首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of betaxolol on the specific binding of [3H]diltiazem and [3H]nitrendipine to rat cortical membranes was examined. Betaxolol inhibited specific [3H]diltiazem and [3H]nitrendipine binding with IC50 values of 19.7 and 46.3 microM, respectively. The effect of betaxolol on L-type Ca2+ channels showed little stereospecificity, since similar inhibitions of radioligand binding were observed with both racemic betaxolol and L-betaxolol. The dissociation kinetics of [3H]diltiazem were unaffected by 30 microM betaxolol, whereas it increased the [3H]nitrendipine dissociation rate, thus suggesting that betaxolol directly interacts with the benzothiazepine binding site and allosterically modulates the dihydropyridine binding site. Carteolol, propranolol and timolol were also found to inhibit both specific [3H]diltiazem and [3H]nitrendipine binding to rat cortical membranes, but with less potency than betaxolol. The ability of betaxolol to interact with L-type Ca2+ channels may have a role in its therapeutic effects in the management of systemic hypertension and in reducing neuronal death as occurring in glaucoma.  相似文献   

2.
The effect of the isoquinoline derivative, drotaverine on the specific binding of [(3)H]nitrendipine and [(3)H]diltiazem to pregnant rat uterine membranes was examined. Drotaverine inhibited the specific [(3)H]nitrendipine and [(3)H]diltiazem bindings with IC(50) values of 5.6 and 2.6 microM, respectively. Saturation studies showed that diltiazem caused a significant increase in the maximum binding density without changing the K(D) of [(3)H]nitrendipine while drotaverine increased both the K(D) and the B(max) of [3H]nitrendipine. The dissociation kinetics of both [3H]nitrendipine and [(3)H]diltiazem were accelerated by drotaverine. These results suggest that drotaverine has a negative allosteric interaction with the binding sites for 1,4-dihydropyridines and 1,5-benzothiazepines on the L-type Ca(2+) channel in pregnant rat uterine membranes, which may have implications as to the potential usefulness of this drug in aiding child delivery.  相似文献   

3.
The binding properties of a new 1,5-benzothiazepine, clentiazem (TA-3090), were investigated in rat cerebral cortex and skeletal muscle membranes with [3H]diltiazem and [3H]nitrendipine as radioligands. Clentiazem inhibited [3H]diltiazem binding to cerebral cortex membranes at the same concentrations as diltiazem at 2 degrees C. However, at 37 degrees C clentiazem was 3 times more potent to inhibit binding than diltiazem. [3H]Nitrendipine binding was modulated by clentiazem in a temperature-dependent manner. At 37 degrees C clentiazem significantly enhanced [3H]nitrendipine binding to rat cerebral cortex membranes, whereas it has an inhibitory effect on [3H]nitrendipine binding at 0 degree C and no effect at 25 degrees C. Of two optical isomers of clentiazem and four of diltiazem, only d-cis isomers (clentiazem and diltiazem) increased [3H]nitrendipine binding, indicating that both compounds have the same stereoselectivity for increasing [3H]nitrendipine binding. These results suggest that clentiazem binds to the same 1,5-benzothiazepine binding sites as diltiazem but with greater affinity.  相似文献   

4.
1. In the present study, the properties of glaucine (an aporphine structurally related to papaverine) were compared with those of papaverine, diltiazem, nifedipine and prazosin. The work includes functional studies on rat isolated aorta contracted with noradrenaline, caffeine or KCl, and a determination of the affinity of glaucine at calcium channel binding sites of alpha-adrenoceptors, by use of [3H]-(+)-cis-diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The effects of glaucine on the different molecular forms of cyclic nucleotide phosphodiesterases (PDE) isolated from bovine aorta were also determined. 2. Contraction evoked by noradrenaline (1 microM) or depolarizing solution (60 mM KCl) were inhibited in a concentration-dependent manner by all the compounds tested. As expected, prazosin showed a greater selectivity of action on NA-induced contraction, whereas nifedipine and diltiazem appeared more potent on KCl-induced contraction. Glaucine had a greater potency on the contraction elicited by noradrenaline whereas papaverine acted non specifically. 3. In Ca(2+)-free solution, prazosin (0.1 microM) and glaucine (0.1 mM) inhibited the contraction evoked by NA; diltiazem (0.1 mM) diminished this contraction whereas nifedipine (1 microM) had no effect. Preincubation of tissues with glaucine, diltiazem, nifedipine and prazosin did not modify the contractile response induced by caffeine. In contrast, papaverine (0.1 mM) significantly inhibited the contractions evoked by NA or caffeine in Ca(2+)-free medium. 4. Glaucine and papaverine show affinity at the [3H]-prazosin binding site and at the benzothiazepine binding site of the Ca(2+)-channel receptor complex, but have no effect at the dihydropyridine binding site in rat cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The pharmacological, radioligand binding, and electrophysiological properties of FPL 64176, a new nondihydropyridine Ca2+ channel activator, were studied in rat tail artery, cardiac membranes, and A7r5 smooth muscle cells. FPL 64176 induced a contractile response, with an EC50 value of 2.11 x 10(-7) M. The maximum tension response to FPL 64176 was approximately 2-fold higher than that to (S)-Bay K 8644. FPL 64176 showed no significant inhibitory activity at concentrations up to 10(-5) M. The Ca2+ channel antagonists nifedipine, verapamil and diltiazem noncompetitively antagonized and completely relaxed the responses induced by FPL 64176. IC50 values of these three drugs were 5.22 x 10(-9), 1.31 x 10(-7), and 1.95 x 10(-7) M, respectively, for relaxing submaximum contractile responses to FPL 64176 (5 x 10(-7) M). The washout time for FPL 64176 was about 40 min, which was much longer than that for (S)-Bay K 8644 (within 1 min). FPL 64176 weakly inhibited (+)-[3H]PN 200-110, [3H]D888, and [3H]TA-3090 binding in rat cardiac membranes, with IC50 values of 1.04 x 10(-5) M and 7.03 x 10(-6) M for inhibition of (+)-[3H]PN 200-110 and [3H]TA-3090 binding, respectively, and with 23% inhibition of [3H]D888 binding at a FPL 64176 concentration of 1 x 10(-5) M. Dissociation kinetics of the three radioligands were allosterically accelerated by FPL 64176. Electrophysiological studies on the A7r5 smooth muscle cell line directly confirmed a large (approximately 14-fold) stimulatory effect on L-type Ca2+ current amplitude. The results suggest that FPL 64176 is a new type of Ca2+ channel activator with higher efficacy and a mechanism and site of action that are distinct from those for (S)-Bay K 8644.  相似文献   

6.
1. [3H]-idazoxan labels a single population of high affinity sites (Kd 2.26 +/- 0.02 nM; Bmax 372 +/- 25 fmol mg-1 protein) in hamster adipocyte membranes. In the presence of 1 microM yohimbine to preclude binding to alpha 2-adrenoceptors, the density of [3H]-idazoxan binding sites was reduced (287 +/- 18 fmol mg-1 protein) without an apparent decrease in the affinity (Kd 2.19 +/- 0.24 nM) of the radioligand. 2. Displacement studies indicate that alpha-adrenoceptor ligands with an imidazoline side chain completely inhibit [3H]-idazoxan binding to hamster adipocyte membranes; in contrast, the alpha 2-adrenoceptor antagonists yohimbine, rauwolscine, BDF 6143 and phentolamine inhibited only 20-30% of the specific binding with affinity values consistent with an interaction at alpha 2-adrenoceptors. 3. The low potency of noradrenaline and adrenaline in displacing [3H]-idazoxan binding to the second site on hamster adipocyte membranes indicates that it is unlikely that this site is a type of adrenoceptor. 4. These results suggest that [3H]-idazoxan binds with high affinity to two sites in hamster adipocytes: an alpha 2-adrenoceptor and a non-adrenoceptor imidazoline site.  相似文献   

7.
Marrubenol inhibits contraction of rat arteries by blocking L-type calcium (Ca(2+)) channels in smooth muscle cells, but its interaction with binding sites for calcium antagonists had never been investigated. Competition binding studies indicated that marrubenol was a weak inhibitor of 1,4-dihydropyridine binding in membranes isolated from rat intestinal smooth muscle but completely displaced specifically bound (-)-[(3)H]desmethoxyverapamil ([(3)H]D888) with an apparent K(i) value of 16 microM (95% confidence interval: 6.5-39.5 microM). As marrubenol inhibited the contraction evoked by KCl depolarization of intestinal smooth muscle half-maximally at a concentration of approximately 12 microM, interaction with the phenylalkylamine binding site seems to account for the inhibition of L-type Ca(2+) channels by marrubenol.  相似文献   

8.
With the effort to discover new chemotypes blocking L-type calcium channels (LTCCs), ligand-based virtual screening was applied with a specific interest toward the diltiazem binding site. Roughly 50000 commercially available compounds served as a database for screening. The filtering through predicted pharmacokinetic properties and structural requirements reduced the initial database to a few compounds for which the similarity was calculated toward two template molecules, diltiazem and 4-chloro-Ncyclopropyl- N-(4-piperidinyl)benzene-sulfonamide, the most interesting hit of a previous screening experiment. For 18 compounds, inotropic and chronotropic activity as well as the vasorelaxant effect on guinea pig were studied "in vitro", and for the most promising, binding studies to the diltiazem site were carried out. The procedure yielded several hits, confirming in silico techniques to be useful for finding new chemotypes. In particular, N-[2-(dimethylamino)ethyl]-3-hydroxy-2-naphthamide, N,Ndimethyl- N'-(2-pyridin-3-ylquinolin-4-yl)ethane-1,2-diamine, 2-[(4-chlorophenyl)(pyridin-2-yl)methoxy]- N,N-dimethylethanamine (carbinoxamine), and 7-[2-(diethylamino)ethoxy]-2H-chromen-2-one revealed interesting activity and binding to the benzothiazepine site.  相似文献   

9.
Effects of ions on the binding of uptake blockers to the rat dopamine transporter (rDAT) labelled with [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)-[3H] tropane] and [3H]mazindol were studied at 20 degrees C. [3H]WIN 35,428 binding increased with Na+ concentrations of up to 10-60 mM and decreased at higher concentrations. At pH 7.4, incubation media containing NaCl and/or Na2HPO4/NaH2PO4 were less stimulant than an NaHCO3/NaH2PO4 medium and they shifted maximal binding values to higher ionic concentrations. In an NaHCO3/NaH2PO4-buffered medium, Na+ concentrations >10 mM decreased the binding of 0.2 nM [3H]WIN 35,428, but an increase of the radioligand concentration shifted this decrease to the right. [3H]Mazindol binding was stimulated by Na+ concentrations < or =10 mM and was rather unaffected at higher concentrations. The inhibition of [3H]WIN 35,428 binding produced by 130 mM Na+ was independent of the nature of the anion; in contrast, isothionate and H2PO4-/HCO3 produced a more pronounced inhibition of the [3H]mazindol binding than Cl- and Br-, whereas I- tended to be a stimulant. Ca2+ and Mg2+ more potently inhibited the [3H]WIN 35,428 binding than K+. All these cations recognize a site which is not mutually exclusive with that of the radioligand since they induced the dissociation of the [3H]WIN 35,428-rDAT complex, an effect which was reduced (K+) or modified (Ca2+) when the Na+ concentration was increased. This site is likely to be the Na+ site by which low Na+ concentrations allosterically stimulate the uptake blocker binding. However, the intensity of the cation-induced dissociations was moderate and the main component of the binding inhibition that these cations produced results from the occupancy of a cation site, mutually exclusive with that of the radioligand. Thus, the WIN 35,428 binding inhibition produced by Ca2+, K+ and Na+ was competitive, and Na+ reduced the inhibitory potency of Ca2+ and K+. This reduction was more intense for Ca2+ and Mg2+ than for K+, suggesting that occupancy of the cation site by a divalent cation activated a strong negative allosteric interaction between this site and the Na+ site. Decrease in the Na+ concentration from 10 mM to 5 mM, or replacement of 5 mM HCO3-/H2PO4- by an equimolar concentration of isethionate or Cl- did not modify [3H]WIN 35,428 binding dissociation. Level(s) at which anions stimulate and inhibit the binding of uptake blockers remain uncertain and could be specific for each radioligand.  相似文献   

10.
Trans-diclofurime has been shown to be a very potent class II calcium antagonist (see preceding report), and we have examined its molecular interactions with the different receptor sites at the Ca2+ channel. Trans-diclofurime did not affect [3H]nitrendipine binding to rat cortical membranes at 37 degrees C and showed weak inhibitory effects at 25 degrees C, whereas at 0 degrees C 80% of the binding was inhibited noncompetitively (IC50, 13 nM); cis-diclofurime was 22-fold less potent. Trans-diclofurime, like diltiazem, blocked the inhibitory effects of verapamil on [3H]nitrendipine binding. Trans-diclofurime is a potent displacer of [3H]diltiazem binding (IC50, 15 nM; IC50 for diltiazem, 55 nM); the diclofurime isomers showed high stereoselectivity, with high Hill coefficients (0.85-1.0). In contrast, the stereoselectivity of the isomers was lower as inhibitors of [3H]verapamil binding, as were the Hill coefficients (0.55-0.65). It is proposed that the functional potency of the diclofurime isomers as calcium antagonists can be explained on the basis of their relative affinities for the diltiazem site and that this site is coupled to the dihydropyridine site in a positive heterotropic allosteric manner. A model for the interaction of group II calcium antagonists with the Ca2+ channel is proposed.  相似文献   

11.
The presence of a diltiazem recognition site within the macromolecular complex of the calcium channel in the brain had been hypothesized on the basis of binding studies with [3H]dihydropyridine calcium channel antagonists. In the present study, we therefore characterized [3H]diltiazem binding sites in the rat cerebral cortex. Saturable high affinity (Kd = 50-170 nM) [3H]diltiazem binding to the rat cerebral cortex was stereospecifically inhibited by the enantiomers of diltiazem according to their activity as calcium channel antagonists and modulators of [3H]dihydropyridine binding. An association between the [3H]diltiazem binding site and the calcium channel was further corroborated by the effects of chemically heterogeneous calcium channel antagonists on [3H]diltiazem binding. Dihydropyridines appeared to allosterically affect [3H]diltiazem binding according to their pharmacological effects; e.g. at 37 degrees C nitrendipine enhanced whereas the calcium agonist Bay K 8644 failed to affect [3H]diltiazem binding at concentrations fully inhibiting [3H]nitrendipine binding. The effect of nitrendipine may, at least in part, be explained by an increase in the affinity of [3H]diltiazem.  相似文献   

12.
Mibefradil is a novel Ca(2+) antagonist which blocks both high-voltage activated and low voltage-activated Ca(2+) channels. Although L-type Ca(2+) channel block was demonstrated in functional experiments its molecular interaction with the channel has not yet been studied. We therefore investigated the binding of [(3)H]-mibefradil and a series of mibefradil analogues to L-type Ca(2+) channels in different tissues. [(3)H]-Mibefradil labelled a single class of high affinity sites on skeletal muscle L-type Ca(2+) channels (K(D) of 2.5+/-0.4 nM, B(max)=56.4+/-2.3 pmol mg(-1) of protein). Mibefradil (and a series of analogues) partially inhibited (+)-[(3)H]-isradipine binding to skeletal muscle membranes but stimulated binding to brain L-type Ca(2+) channels and alpha1C-subunits expressed in tsA201 cells indicating a tissue-specific, non-competitive interaction between the dihydropyridine and mibefradil binding domain. [(3)H]-Mibefradil also labelled a heterogenous population of high affinity sites in rabbit brain which was inhibited by a series of nonspecific Ca(2+) and Na(+)-channel blockers. Mibefradil and its analogue RO40-6040 had high affinity for neuronal voltage-gated Na(+)-channels as confirmed in binding (apparent K(i) values of 17 and 1.0 nM, respectively) and functional experiments (40% use-dependent inhibition of Na(+)-channel current by 1 microM mibefradil in GH3 cells). Our data demonstrate that mibefradil binds to voltage-gated L-type Ca(2+) channels with very high affinity and is also a potent blocker of voltage-gated neuronal Na(+)-channels. More lipophilic mibefradil analogues may possess neuroprotective properties like other nonselective Ca(2+)-/Na(+)-channel blockers.  相似文献   

13.
The dihydropyridine receptor associated with the L-type Ca2+ channel in adrenal medulla membranes has been identified and characterized. [3H]PN200-110 binds in a stereoselective, saturable manner to a single class of high affinity sites in adrenal medulla membranes, with a Kd of 0.1 nM and a Bmax of 141 fmol/mg of protein. Dihydropyridines inhibited [3H]PN200-110 binding with the rank order (+)-PN200-110 greater than nifedipine greater than nimodipine greater than usoldipine greater than or equal to nitrendipine greater than BayK8644 greater than (-)-PN200-110. [3H] PN200-110 binding was sensitive to divalent cations, as examined by the effects of Ca2+, Mg2+, and the chelators ethylene glycol bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and EDTA. [3H]PN200-110 binding was modulated by various classes of L-type Ca2+ channel effectors. Benzothiazepines modulated binding of [3H]PN200-110 in a negative or positive manner that was temperature dependent, whereas phenylalkylamines weakly inhibited [3H]PN200-110 binding. Bepridil stimulated [3H] PN200-110 binding, whereas phencyclidine was without effect. The photoaffinity probe [3H]azidopine labeled a single polypeptide that migrated with an apparent molecular weight of 185,000-190,000 in sodium dodecyl sulfate gel electrophoresis. The dihydropyridine receptor was found to bind specifically to wheat germ agglutinin columns. These results demonstrate the presence of a Ca2+ channel blocker complex in adrenal medulla. The drug receptor sites reside on a glycoprotein complex in which a polypeptide analogous to the alpha 1-subunit of the L-type Ca2+ channel from skeletal muscle has been identified.  相似文献   

14.
BACKGROUND AND PURPOSE: Antagonists of Ca2+ channels reduce contraction of intestinal smooth muscle but also affect vascular smooth muscle. We have therefore examined the effects of AJG049, a newly synthesized antagonist for regulation of gut motility, on voltage-dependent L-type Ca2+ channels, in vascular and intestinal smooth muscle, comparing AJG049 with two other Ca2+ channel antagonists, verapamil and diltiazem. EXPERIMENTAL APPROACH: Affinities of AJG049 for various types of voltage-dependent Ca2+ channels were examined by binding studies. Effects of AJG049 on voltage-dependent inward Ca2+ (or Ba2+) currents (ICa or IBa) in dispersed smooth muscle cells from guinea-pig ileum, colon and mesenteric artery were measured using conventional whole-cell configurations. KEY RESULTS: In binding studies, AJG049 showed a high affinity for the diltiazem-binding site of L-type Ca2+ channels. In whole-cell configuration, AJG049 suppressed ICa in ileal myocytes, with concentration-, voltage-and use-dependencies. AJG049 shifted the steady-state inactivation curve of ICa to the left. The order of potency to inhibit ICa in ileal myocytes was AJG049>verapamil>diltiazem. AJG049 also suppressed IBa in guinea-pig mesenteric arterial myocytes, showing concentration- and voltage-dependencies and the potency order for this action was also AJG049>verapamil>diltiazem. For the relative ratio of Ki values between ileal and mesenteric arterial myocytes, the order was AJG049>diltiazem>verapamil. CONCLUSIONS AND IMPLICATIONS: These results show that AJG049 inhibits L-type Ca2+ channels mainly through the diltiazem-binding site(s). From our results, AJG049 showed a little selectivity for these Ca2+ channels in intestinal smooth muscle.  相似文献   

15.
N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) inhibited, in vitro, the specific binding of three structurally distinct L-type Ca2+ channel ligands, (+)[3H]PN 200,110, [3H]desmethoxyverapamil and [3H]cis-diltiazem to guinea pig ileal longitudinal smooth muscle. Maximum tension responses to Ca2+ in a K(+)-depolarized functional smooth muscle preparation were reduced in a concentration-dependent manner following pretreatment with EEDQ and washout. Microsomal membranes prepared from smooth muscle pretreated with EEDQ followed by extensive washout showed a significant reduction in the amount of (+)[3H]PN 200,110 bound without change of ligand affinity. Similar results were obtained in cardiac ventricle microsomes. Preincubation with verapamil (1 x 10(-5) M) largely prevented this reduction in [3H]PN 200,110 binding sites by EEDQ. 45Ca2+ uptake in cortical synaptosomes during 1-sec depolarization following 68.5 mM K+ was also inhibited by EEDQ. Specific binding of [125I]omega-conotoxin GVIA to rat cerebral cortex membranes was inhibited by EEDQ, also in an apparently irreversible manner as seen by the marked reduction in binding site density with no significant change in the KD value. These observations indicate that EEDQ blocks Ca2+ channel function and reduces irreversibly both 1,4-dihydropyridine and omega-conotoxin GVIA binding sites.  相似文献   

16.
The present study was undertaken to determine whether 5-hydroxytryptamine(1A) (5-HT(1A)) receptor agonists interact with voltage-sensitive Na(+) or N- and P/Q-type Ca(2+) channels to reduce the influx of Na(+) and/or Ca(2+). The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) inhibited both [3H]batrachotoxinin binding to neurotoxin site 2 of the Na(+) channel in rat cortical membranes (IC(50)=5.1 microM) and veratridine-stimulated Na(+) influx into rat synaptosomes (EC(50)=20. 8 microM). The 5-HT(1A) receptor agonist flesinoxan and the 5-HT(1A) receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide (WAY-100635) also displaced [3H]batrachotoxinin binding with similar affinities to 8-OH-DPAT, but were much less effective in reducing veratridine-stimulated Na(+) influx. All three serotonergic agents also increased [3H]saxitoxin binding to neurotoxin site 1 of the Na(+) channel. In contrast, none of these agents interacted with radioligand binding to N- or P/Q-type Ca(2+) channels. These data show that 8-OH-DPAT directly interacts with voltage-sensitive Na(+) channels to reduce Na(+) influx so providing an additional mechanism to explain how it functions as a neuroprotectant.  相似文献   

17.
The affinity of a 1,4-dihydropyridine (DHP) type calcium channel blocker, NZ-105 ((+/-)-2-[benzyl (phenyl) amino] ethyl 1,4-dihydro-2, 6-dimethyl-5- (5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan- 2-yl)-4-(3-nitrophenyl)-3-pyridinecarboxylate hydrochloride ethanol), on the DHP-binding site in the central nervous system and various receptor sites were compared with nicardipine and diltiazem by the use of a receptor binding assay technique. NZ-105 exhibited a displacement effect against [3H]nimodipine in the rat brain DHP-binding site with a potency similar to that of nicardipine. Nicardipine also inhibited the specific binding of several other [3H]-labelled ligands to their receptor such as adrenergic alpha 1, alpha 2, beta, dopamine D1, D2, opioid mu, delta, and kappa-type receptors. Diltiazem also showed a similar inhibitory property. However, NZ-105 showed only weak inhibition against the binding to these receptors. These results suggest that Z-105 has strong affinity to the DHP-binding site in voltage-dependent calcium channels with higher specificity.  相似文献   

18.
Ethaverine is a derivative of papaverine used in the treatment of peripheral vascular disease and is thought to cause vasodilation by reducing intracellular Ca2+ concentrations in vascular smooth muscle cells. We tested its effects on single, dihydropyridine-sensitive, L-type calcium channels from porcine cardiac muscle, incorporated into planar lipid bilayers. L-type calcium channels were activated by step depolarizations from a holding potential of -60 mV to a test potential of 0 mV, and unitary currents carried by 100 mM BaCl2 were recorded. Channel activity was enhanced by the presence of the dihydropyridine agonist (+)-202-791 (0.5 microM) and the activated alpha subunit of the stimulatory GTP-binding protein, Gs. We found that 0.3-30 microM ethaverine on either side of the channel caused a reduction in the channel open probability (EC50 approximately 1 microM), with the higher concentrations inhibiting channel activity almost completely. In addition, the ethaverine caused a small reduction in the unitary current amplitude of single open channels (approximately 20%). To test whether the effect of ethaverine on open probability was due to a displacement of the dihydropyridine agonist, we studied the effect of ethaverine on the binding of [3H]nitrendipine to cardiac sarcolemma and found that ethaverine inhibited [3H]nitrendipine binding with a Ki of approximately 8.5 microM. Ethaverine also inhibited the binding of [3H]diltiazem and [3H]verapamil, with Ki values of 1-2 microM. Because ethaverine is structurally related to verapamil, it is likely that ethaverine acts by binding to the verapamil binding sites on the L-type calcium channels to inhibit channel activation and dihydropyridine binding.  相似文献   

19.
1. Two binding sites for the 1,4-dihydropyridine (DHP) derivative [3H]-nitrendipine have been found in the bovine adrenal medulla. The high-affinity site (Kd = 0.48 nM and Bmax = 128 fmol mg-1 protein) was specifically located in purified plasma membranes. The low-affinity site (Kd = 252 nM and Bmax = 169 pmol mg-1 protein) was located only in mitochondria. Chromaffin granule membranes lacked specific binding sites for [3H]-nitrendipine. 2. Kinetic analysis of the rates of association and dissociation of [3H]-nitrendipine, saturation isotherms and displacement experiments with unlabelled nitrendipine and PN200-110 revealed single, homogeneous populations of high- and low-affinity sites in plasma and mitochondrial membranes, respectively. 3. The high affinity site was sensitive to Ca2+ deprivation and heating; it was practically unaffected by changes in ionic strength of the medium and its optimal pH was slightly alkaline. This site exhibited a strong DHP stereoselectivity; diltiazem increased and verapamil decreased the affinity of [3H]-nitrendipine. 4. In contrast, binding of [3H]-nitrendipine to the low affinity site was more heat resistant and less affected by Ca2+ removal. Its optimal pH was slightly acid and the increase in ionic strength enhanced the number of available sites. The site had no DHP stereoselectivity. Verapamil decreased the dissociation constant of [3H]-nitrendipine acting in a non-competitive manner; diltiazem did not affect equilibrium binding parameters of [3H]-nitrendipine. 5. These results suggest that both biding sites reflect different receptor entities. The high-affinity binding site corresponds to the dihydropyridine receptor associated with the L-type calcium channel. The function of the mitochondrial, low-affinity binding site is, at present, unknown.  相似文献   

20.
Characteristics of the interaction of verapamil with serotonin receptors were studied in rat brain membranes using a radioligand binding technique. While verapamil competed for the [3H]ketanserin binding sites at low concentrations with the Ki value of 0.41 microM, much higher concentrations were needed to inhibit the binding of [3H]serotonin to its binding sites, indicating higher affinity of verapamil binding for 5-HT2 than 5-HT1 receptors. The inhibitory action of verapamil on the [3H]ketanserin binding was stereoselective; the (-)isomer was about ten times more potent than the (+)isomer. The interaction of verapamil with [3H]-ketanserin was competitive and reversible. While D600, a verapamil derivative, also competed for the [3H]ketanserin binding sites, nifedipine and nicardipine had practically no ability to inhibit the ligand binding to 5-HT1 or 5-HT2 receptors. Although diltiazem competed for 5-HT2 receptors, the affinity was much less than verapamil and D600.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号