首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Kindling, an animal model of epilepsy, results in an increased volume of the hilus of the dentate gyrus and sprouting of the mossy fiber pathway in the hippocampus. Our previous studies have revealed that chronic infusion of neurotrophins can regulate not only seizure development, but also these kindling-induced structural changes. Kindling, in turn, can alter the expression of neurotrophins and their receptors. We previously showed that intraventricular administration of a synthetic peptide that interferes with nerve growth factor stability and thus its binding to TrkA and p75(NTR) receptors suppressed kindling and sprouting. However, the precise involvement of TrkA, p75(NTR), and downstream signaling effectors of neurotrophins on kindling, sprouting and hilar changes are unknown. One of these downstream effectors is Ras. In the present study, we find that intraventricular infusion of the synthetic peptide Reo3Y, which binds to p65/p95 receptors and causes a rapid inactivation of Ras protein, impairs development of perforant path kindling, reduces the growth in afterdischarge duration, blocks kindling-induced mossy fiber sprouting in area CA3 of hippocampus and in inner molecular layer of the dentate gyrus, and prevents kindling-induced increases in hilar area. These results are consistent with a mediation of neurotrophin effects on kindling, hilar area, and axonal sprouting via Trk receptors, and suggest important roles for Ras in kindling and in kindling-induced structural changes.  相似文献   

2.
Brain-derived neurotrophic factor delays hippocampal kindling in the rat   总被引:5,自引:0,他引:5  
Epileptic seizures increase the expression of brain-derived neurotrophic factor in the hippocampus. Since this neurotrophin exerts modulatory effects on neuronal excitability in this structure, it may play an important role in hippocampal epileptogenesis. This question was addressed by studying the effects of chronic infusions of recombinant brain-derived neurotrophic factor and brain-derived neurotrophic factor antisense in the hippocampus during the first seven days of hippocampal kindling. Infusion with brain-derived neurotrophic factor (6–24 μg/day) significantly delayed the progression of standard hippocampal kindling and strongly suppressed seizures induced by rapid hippocampal kindling. These suppressive effects were dose dependent, long lasting, not secondary to neuronal toxicity and specific to this neurotrophin, as nerve growth factor accelerated hippocampal kindling progression. They also appeared to be specific to the hippocampus, as infusion of brain-derived neurotrophic factor (48 μg/day) in the amygdala only resulted in a slight and transient delay of amygdala kindling. Conversely to the protective effects of exogenous brain-derived neurotrophic factor, chronic hippocampal infusion of antisense oligodeoxynucleotides (12 nmol/day), resulting in reduced expression of endogenous brain-derived neurotrophic factor in the hippocampus, aggravated seizures during hippocampal kindling.

Taken together, our results lead us to suggest that the seizure-induced increase in brain-derived neurotrophic factor expression in the hippocampus may constitute an endogenous regulatory mechanism able to restrain hippocampal epileptogenesis.  相似文献   


3.
Xu B  Michalski B  Racine RJ  Fahnestock M 《Neuroscience》2002,115(4):1295-1308
Neurotrophin-3 (NT-3), a member of the neurotrophin family of neurotrophic factors, is important for cell survival, axonal growth and neuronal plasticity. Epileptiform activation can regulate the expression of neurotrophins, and increases or decreases in neurotrophins can affect both epileptogenesis and seizure-related axonal growth. Interestingly, the expression of nerve growth factor and brain-derived neurotrophic factor is rapidly up-regulated following seizures, while NT-3 mRNA remains unchanged or undergoes a delayed down-regulation, suggesting that NT-3 might have a different function in epileptogenesis. In the present study, we demonstrate that continuous intraventricular infusion of NT-3 in the absence of kindling triggers mossy fiber sprouting in the inner molecular layer of the dentate gyrus and the stratum oriens of the CA3 region. Furthermore, despite this NT-3-related sprouting effect, continuous infusion of NT-3 retards the development of behavioral seizures and inhibits kindling-induced mossy fiber sprouting in the inner molecular layer of the dentate gyrus. We also show that prolonged infusion of NT-3 leads to a decrease in kindling-induced Trk phosphorylation and a down-regulation of the high-affinity Trk receptors, TrkA and TrkC, suggesting an involvement of both cholinergic nerve growth factor receptors and hippocampal NT-3 receptors in these effects. Our results demonstrate an important inhibitory role for NT-3 in seizure development and seizure-related synaptic reorganization.  相似文献   

4.
The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice.From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.  相似文献   

5.
1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny "mossy" cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of perforant path kindling on the levels of mRNAs coding for proenkephalin and prodynorphin in hippocampus and frontal cortex of rats was measured using RNA blot analysis. In rats showing stage 3 kindled seizures, after consecutive stimulation of the right perforant path, a decrease in the level of prodynorphin mRNA and an increase in levels of proenkephalin mRNA in the ipsilateral hippocampus was found. In addition, the levels of prodynorphin were also decreased in the contralateral hippocampus. No changes in the opioid peptide mRNAs were found in the frontal cortex of the animals. The altered mRNA levels in the hippocampus returned to normal 8 days following cessation of the electrical stimulation. However, at that time a single stimulus was still effective in producing stage 3 kindling seizures. These findings indicate that (1) the opioid peptide gene expression in the hippocampus can be transynaptically altered by kindling of the perforant path and (2) that the opioid peptides may play a role in the development, but not in the maintenance of kindling.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that mediates synaptic plasticity and excitability in the CNS. Recent evidence has shown that increased BDNF levels can lead to hyperexcitability and epileptiform activities, while suppression of BDNF function in transgenic mice or by antagonist administration retards the development of seizures. However, several groups, including our own, have reported that increasing BDNF levels by continuous intrahippocampal infusion inhibits epileptogenesis. It is possible that the continuous administration of BDNF produces a down-regulation of its high-affinity TrkB receptor, leading to a decrease of neuronal responsiveness to BDNF. If so, then animals should respond differently to bolus injections of BDNF, which presumably do not alter Trk expression, compared with continuous infusion. To test this hypothesis, we compared the effects of intrahippocampal BDNF continuous infusion and bolus injections on kindling induction. We showed that continuous infusion of BDNF inhibited the development of behavioral seizures and decreased the level of phosphorylated Trks or TrkB receptors. In contrast, multiple bolus microinjections of BDNF accelerated kindling development and did not affect the level of phosphorylated Trks or TrkB receptors. Our results indicate that different administration protocols yield opposite effects of BDNF on neuronal excitability, epileptogenesis and Trk expression. Unlike nerve growth factor and neurotrophin-3, which affect mossy fiber sprouting, we found that BDNF administration had no effect on the mossy fiber system in naive or kindled rats. Such results suggest that the effects of BDNF on epileptogenesis are not modulated by its effect on sprouting, but rather by its effects on excitability.  相似文献   

8.
The present studies were undertaken to characterize the regional and temporal patterns of neurotrophin messenger RNA and protein levels for beta-nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the developing CNS. We have examined the levels of these neurotrophin messenger RNAs with ribonuclease protection assays and corresponding protein levels with enzyme-linked immunosorbent assays in the developing Long-Evans rat hippocampus, neocortex and cerebellum on postnatal days 1, 7, 14, 21, and 92. In addition, immunohistochemistry was used to localize the neurotrophins in these developing brain regions. Results indicated that in neocortex and hippocampus, messenger RNA for both nerve growth factor and brain-derived neurotrophic factor increased in an age-dependent manner, reaching a plateau by postnatal day 14. In the neocortex, nerve growth factor and brain-derived neurotrophic factor protein levels both peaked at postnatal day 14. In hippocampus, nerve growth factor protein peaked at postnatal day 7 while brain-derived neurotrophic factor peaked at postnatal day 14. In cerebellum, nerve growth factor messenger RNA levels were flat, while nerve growth factor protein peaked at postnatal day 7. Brain-derived neurotrophic factor messenger RNA increased in an age-dependent manner while the pattern for its protein levels was mixed. Neurotrophin-3 messeger RNA levels increased in an age-dependent manner in hippocampus, peaked at postnatal day14 in cerebellum, and no changes occurred in neocortex. Neurotrophin-3 protein was at its peak at postnatal day 1 and thereafter decreased at other postnatal days in all three brain regions. Results of neurotrophin immunohistochemistry often paralleled and complemented enzyme-linked immunosorbent assay data, demonstrating specific cell groups containing neurotrophin proteins in these regions. Within each region, patterns with regard to messenger RNA and respective protein levels for each neurotrophin were unique. No consistent relationship between patterns of neurotrophin messenger RNAs and their cognate proteins was observed between regions. The different regional patterns for neurotrophin messengerRNA and protein levels in each brain region indicate that messenger RNA studies of neurotrophin messenger RNA must be augmented by protein determination to fully characterize spatial and temporal neurotrophin distribution.  相似文献   

9.
Although the immature brain is highly susceptible to seizures, it is more resistant to seizure-induced neuronal loss than the adult brain. The developing brain contains high levels of neurotrophins which are involved in growth, differentiation and survival of neurons. To test the hypothesis that neurotrophins may protect the developing brain from seizure-induced neuronal loss, brain-derived neurotrophic factor up-regulation was blocked by intracerebroventricular infusion of an 18mer antisense oligodeoxynucleotide sequence to brain-derived neurotrophic factor in 19-day-old rats using micro-osmotic pumps. Control rats were infused with sense or missense oligodeoxynucleotide. Status epilepticus was induced by intraperitoneal administration of kainic acid 24 h after the start of oligodeoxynucleotide infusion. Seizure duration was significantly increased in the antisense oligodeoxynucleotide plus kainic acid group compared to groups that received kainic acid alone or kainic acid plus sense or missense oligodeoxynucleotide. There was no difference between groups in the latency to forelimb clonus. A twofold increase in brain-derived neurotrophic factor levels was observed in the hippocampus 20 h following kainic acid-induced seizures. This kainic acid-induced increase was absent in animals receiving infusion of antisense oligodeoxynucleotide to brain-derived neurotrophic factor at time of seizure induction. Hippocampi of rats in this group (antisense oligodeoxynucleotide plus kainic acid) showed a loss of CA1 and CA3 pyramidal cells and hilar interneurons. This neuronal loss was not dependent upon seizure duration since animals injected with diazepam to control seizure activity in the antisense plus kainic acid group also showed similar neuronal loss. Administration of kainic acid or infusion of antisense alone did not produce any cell loss in these regions. Induction of seizures at postnatal day 20, in the presence or absence of antisense oligonucleotide, did not produce an impairment in learning and memory when tested 15 days later in the Morris water maze. The hippocampi of these animals did not show any synaptic reorganization as assessed by growth-associated protein-43 immunostaining and Timm staining. Our findings confirm prior studies demonstrating that seizures in the immature brain are associated with little, if any, cell loss. However, when seizure-induced increase in brain-derived neurotrophic factor is blocked, seizures do result in neuronal loss in the developing brain. Thus, brain-derived neurotrophic factor appears to provide protection against kainic acid seizure-induced neuronal damage in the developing brain.  相似文献   

10.
Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values. However, there were robust increases in hippocampal brain-derived neurotrophic factor expression ipsilateral to the injury for injured females in environmental enrichment compared with both sham and injured females placed in standard housing (P相似文献   

11.
Seizures increase the synthesis of brain-derived neurotrophic factor in forebrain areas, suggesting this neurotrophin has biological actions in epileptic tissue. The understanding of these actions requires information on the sites and extent of brain-derived neurotrophic factor production in areas involved in seizures onset and their spread. In this study, we investigated by immunocytochemistry the changes in brain-derived neurotrophic factor in the hippocampus, entorhinal and perirhinal cortices of rats at increasing times after acute seizures eventually leading to spontaneous convulsions. We also tested the hypothesis that seizure-induced changes in brain-derived neurotrophic factor induce later modifications in neuropeptide Y expression by comparing, in each instance, their immunoreactive patterns. As early as 100 min after seizure induction, brain-derived neurotrophic factor immunoreactivity increased in CA1 pyramidal and granule neurons and in cells of layers II–III of the entorhinal cortex. At later times, immunoreactivity progressively decreased in somata while increasing in fibres in the hippocampus, the subicular complex and in specific layers of the entorhinal and perirhinal cortices. Changes in neuropeptide Y immunoreactivity were superimposed upon and closely followed those of brain-derived neurotrophic factor. One week after seizure induction, brain-derived neurotrophic factor and neuropeptide Y immunoreactivities were similar to controls in 50% of rats. In rats experiencing spontaneous convulsions, brain-derived neurotrophic factor and neuropeptide Y immunoreactivity was strongly enhanced in fibres in the hippocampus/parahippocampal gyrus and in the temporal cortex. In the dentate gyrus, changes in immunoreactivity depended on sprouting of mossy fibres as assessed by growth-associated protein-43-immunoreactivity. These modifications were inhibited by repeated anticonvulsant treatment with phenobarbital.

The dynamic and temporally-linked alterations in brain-derived neurotrophic factor and neuropeptide Y in brain regions critically involved in epileptogenesis suggest a functional link between these two substances in the regulation of network excitability.  相似文献   


12.
Low frequency stimulation (LFS) has an inhibitory effect on rapid perforant path kindling acquisition. In the present study the role of adenosine A1 and A2A receptors in mediating this inhibitory effect was investigated. Rats were kindled by perforant path stimulation using rapid kindling procedures (12 stimulations per day). LFS (0.1 ms pulse duration at 1 Hz, 200 pulses, and 50–150 μA) was applied to the perforant path immediately after termination of each rapid kindling stimulation. 1,3-Dimethyl-8-cyclopenthylxanthine (CPT; 50 μM), a selective A1 antagonist and ZM241385 (ZM, 200 μM), a selective A2A antagonist were daily microinjected into the lateral ventricle 5 min before kindling stimulations. LFS had an inhibitory effect on kindling development. Pretreatment of animals with CPT reduced the inhibitory effect of LFS on kindling rate and suppressed the effects of LFS on potentiation of population EPSP during kindling acquisition. In addition, CPT was able to antagonize the effects of LFS on kindling-induced increase in early (10–50 ms intervals) and late (300–1000 ms intervals) paired pulse depression. ZM pretreatment had no effect on antiepileptogenic effects of LFS in kindling acquisition. In addition, LFS prevented the kindling-induced elevation of cyclic AMP (cAMP) levels in kindled animals. Based on these results, we suggest that the antiepileptogenic effects of LFS on perforant path kindling might be mediated through activation of adenosine A1, but not A2A receptors. Moreover, modulation of cAMP levels by LFS may potentially be an important mechanism which explains the anticonvulsant effects of LFS in kindled seizures.  相似文献   

13.
Vaidya VA  Siuciak JA  Du F  Duman RS 《Neuroscience》1999,89(1):157-166
Stress, which can precipitate and exacerbate depression, causes atrophy and in severe cases death of hippocampal neurons. Atrophy of the hippocampus has also been observed in patients suffering from recurrent major depression. The present study examines the influence of electroconvulsive seizures, one of the most effective treatments for depression, on the morphology and survival of hippocampal neurons. The results demonstrate that chronic administration of electroconvulsive seizures induces sprouting of the granule cell mossy fiber pathway in the hippocampus. This sprouting is dependent on repeated administration of electroconvulsive seizures, reaches a maximum 12 days after the last treatment and is long lasting (i.e. up to six months). Electroconvulsive seizure-induced sprouting occurs in the absence of neuronal loss, indicating that sprouting is not a compensatory response to cell death. This is different from the sprouting induced by kindling or excitotoxin treatment, which induce cell death along with recurrent seizures. Electroconvulsive seizure-induced sprouting is significantly diminished in brain-derived neurotrophic factor heterozygote knockout mice, indicating that this neurotrophic factor contributes to mossy fiber sprouting. However, infusion of brain-derived neurotrophic factor into the hippocampus does not induce sprouting of the mossy fiber pathway. The results demonstrate that chronic administration of electroconvulsive seizures induces mossy fiber sprouting and suggest that increased expression of brain-derived neurotrophic factor is necessary, but not sufficient for the induction of this sprouting. Although the functional consequences remain unclear, sprouting of the mossy fiber pathway would appear to oppose the actions of stress and could thereby contribute to the therapeutic actions of electroconvulsive seizure therapy.  相似文献   

14.
Yi PL  Tsai CH  Lin JG  Lee CC  Chang FC 《Sleep》2004,27(2):203-212
STUDY OBJECTIVES: Clinical and experimental observations argue that sleep disturbances are common and coexist in patients with epilepsy. Our previous observations have suggested that neural-immune interactions between corticotropin-releasing hormone (CRH) and interleukin-1 (IL-1) are involved in the regulation of physiological sleep-wake behavior. In the present study, we determined the involvement of CRH and IL-1 in the alteration of sleep-wake activities in rats when amygdala kindling was given either at the beginning of the light period (light-onset kindling) or at the beginning of the dark period (dark-onset kindling). DESIGN: The analysis of sleep-wake activities was performed before and after full-blown kindling, and the actions of CRH and IL-1 were tested by pharmacological blockade. SETTING: Neuroscience Laboratory at China Medical University Hospital. PARTICIPANT AND INTERVENTIONS: Male Sprague-Dawley rats were implanted with electroencephalogram (EEG) electrodes and an intracerebroventricular (ICV) guide cannula. Kindling stimuli delivered via a bipolar electrode placing in the right central nucleus of the amygdala. MEASUREMENT AND RESULTS: Amygdala kindling induced diverse effects on sleep. Slow-wave sleep (SWS) and rapid eye movement (REM) sleep decreased during the first 12-hour light period when rats were kindled at light onset. When dark-onset kindling was given, SWS increased but REM sleep was not altered during the first 12-hour dark period. After light-onset kindling, the circulating corticosterone concentrations increased and were blocked by ICV administration of the CRH receptor antagonist, astressin or alpha-hCRH. The ICV administration of the CRH antagonist blocked the light-onset kindling-induced decrease of SWS in a dose-dependent manner. After dark-onset kindling, IL-1 mRNA expression in the hippocampus and cortex increased. The dark-onset kindling-induced SWS was blocked in a dose-dependent manner by ICV administration of IL-1 receptor antagonist (IL-1 ra). The slow-wave activity during SWS was enhanced regardless of when kindling occurred, but both CRH antagonists and IL-1 ra had little effect on the alteration of slow-wave activity. CONCLUSION: These observations argue that amygdala-kindling-induced sleep-wake alterations are modulated by central increases in CRH or IL-1.  相似文献   

15.
Barton ME  Shannon HE 《Neuroscience》2005,136(2):563-569
The present investigation focused on the seizure-related phenotype of mice lacking one allele of brain-derived neurotrophic factor. Thresholds for producing seizures in brain-derived neurotrophic factor wild-type and brain-derived neurotrophic factor heterozygous mice were compared in several seizure models, including thresholds for electrically-induced clonic, tonic-clonic and 6 Hz limbic seizures, as well as seizures induced chemically by kainate, pilocarpine and pentylenetetrazol. In addition, the rate of amygdala kindling, as well as pre- and post-kindling seizure thresholds was determined. Seizure thresholds for clonic and tonic-clonic electrically induced seizures did not differ between brain-derived neurotrophic factor wild-type and heterozygous mice. However, heterozygous mice had higher thresholds for 6 Hz limbic seizures compared with wild-type mice. Heterozygous mice also required larger doses of kainate to produce limbic seizures. Somewhat surprisingly, heterozygous mice required significantly lower doses of pilocarpine to produce limbic seizures. However, heterozygous mice required a higher dose of pentylenetetrazol to induce twitches, but not clonic seizures, compared with wild-type mice. In addition, heterozygous mice required more current to elicit focal afterdischarges in the amygdala both pre- and post-kindling than did wild-type mice, and, heterozygous mice kindled more slowly than wild-type mice. The present findings provide additional support for the hypothesis that brain-derived neurotrophic factor is involved not only in normal excitability, but may also be involved in abnormal excitability such as occurs in seizure disorders and epileptogenesis.  相似文献   

16.
The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. To determine the role that insulin-like growth factor-I holds in mediating exercise-induced neuronal and cognitive enhancement, a specific antibody against the insulin-like growth factor-I receptor was used to block the action of insulin-like growth factor-I in the hippocampus during a 5-day voluntary exercise period. A two-trial-per-day Morris water maze was performed for five consecutive days, succeeded by a probe trial 2 days later. Blocking hippocampal insulin-like growth factor-I receptors did not significantly attenuate the ability of exercise to enhance learning acquisition, but abolished the effect of exercise on augmenting recall. Blocking the insulin-like growth factor-I receptor significantly reversed the exercise-induced increase in the levels of brain-derived neurotrophic factor mRNA and protein and pro-brain-derived neurotrophic factor protein, suggesting that the effects of insulin-like growth factor-I may be partially accomplished by modulating the precursor to the mature brain-derived neurotrophic factor. A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces with the brain-derived neurotrophic factor system to mediate exercise-induced synaptic and cognitive plasticity.  相似文献   

17.
Dwivedi Y  Rizavi HS  Pandey GN 《Neuroscience》2006,139(3):1017-1029
Earlier studies have implicated brain-derived neurotrophic factor in stress and in the mechanism of action of antidepressants. It has been shown that antidepressants upregulate, whereas corticosterone downregulates, brain-derived neurotrophic factor expression in rat brain. Whether various classes of antidepressants reverse corticosterone-mediated downregulation of brain-derived neurotrophic factor is unclear. Also not known is how antidepressants or corticosterone regulates brain-derived neurotrophic factor expression. To clarify this, we examined the effects of various classes of antidepressants and corticosterone, alone and in combination, on the mRNA expression of total brain-derived neurotrophic factor and of individual brain-derived neurotrophic factor exons, in rat brain. Normal or corticosterone pellet-implanted (100 mg, 21 days) rats were injected with different classes of antidepressants, fluoxetine, desipramine, or phenelzine, intraperitoneally for 21 days and killed 2 h after the last injection. mRNA expression of total brain-derived neurotrophic factor and of exons I-IV was measured in frontal cortex and hippocampus. Given to normal rats, fluoxetine increased total brain-derived neurotrophic factor mRNA only in hippocampus, whereas desipramine or phenelzine increased brain-derived neurotrophic factor mRNA in both frontal cortex and hippocampus. When specific exons were examined, desipramine increased expression of exons I and III in both brain areas, whereas phenelzine increased exon I in both frontal cortex and hippocampus but exon IV only in hippocampus. On the other hand, fluoxetine increased only exon II in hippocampus. Corticosterone treatment of normal rats decreased expression of total brain-derived neurotrophic factor mRNA in both brain areas, specifically decreasing exons II and IV. Treatment with desipramine or phenelzine of corticosterone pellet-implanted rats reversed the corticosterone-induced decrease in total brain-derived neurotrophic factor expression in both brain areas; however, fluoxetine reversed the decrease only partially in hippocampus. Interestingly, antidepressant treatment of corticosterone pellet-implanted rats increased only those specific exons that are increased during treatment of normal rats with each particular antidepressant. We found that although corticosterone and antidepressants both modulate brain-derived neurotrophic factor expression, and antidepressants reverse the corticosterone-induced brain-derived neurotrophic factor decrease, antidepressants and corticosterone differ in how they regulate the expression of brain-derived neurotrophic factor exon(s).  相似文献   

18.
The neural crest-derived, first-order, sensory neurons of the embryonic chick trigeminal mesencephalic nucleus were grown in dissociated, glia-free culture. Whereas brain-derived neurotrophic factor promoted the survival and growth of the majority of these neurons (over 70% after 48 h incubation), nerve growth factor had no effect on their survival. The percentage survival in cultures supplemented with nerve growth factor at concentrations ranging from 0.2 to 625 ng/ml was only 2%, the same percentage survival as in control cultures. Furthermore, nerve growth factor did not change the dose-response of these neurons to brain-derived neurotrophic factor. Although nerve growth factor did not influence the survival of trigeminal mesencephalic neurons in culture, nerve growth factor specifically bound to the great majority of neurons growing in the presence of brain-derived neurotrophic factor. Autoradiographs of cultures incubated with iodinated nerve growth factor showed that the perikarya and processes of neurons were heavily labelled with silver grains. These findings demonstrate the existence of a population of neural crest-derived sensory neurons which express nerve growth factor receptors but are not supported by nerve growth factor in culture.  相似文献   

19.
We did a single injection of methylazoxymethanol acetate (MAM) in pregnant rats on gestational day (GD) 11 or 12 to investigate the long-lasting effects of early entorhinal cortex (EC) and hippocampus maldevelopment on behavior, brain nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels, and the neurotrophin receptor p75 and choline acetyltransferase (ChAT) immunoreactivity. Adult animals treated with MAM had compromised EC development and showed changes in locomotion and displacement activities. In addition, rats treated on GD 12 had increased concentration of NGF and BDNF in the EC and hippocampus if compared to control rats. Prenatal MAM administration did not affect significantly p75 and ChAT distribution in the EC and septum. Results are discussed in reference to the neurodevelopmental hypothesis of psychiatric disorders.  相似文献   

20.
Brain-derived neurotrophic factor has been shown to be neuroprotective in models of excitotoxicity, axotomy and cerebral ischemia. The present study evaluated the therapeutic potential of brain-derived neurotrophic factor following traumatic brain injury in the rat. Male Sprague-Dawley rats (N=99) were anesthetized and subjected to lateral fluid percussion brain injury of moderate severity (2.4-2.8 atm) or sham injury. Four hours after injury, the animals were reanesthetized, an indwelling, intraparenchymal cannula was implanted, and infusion of brain-derived neurotrophic factor or phosphate-buffered saline vehicle was initiated from a mini-osmotic pump and continued for two weeks. In Study 1 (N=48), vehicle or 12 microg/day of brain-derived neurotrophic factor was infused into the dorsal hippocampus. In Study 2 (N=51), vehicle or brain-derived neurotrophic factor at a high (12 microg/day) or low dose (1.2 microg/day) was infused into the injured parietal cortex. All animals were evaluated for neurological motor function at two days, one week and two weeks post-injury. Cognitive function (learning and memory) was assessed at two weeks post-injury using a Morris Water Maze. At two weeks post-injury, neuronal loss in the hippocampal CA3 and dentate hilus and in the injured cortex was evaluated. In Study 2, neuronal loss was also quantified in the thalamic medial geniculate nucleus. All of the above outcome measures demonstrated significant deleterious effects of brain injury (P<0.05 compared to sham). However, post-traumatic brain-derived neurotrophic factor infusion did not significantly affect neuromotor function, learning, memory or neuronal loss in the hippocampus, cortex or thalamus when compared to vehicle infusion in brain-injured animals, regardless of the infusion site or infusion dose (P>0.05 for each).In contrast to previous studies of axotomy, ischemia and excitotoxicity, our data indicate that brain-derived neurotrophic factor is not protective against behavioral or histological deficits caused by experimental traumatic brain injury using the delayed, post-traumatic infusion protocol examined in these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号