首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
载基因壳聚糖-聚乙二醇纳米粒的制备和体外评价   总被引:1,自引:0,他引:1  
目的 制备壳聚糖-聚乙二醇(CS-PEG)载基因纳米粒,并对其体外的相关性质进行初步研究.方法 用接枝共聚法制备壳聚糖-聚乙二醇纳米粒;用复凝聚法制备载基因纳米粒;通过其形态、粒径、ζ电位、栽药量、包封率和基因保护实验考察其理化特性以及基因转染效果;逆转录多聚酶链反应(RT-PCR)法和Western blot法检测转染Mcl-1 siRNA质粒后肝癌细胞中Mcl-1的表达.结果 CS-PEG纳米粒粒径为(68.9±12.3)nm,ζ电位为(32.0±6.4)mV;栽基因纳米粒粒径为(111.4±16.9)nm,ζ电位为(7.5±6.4)mV,包封率为(86.8±9.7)%,载药量为(31.2±5.3)%,对基因有较好的保护作用;载基因纳米粒的最大转染效率为转染后72h的(81.39±3.57)%,强于脂质体组且持续作用时间长(P<0.05);对肝癌细胞中Mcl-1的表达明显抑制.结论 制备出低细胞毒性的CS-PEG纳米载体,载基因后粒径小,带正电荷,有很好的基因保护功能、较高的包封率和栽药量,能高效率转染至细胞并有效抑制肝癌细胞中Mcl-1的表达,降低癌细胞的生存能力.  相似文献   

2.
目的:制备丹酚酸B壳聚糖纳米粒,并考察对大鼠心脏缺血/再灌注损伤的保护作用。方法:采用离子凝胶化法制备丹酚酸B壳聚糖纳米粒,并以包封率(EE%)和粒径分布(nm)为评价指标,对丹酚酸B壳聚糖纳米粒处方进行优化;采用Malvern粒度仪测定纳米粒的粒径分布和Zeta电位,透射电镜考察其形态;并考察丹酚酸B壳聚糖纳米粒的体外释药行为;考察丹酚酸B壳聚糖纳米粒对大鼠心脏缺血/再灌注损伤的保护作用。结果:丹酚酸B壳聚糖纳米粒的包封率为85.8%±3.1%;粒径为(166.1±42.4)nm,Pd I为(0.189±0.032),Zeta电位为(+24.9±4.5)m V;透射电镜显示丹酚酸B壳聚糖纳米粒粒径均一,成球状;纳米粒在24 h内平稳缓慢释药;丹酚酸B壳聚糖纳米粒可以增加大鼠心脏缺血/再灌注损伤的保护作用。结论:丹酚酸B壳聚糖纳米粒对大鼠心脏缺血/再灌注损伤具有良好的保护作用。  相似文献   

3.
高压乳匀法制备中药固体脂质纳米粒   总被引:6,自引:0,他引:6  
目的采用高压乳匀法将中药有效成分包载于固体脂质纳米粒(SLN),并研究制备的纳米粒的主要性质。方法选择水飞蓟宾(SIL)和汉防己甲素(TET)为模型药物,采用高压乳匀法将其分别包载于SLN。在电镜下观察其形态,以粒度分析仪和Zeta电位分析仪测定其粒径和Zeta电位,用葡聚糖凝胶柱层析法和HPLC测定其包封率和载药量,还观察了SLN的稳定性。结果高压乳匀法制备的SIL-SLN呈球状,形态规则,平均粒径为(157±8)nm,Zeta电位为(-35.36±2.68)mV,包封率为95.64%,载药量为4.63%;TET-SLN呈片状存在,不规则,粒径较小,平均粒径为(47±3)nm,Zeta电位为(-32.99±2.54)mV,包封率为97.82%,载药量为4.76%。SIL-SLN和TET-SLN有较高稳定性。结论高压乳匀法适于制备包载中药的SLN。  相似文献   

4.
目的 制备载基因壳聚糖纳米粒,研究纳米粒的结构特征以及对细胞的基因转染效率.方法 用表达绿色荧光蛋白的质粒(pGFP)作报告基因,采用复凝聚法制备壳聚糖-pGFP纳米粒.琼脂糖凝胶电泳分析壳聚糖和pDNA的结合能力,通过比色法检测其包封率,用纳米粒度仪和原子力显微镜对纳米粒的形态和粒径分布进行考察;通过荧光显微镜观察壳聚糖纳米粒介导pGFP在体外培养的人结肠腺癌细胞LoVo中的表达.结果 琼脂糖凝胶电泳分析结果表明,pDNA与壳聚糖之间通过静电作用而完全结合,包封率大于90%.制备的壳聚糖-pGFP纳米粒为结构紧密的不规则球形,平均粒径为209 nm,多分散指数为0.15.体外细胞转染的结果表明,壳聚糖-pGFP纳米粒能介导pGFP转染LoVo细胞并在细胞中表达绿色荧光蛋白.结论 壳聚糖可以有效凝聚pDNA,采用复凝聚法可制得100~500 nm范围荷正电的纳米粒,有较高的包封率.壳聚糖纳米粒在体外能将基因递送到细胞内,并且报告基因能在细胞内表达.因此,壳聚糖作为非病毒基因载体具有介导核酸类生物大分子的应用价值.  相似文献   

5.
采用离子凝胶法制备重组人血管内皮抑素(商品名:Endostar)壳聚糖纳米粒,并对纳米粒的载药量、包封率、粒径、形态、体外释放、体外活性及Endostar结构的完整性进行考察。制得的Endostar壳聚糖纳米粒载药量为(10.5±1.1)%,包封率为(81.3±1.8)%;平均粒径为137 nm,为球形结构;体外释放10 d累积释放达到80%。凝胶电泳实验说明Endostar结构完整,制备与释放过程结构均未被破坏;人脐静脉内皮细胞增殖实验说明Endostar纳米粒仍保留原有的生物活性。结果表明壳聚糖作Endostar的载体,制得的纳米粒具有合适的粒径及包封率,并能达到缓释作用,不会破坏Endostar的结构,同时保留原有的生物活性。  相似文献   

6.
目的为解决伊曲康唑(ITZ)的分散性,制备伊曲康唑固体脂质纳米粒(ITZ-SLN),并考察其体外释放规律。方法采用微乳法-低温固化法制备ITZ-SLN;用马尔文激光粒度仪测定纳米粒的Zeta电位与粒度分布,低温高速超滤离心分离SLN与未包封的药物,反相高效液相色谱法(RP-HPLC)测定包封率及其载药量,采用扩散法-超滤法测定纳米粒(ITZ-SLN)的体外释放行为。结果纳米粒的粒径为(15.23±2.10)nm,Zeta为(-22. 65±0.91)mV,包封率为(96.02±2.10)%,载药量为(0.15±0. 02)%,其体外释放规律符合一级释放动力学方程。结论该制剂处方设计和工艺方法可行,可达到缓释效果。  相似文献   

7.
目的:制备白藜芦醇TPGS/PLGA(水溶性维生素E衍生物/聚乳酸-羟基乙酸共聚物)口服纳米粒。方法:用自制的TPGS/PLGA为载体材料,制备纳米粒(OPN),选取粒径、Zeta电位、载药量、包封率进行质量评价。结果:所制OPN的平均粒径为(198±8.6)nm,Zeta电位为(-21.7±3.2)mV,载药量为(20.24±3.5)%,包封率为(82.31±3.47)%。结论:所制OPN质量稳定、可控。  相似文献   

8.
阿昔洛韦壳聚糖纳米粒的制备及检验   总被引:3,自引:0,他引:3  
目的:筛选出制备阿昔洛韦壳聚糖纳米粒的最佳处方和工艺。方法:采用离子交联法制备阿昔洛韦壳聚糖纳米粒,利用单因素试验、均匀设计试验,筛选出包封率最高的处方及工艺,并考察该条件下制备的纳米粒的形态、粒径分布、表面电位等理化性质。结果:优化筛选出了最佳处方和工艺,并在该条件下制备了阿昔洛韦壳聚糖纳米粒.测得其包封率为87.5%,载药量为17.8%,形态、粒径分布及表面电位等指标均良好。结论:利用离子交联法制备阿昔洛韦壳聚糖纳米粒,方法简便,理化性质良好。  相似文献   

9.
目的制备具有肝靶向性的O-羧甲基乳糖酰化壳聚糖-聚乳酸阿霉素纳米粒,并对纳米粒药物含量、包封率和粒径大小进行检测。方法制备出O-羧甲基乳糖酰化壳聚糖-聚乳酸阿霉素纳米粒,并通过紫外分光光度计测定纳米粒的载药量以及包封率,激光粒度分析仪及电镜测量粒径大小。结果电镜及激光粒度分析仪检测证实纳米粒大小均匀,粒径(197±32)nm,载药量为(44.79±4.27)μg/mg,包封率(67.34±3.32)%。结论该实验制备的纳米粒其粒径小,载药量及包封率高。  相似文献   

10.
目的:制备雌二醇-聚氰基丙烯酸正丁酯纳米粒(ES-PBCA-NP).方法:以聚氰基丙烯酸正丁酯(PBCA)为载体,采用乳化聚合法制备ES-PBCA-NP.采用U5(53)均匀实验设计优化制备条件.用激光粒度分析仪测定纳米粒的粒径分布及Zeta电位;用原子力显微镜观察其形态;HPLC测定载药量及包封率.结果与结论:综合考虑选用二乙胺乙基葡聚糖(DEAE-Dextran)作为实验用表面活性剂,制备优化条件:pH 2.0,稳定剂和表面修饰剂质量比为1:1,BCA用量终质量浓度为12 g/L.以上述条件制备的纳米粒,稳定性好、形态规整、大小均匀,粒径(115±7)nm,Zeta电位为(43.6±3.2)mV,载药量为61 mg/g,包封率为78.0%,适合作为雌二醇的给药载体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号