of L-type voltage-gated Ca(2+) channels with either membrane depolarization or specific pharmacological agents affects the coupled activity of RyRs differently as neurons differentiate processes and networks.  相似文献   

8.
Delayed excitotoxic neuronal death after insult from exposure to high glutamate concentrations appears important in several CNS disorders. Although delayed excitotoxicity is known to depend on NMDA receptor (NMDAR) activity and Ca(2+) elevation, the electrophysiological mechanisms underlying postinsult persistence of NMDAR activation are not well understood. Membrane depolarization and nonspecific cationic current in the postinsult period were reported previously, but were not sensitive to NMDAR antagonists. Here, we analyzed mechanisms of the postinsult period using parallel current- and voltage-clamp recording and Ca(2+) imaging in primary hippocampal cultured neurons. We also compared more vulnerable older neurons [about 22 days in vitro (DIV)] to more resistant younger (about 15 DIV) neurons, to identify processes selectively associated with cell death in older neurons. During exposure to a modest glutamate insult (20 microM, 5 min), similar degrees of Ca(2+) elevation, membrane depolarization, action potential block, and increased inward current occurred in younger and older neurons. However, after glutamate withdrawal, these processes recovered rapidly in younger but not in older neurons. The latter also exhibited a concurrent postinsult increase in spontaneous miniature excitatory postsynaptic currents, reflecting glutamate release. Importantly, postinsult NMDAR antagonist administration reversed all of these persisting responses in older cells. Conversely, repolarization of the membrane by voltage clamp immediately after glutamate exposure reversed the NMDAR-dependent Ca(2+) elevation. Together, these data suggest that, in vulnerable neurons, excitotoxic insult induces a sustained positive feedback loop between NMDAR-dependent current and depolarization-mediated glutamate release, which persists after withdrawal of exogenous glutamate and drives Ca(2+) elevation and delayed excitotoxicity.  相似文献   

9.
Previous studies in our laboratory demonstrated a reversal of anesthetic actions on aged neurons by decreasing extracellular [Ca(2+)] in hippocampal slices. Such maneuver indirectly attenuated Ca(2+) influx, hence decreased exogenous intraneuronal Ca(2+) loads during neuronal activity and consequently improved intracellular Ca(2+) concentration homeostasis. Therefore, in the present study we hypothesized that decreasing exogenous Ca(2+) loads by blocking voltage-gated calcium influx in aged neurons would oppose isoflurane actions. Conversely, increasing endogenous Ca(2+) loads by suppressing calcium efflux during forced reversal of Na(+)/Ca(2+) exchanger function would enhance anesthetic effects. Hippocampal slices were prepared from young (2-4 months) and old (24-26 months) Fischer 344 rats. Isoflurane depressed the evoked dendritic field excitatory postsynaptic potentials by approximately 45% in slices taken from old animals. However, application of isoflurane in addition with CoCl(2) or nifedipine opposed the anesthetic actions, which then depressed the evoked dendritic field postsynaptic potentials by only 15%. Selective blockade of the N-type and P/Q-type calcium channels with omega-conotoxin GVIA and omega-conotoxin MVIIC respectively caused rapid but partial depression of synaptic transmission in slices taken from old Fischer 344 rats. However, isoflurane actions in these aged slices were not affected compared with slices perfused only with normal artificial cerebrospinal fluid. Young and aged slices were then exposed to a low sodium perfusate that forces the Na(+)/Ca(2+) exchanger protein into a reverse mode, thus increasing intracellular Ca(2+) concentration. Isoflurane actions under such conditions were profoundly potentiated in aged slices but were not altered in young hippocampi. The current results show that in aged central neurons, selectively blocking L-type calcium channels opposes anesthetic-induced depression of excitatory synaptic transmission. On the contrary, increasing calcium loads in aged neurons potentiates these actions.  相似文献   

10.
Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of calpain activity using Western blot analysis showed a significant increase in basal activity of calpains in aged neurons. The observed increase of calpain activity was correlated with elevated protein levels of μ-calpain. Ca2+-imaging experiments performed on living individual neurons using the dye calcium green demonstrated a twofold increase in intracellular calcium concentration in aged neurons as compared to young neurons. The observed changes of intracellular calcium in aged neurons might play a role in their increased vulnerability to neurodegeneration.  相似文献   

11.
NF-κB is found in many neuronal cell types in different states of activity. This study aimed to define which conditions induce constitutive NF-κB activity in cultured hippocampal neurons using activity-specific antibody staining. In co-culture with astroglia, hippocampal neurons were devoid of activated NF-κB. In these co-cultures, NF-κB could not be activated via kainate or glutamate. In contrast, separating neurons from the glial compartment resulted in a time-dependent increase of activated neuronal NF-κB. In this line, activation of NF-κB by kainate or glutamate is very effective in freshly separated cultures, but inhibited when the cultures are reassembled after stimulation. These findings suggests that a neuronal-glial interaction may regulate gene expression via NF-κB. Received: 14 June 1999 / Accepted: 8 September 1999  相似文献   

12.
Rabbit antibodies against GluR1 subunit of AMPA glutamate receptors in a concentration of 1 μg/ml significantly increased intracellular Ca2+ concentration and decreased mitochondrial potential in hippocampal neurons, i.e. produced changes typical of the influence of glutamate in toxic concentrations. In cerebellar neurons rabbit antibodies potentiated glutamate-induced increase in intracellular Ca2+ concentration and significantly decreased the mitochondrial potential (compared to the level observed after application of glutamate alone). The exposure of cultured cerebellar neurons to antibodies in a concentration of 0.1 μg/ml for 24 h was followed by a 50% decrease in ATP concentration and development of neuronal necrosis. Our results attest to an important role of autoimmune damage to neurons during hyperstimulation of glutamate receptors. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 142, No. 7, pp. 59–62, July, 2006  相似文献   

13.
Neuronal activity is critically important for development and plasticity of dendrites, axons and synaptic connections. Although Ca(2+) is an important signal molecule for these processes, not much is known about the regulation of the dendritic Ca(2+) concentration in developing neurons. Here we used confocal Ca(2+) imaging to investigate dendritic Ca(2+) signalling in young and mature hippocampal granule cells, identified by the expression of the immature neuronal marker polysialated neural cell adhesion molecule (PSA-NCAM). Using the Ca(2+)-sensitive fluorescent dye OGB-5N, we found that both young and mature granule cells showed large action-potential evoked dendritic Ca(2+) transients with similar amplitude of approximately 200 nm, indicating active backpropagation of action potentials. However, the decay of the dendritic Ca(2+) concentration back to baseline values was substantially different with a decay time constant of 550 ms in young versus 130 ms in mature cells, leading to a more efficient temporal summation of Ca(2+) signals during theta-frequency stimulation in the young neurons. Comparison of the peak Ca(2+) concentration and the decay measured with different Ca(2+) indicators (OGB-5N, OGB-1) in the two populations of neurons revealed that the young cells had an approximately 3 times smaller endogenous Ca(2+)-binding ratio ( approximately 75 versus approximately 220) and an approximately 10 times slower Ca(2+) extrusion rate ( approximately 170 s(-1) versus approximately 1800 s(-1)). These data suggest that the large dendritic Ca(2+) signals due to low buffer capacity and slow extrusion rates in young granule cells may contribute to the activity-dependent growth and plasticity of dendrites and new synaptic connections. This will finally support differentiation and integration of young neurons into the hippocampal network.  相似文献   

14.
Normal brain aging is associated with deficits in learning and memory. The hippocampus, a structure critical for proper learning and memory functions, is frequently implicated in aging-related learning deficits. There are many reports of learning-related changes in hippocampal pyramidal neurons from animals that were trained in hippocampus-dependent learning paradigms. One consistent finding in hippocampal pyramidal neurons is a learning-related increase in postsynaptic neuronal excitability, resulting from a reduction in the postburst afterhyperpolarization (AHP). The hippocampus, as well as the ability to acquire hippocampus-dependent tasks, is particularly affected by aging. Correspondingly, hippocampal neurons also display an age-related decrease in excitability, resulting from an enhanced AHP. The correlation between neuronal excitability and learning ability strongly suggests that changes in the AHP are critically involved in learning and age-related learning deficits. Additional support for this argument comes from in vitro studies that examined the effect of compounds that facilitated learning in aging animals on the properties of CA1 pyramidal neurons. Many of these compounds increased the excitability of CA1 pyramidal neurons by reducing the AHP. Subsequent voltage-clamp recordings showed that AHP reduction by these compounds mainly reflects the reduction of two of its currents, the I(AHP) and the sI(AHP). Conversely, age-related AHP enhancements primarily impact the I(AHP) and the sI(AHP). Given that the I(AHP) accounts for a small portion of the total AHP, and that the sI(AHP) is the AHP current that most critically modulates neuronal excitability, changes in neuronal excitability seen in learning and in aging are predominantly caused by changes in the sI(AHP). The fact that the sI(AHP) receives neuromodulation from many transmitter systems important for learning and sensitive to aging lends further support for its role in age-related learning deficits. In this article, we review: (1) two hippocampus-dependent learning tasks, trace eyeblink conditioning and Morris water maze training, that are used extensively in our laboratory to examine learning and aging-related learning deficits; (2) aging-related changes in several important neurotransmitter systems, and how the these changes impact learning and memory functions during aging; and (3) changes in the AHP and the sI(AHP) in hippocampal pyramidal neurons in relation to compromised neurotransmission, as well as to learning, in aging animals. The correlations between a reduction in the sI(AHP) in learning, and an enhancement in the sI(AHP) in aging provide compelling evidence that this current plays a critical role in cognitive functions, and further suggest that the key modulators of the AHP are good candidates for future therapeutic interventions in age-related neurodegenerative diseases.  相似文献   

15.
Concentrations of extracellular calcium ([Ca(2+)](e)) in the CNS decrease substantially during seizure activity. We have demonstrated previously that decreases in [Ca(2+)](e) activate a novel calcium-sensing nonselective cation (csNSC) channel in hippocampal neurons. Activation of csNSC channels is responsible for a sustained membrane depolarization and increased neuronal excitability. Our study has suggested that the csNSC channel is likely involved in generating and maintaining seizure activities. In the present study, the effects of anti-epileptic agent lamotrigine (LTG) on csNSC channels were studied in cultured mouse hippocampal neurons using patch-clamp techniques. At a holding potential of -60 mV, a slow inward current through csNSC channels was activated by a step reduction of [Ca(2+)](e) from 1.5 to 0.2 mM. LTG decreased the amplitude of csNSC currents dose dependently with an IC(50) of 171 +/- 25.8 (SE) microM. The effect of LTG was independent of membrane potential. In the presence of 300 microM LTG, the amplitude of csNSC current was decreased by 31 +/- 3% at -60 mV and 29 +/- 2.9% at +40 mV (P > 0.05). LTG depressed csNSC current without affecting the potency of Ca(2+) block of the current (IC(50) for Ca(2+) block of csNSC currents in the absence of LTG: 145 +/- 18 microM; in the presence of 300 microM LTG: 136 +/- 10 microM. n = 5, P > 0.05). In current-clamp recordings, activation of csNSC channel by reducing the [Ca(2+)](e) caused a sustained membrane depolarization and an increase in the frequency of spontaneous firing of action potentials. LTG (300 microM) significantly inhibited csNSC channel-mediated membrane depolarization and the excitation of neurons. Fura-2 ratiometric Ca(2+) imaging experiment showed that LTG also inhibited the increase in intracellular Ca(2+) concentration induced by csNSC channel activation. The effect of LTG on csNSC channels may partially contribute to its broad spectrum of anti-epileptic actions.  相似文献   

16.
Oscillations in hippocampal neuronal networks in the gamma frequency band have been implicated in various cognitive tasks and we showed previously that aging reduces the power of such oscillations. Here, using submerged hippocampal slices allowing simultaneous electrophysiological recordings and imaging, we studied the correlation between the kainate-evoked gamma oscillation and mitochondrial activity, as monitored by rhodamine 123. We show that the initiation of kainate-evoked gamma oscillations induces mitochondrial depolarization, indicating a metabolic response. Aging had an opposite effect on these parameters: while depressing the gamma oscillation strength, it increases mitochondrial depolarization. Also, in the aged neurons, kainate induced significantly larger Ca(2+) signals. In younger slices, acute mitochondrial depolarization induced by low concentrations of mitochondrial protonophores strongly, but reversibly, inhibits gamma oscillations. These data indicating that the complex network activity required by the maintenance of gamma activity is susceptible to changes and modulations in mitochondrial status.  相似文献   

17.
The translocation of synaptic Zn(2+) from nerve terminals into selectively vulnerable neurons may contribute to the death of these neurons after global ischemia. We hypothesized that cellular Zn(2+) overload might be lethal for reasons similar to cellular Ca(2+) overload and tested the hypothesis that Zn(2+) neurotoxicity might be mediated by the activation of nitric oxide synthase. Although Zn(2+) (30-300microM) altered nitric oxide synthase activity in cerebellar extracts in solution, it did not affect nitric oxide synthase activity in cultured murine neocortical neurons. Cultured neurons exposed to 300-500microM Zn(2+) for 5min under depolarizing conditions developed widespread degeneration over the next 24h that was unaffected by the concurrent addition of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine. Furthermore, Zn(2+) neurotoxicity was attenuated when nitric oxide synthase activity in the cultures was induced by exposure to cytokines, exogenous nitric oxide was added or nitric oxide production was pharmacologically enhanced. The unexpected protective effect of nitric oxide against Zn(2+) toxicity may be explained, at least in part, by reduction of toxic Zn(2+) entry. Exposure to nitric oxide donors reduced Ba(2+) current through high-voltage activated calcium channels, as well as K(+)-stimulated neuronal uptake of 45Ca(2+) or 65Zn(2+). The oxidizing agents thimerosal and 2,2'-dithiodipyridine also reduced K(+)-stimulated cellular 45Ca(2+) uptake, while akylation of thiols by pretreatment with N-ethylmaleimide blocked the reduction of 45Ca(2+) uptake by a nitric oxide donor.The results suggest that Zn(2+)-induced neuronal death is not mediated by the activation of nitric oxide synthase; rather, available nitric oxide may attenuate Zn(2+) neurotoxicity by reducing Zn(2+) entry through voltage-gated Ca(2+) channels, perhaps by oxidizing key thiol groups.  相似文献   

18.
Neuronal L-type Ca(2+) channels play pivotal roles in regulating gene expression, cell survival, and synaptic plasticity. The Ca(V)1.2 and Ca(V)1.3 channels are 2 main subtypes of neuronal L-type Ca(2+) channels. However, the specific roles of Ca(V)1.2 and Ca(V)1.3 in L-type Ca(2+) channel-mediated neuronal responses and their cellular mechanisms are poorly elucidated. On the basis of our previous study demonstrating a physical interaction between the Ca(V)1.3 channel and GABA(B) receptor (GABA(B)R), we further examined the involvement of Ca(V)1.2 and Ca(V)1.3 in the GABA(B)R-mediated activation of ERK(1/2), a kinase involved in both CREB activation and synaptic plasticity. After confirming the involvement of L-type Ca(2+) channels in baclofen-induced ERK(1/2) phosphorylation, we examined a specific role of Ca(V)1.2 and Ca(V)1.3 channels in the baclofen effect. Using siRNA-mediated silencing of Ca(V)1.2 or Ca(V)1.3 messenger, we determined the relevance of each channel subtype to baclofen-induced ERK(1/2) phosphorylation in a mouse hippocampal cell line (HT-22) and primary cultured rat neurons. In the detailed characterization of each subtype using HEK293 cells transfected with Ca(V)1.2 or Ca(V)1.3, we found that GABA(B)R can increase ERK(1/2) phosphorylation and Ca(V)1.3 channel activity through direct interaction with Ca(V)1.3 channels. These results suggest a functional interaction between Ca(V)1.3 and GABA(B)R and important implications of Ca(V)1.3/GABA(B)R clusters for translating synaptic activity into gene expression alterations.  相似文献   

19.
The goal of this study was to evaluate an effect of interleukin-10 (IL-10) on the Ca(2+) response induced by repeated NMDA receptor activation with brief hypoxia in cultured hippocampal neurons. We focused on the importance of internal Ca(2+) stores in the modulation of this Ca(2+) response by IL-10. To test this, we compared roles of InsP(3)- and ryanodine-sensitive internal stores in the effects of IL-10. Measurements of intracellular cytosolic calcium concentration ([Ca(2+)](i)) in cultured hippocampal neurons were made by imaging Fura-2AM loaded hippocampal cells. Repeated episodes of NMDA receptor activation with brief hypoxia induced the spontaneous (s) [Ca(2+)](i) increases about 3 min after each hypoxic episode. The amplitude of the s[Ca(2+)](i) increases was progressively enhanced from the first hypoxic episode to the third one. IL-10 (1 ng/ml) abolished these s[Ca(2+)](i) increases. Exposure of cultured hippocampal neurons with thapsigargin (1 μM) or an inhibitor of phospholipase C (U73122, 1 μM) for 10 min also abolished the s[Ca(2+)](i) increases. On the other hand, antagonist of ryanodine receptors (ryanodine, 1 μM) did not affect this Ca(2+) response. These studies appear to provide the first evidence that Ca(2+) release from internal stores is affected by anti-inflammatory cytokine IL-10 in brain neurons. It is suggested that these data increase our understanding of the neuroprotective mechanisms of IL-10 in the early phase of hypoxia.  相似文献   

20.
Hemond P  Jaffe DB 《Neuroscience》2005,135(2):413-420
In hippocampal pyramidal neurons from aged animals voltage-gated Ca2+ entry and the slow, post-burst afterhyperpolarization are enhanced. As a result, there is a decrease in neuronal excitability and, in turn, an alteration in synaptic plasticity. Restricting the caloric intake of a rodent is a well-known paradigm for increasing lifespan and ameliorating a number of neurodegenerative features of aging, including deficits in synaptic plasticity and cognition. Here we show in rat CA1 pyramidal neurons from aged animals (18-20 months old) that a restricted diet prevents the enhancement of dendritic spike-mediated Ca2+ accumulation. In contrast, no significant changes in the rates of Ca2+ recovery were observed suggesting that Ca2+ clearance mechanisms are not affected by aging or caloric restriction. Lastly, we found that caloric restriction also prevented the aging-associated increase in the slow, post-burst afterhyperpolarization. Our results suggest that caloric restriction-sensitive changes in Ca2+ accumulation and membrane excitability may in part account for the protective effects of dietary restriction on synaptic plasticity and learning deficits in aged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号