首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of xanthine oxidase on thiopurine metabolism in Crohn's disease   总被引:1,自引:0,他引:1  
Background  The thiopurines, azathioprine (AZA) and mercaptopurine are extensively used in Crohn's disease (CD). Thiopurine bioactivation can be diverted by either thiopurine methyltransferase (TPMT), or by xanthine oxidase/dehydrogenase (XOD) which forms 6-thiouric acid (6TU).
Aim  To investigate whether chronic inflammation could influence small intestinal XOD activity using urinary excretion of 6TU as a surrogate marker of XOD activity.
Methods  6-Thiouric acid excretion was compared between 32 CD patients and nine dermatology patients (control group), on AZA. Six CD patients were interesting: five with low TPMT activity (one deficient, four intermediate), and one receiving AZA/allopurinol co-therapy.
Results  There was no statistical difference in 6TU excretion between the CD and control group. CD location, severity or surgery did not affect excretion. The TPMT-deficient patient excreted 89% of daily AZA dose as 6TU, but excretion by TPMT carriers was essentially normal. Concurrent 5-aminosalicylic acid therapy increased 6TU excretion significantly (median 32.9%), consistent with inhibiting TPMT. 6TU was undetectable in the patient on AZA/allopurinol co-therapy.
Conclusions  The results refuted our hypothesis, but fitted a model where most of an oral thiopurine dose effectively escapes first-pass metabolism by gut XOD, but is heavily catabolized by TPMT. Bioavailability of thiopurines may be competitively inhibited by dietary purines.  相似文献   

2.
Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme, catalyzing S-methylation of thiopurine drugs. TPMT exhibits autosomal codominant polymorphism. Patients carrying a variant genotype have low TPMT activity, and produce elevated levels of 6-thioguanine nucleotides (6-TGN) in their red blood cells (RBC). 6-TGN accumulation may result in azathioprine (AZA)-induced bone marrow myelosuppression in the course of treatment with the drug in a standard dosage regimen in patients following renal transplantation. In the current study, TPMT activity (phenotype) and genotype were determined in dialyzed patients, qualified for renal transplantation. TPMT activity was measured in RBC after dialysis by HPLC method. Patients were genotyped for TPMT *2, *3A and *3C variant alleles using PCR-RFLP and allele-specific PCR methods. TPMT activity ranged between 12.2 and 45.5 nmol 6-mMP/g Hb/h (median value 30.6). A significant correlation between TPMTphenotype and genotype was noted: the heterozygous patients (11.5%) demonstrated significantly lower mean TPMT activity as compared to the wild homozygotes (17 +/- 3.6 vs. 32.4 +/- 4.8 nmol 6-mMP/g Hb/h, p < 0.0003). No overlap in TPMT activity values between the group of heterozygous (range 12.2-20.6) and wild-type homozygous patients (range 22.7-45.5) was noted. TPMT activity, established after hemodialysis and TPMT genotyping results seem to be convergent in dialyzed patients, so both methods can be used for the identification of patients with lower TPMT activity. Such tests could be helpful in AZA dose individualization, and thus in reducing the risk of myelosuppression during AZA therapy following renal transplantation.  相似文献   

3.
This study examined thiopurine methyltransferase (TPMT) and the relationship to thioguanine nucleotides (TGN) and methylthioinosine monophosphate (meTIMP) in a large Swedish patient population. The current hypothesis is that the cytotoxic effects of thiopurine drugs are mediated by the incorporation of TGN into DNA. The authors assayed the TPMT activity in red blood cells from 1151 subjects and the concentrations of TGN (n = 602) and meTIMP (n = 593) from patients treated with thiopurine drugs. The TPMT frequency distribution in both adults and children showed some differences from what had been found in unselected general populations. Children had lower median TPMT activity than adults (12.0 versus 12.9 U/mL RBC; P < 0.001). Relative differences in both TGN formation [medians: normal TPMT, 1.3; intermediate TPMT, 3.3; low TPMT, 47.9 pmol/8 x 10(8) RBC per mg azathioprine (AZA); P < 0.001] and meTIMP formation (medians: normal TPMT, 13; intermediate TPMT, 7.3; low TPMT, 0 pmol/8 x 10(8) RBC per mg AZA; P = 0.001) per 1 mg administered drug were noted among the 3 TPMT activity groups. Women formed higher concentrations of both TGN (1.5 versus 1.3 pmol/8 x 10(8) RBC per mg AZA; P = 0.01) and meTIMP (14.4 versus 10.7 pmol/8 x 10(8) RBC per mg AZA; P = 0.01) than men did. There was a significant correlation between the AZA dose and the meTIMP concentrations (r = 0.45; P < 0.001). Furthermore, dose alterations made in subjects with normal TPMT (n = 84) and intermediate TPMT (n = 22) activity resulted in more pronounced increases in TGN concentrations (170 versus 30 pmol/8 x 10(8) RBC; P < 0.001) in intermediate TPMT activity, whereas in normal TPMT activity changes in meTIMP concentrations were more pronounced (1.3 versus 0 nmol/8 x 10(8) RBC; P < 0.001). In normal TPMT activity both metabolites increased in a dose-dependent fashion, whereas in intermediate TPMT activity only TGN concentrations increased. The results of this study demonstrate the dynamic nature of thiopurine metabolism and its importance for thiopurine dosing.  相似文献   

4.
Inosine monophosphate dehydrogenase (IMPDH) is considered as the limiting enzyme of thiopurine metabolism for the formation of 6‐thioguanine nucleotides (6‐TGN). No data are available on the influence of RBC IMPDH activity on the metabolism of thiopurine drugs in individuals with IBD. The aims of this study were as follows: (a) to carry out a phenotypic study of RBC IMPDH activity in adults and children treated or not with azathioprine (AZA) for autoimmune diseases, and (b) to investigate the relationship between the activities of IMPDH, thiopurine metabolites, inosine triphosphatase (ITPA) and thiopurine methyltransferase (TPMT). IMPDH activity was determined in 97 adults and 67 children treated or not with AZA. 6‐Thioguanine nucleotides (6‐TGN), 6‐methylmercaptopurine nucleotide (6‐MeMPN) levels, and ITPA as well as TPMT activities were measured in RBCs by HPLC. Using the Gaussian mixture model, distribution of IMPDH activity was evaluated. Influence of age, sex and AZA treatment on IMPDH activity was also assessed. A bimodal distribution in IMPDH activity was found with 87% of patients exhibiting normal activity and 13% of patients with high activity. No influence of age, sex and AZA therapy was found. There is no relationship between TPMT, ITPA and IMPDH activities. A negative correlation between IMPDH activity and 6‐MeMPN was shown in adults and children (rs = ?0.335 P = 0.014 and rs = ?0.383 P = 0.012, respectively). Our results suggest that AZA‐treated patients exhibiting lower IMPDH activity could have higher Me‐6MPN levels with higher risk of hepatotoxicity. We demonstrated that RBC matrix could be an interesting alternative to lymphocyte matrix to monitor thiopurine metabolites and enzyme activity.  相似文献   

5.
6.
BACKGROUND: Azathioprine (AZA) and its active metabolite mercaptopurine (MP) are frequently used in the management of inflammatory bowel disease. Measurement of the AZA/MP metabolites, thioguanine (TG) and methylmercaptopurine (MMP), has been suggested as a means to optimize therapy with AZA/MP in inflammatory bowel disease. AIM: To evaluate the results of initial AZA/MP metabolite panels sent by gastroenterologists during the first year of its widespread availability. METHODS: Initial AZA/MP metabolite panels sent by gastroenterologists to a single laboratory were reviewed and the metabolite panels were interpreted. RESULTS: Initial metabolite levels were reviewed for 9187 patients. Noncompliance was detected in 263 patients (3%) and under-dosing in 4260 patients (46%). 534 patients (6%) had levels that were consistent with preferential metabolism via the TPMT pathway. The therapeutic goal was achieved in 2444 patients (27%) and an additional 552 patients (6%) had appropriate TG levels but potential hepatotoxicity. 936 patients (10%) had potential TPMT deficiency, and 58 patients (1%) had potential TPMT absence and were at risk for leukopenia. 140 patients (2%) had too high a dose. CONCLUSIONS: Measurement of AZA/MP metabolites can be used by practising gastroenterologists to identify potential reasons for nonresponse to AZA or MP, and to identify patients at risk for certain drug-related toxicities.  相似文献   

7.
Background: Immunomodulator therapy with the thiopurine analogues azathioprine or 6-mercaptopurine is commonly prescribed for the treatment of inflammatory bowel disease (IBD). Drug adverse effects and the lack of efficacy, however, commonly require withdrawal of therapy. Allopurinol, a xanthine oxidase inhibitor, was recently evaluated in its role in modifying thiopurine metabolism and improving drug efficacy in IBD. Objective: This article reviews the role and safety of allopurinol co-therapy in the setting of thiopurine hepatotoxicity and/or non-responsiveness in IBD. Methods: Published articles on thiopurines in the treatment of IBD were examined. Conclusion: The addition of low dose allopurinol to dose-reduced thiopurine analogue seems safe but careful monitoring for adverse effects and profiling of thiopurine metabolites is essential. There is evidence of improved immunomodulator efficacy and reduced hepatotoxicity clinically but further confirmatory studies are required before more definitive treatment recommendations can be given.  相似文献   

8.
Background  Debate exists regarding to whether thiopurine therapy is as effective in ulcerative colitis (UC) as it is in Crohn's disease.
Aim  To review systematically the efficacy of azathioprine (AZA) and mercaptopurine (MP) in UC, and to conduct a meta-analysis of randomized clinical trials evaluating the efficacy of AZA/MP for the induction or maintenance of UC clinical remission.
Methods  Selection of studies : Evaluating AZA/MP for induction and/or maintenance of clinical remission of UC. Randomized-controlled-trials comparing AZA/MP with placebo/5-aminosalicylates were included in the meta-analysis. Search strategy : Electronic and manual. Study quality : Independently assessed by two reviewers. Data synthesis : By 'intention-to-treat'.
Results  Thirty noncontrolled studies (1632 patients) were included in the systematic review. Mean efficacy of AZA/MP was 65% for induction and 76% for maintenance of the remission. Seven controlled studies were included in the meta-analysis. (i) Induction of remission: four studies (89 AZA/MP-treated patients) showed mean efficacy of 73% vs. 64% in controls (OR = 1.59; 95% CI = 0.59–4.29). (ii) Maintenance of remission: six studies (124 AZA/MP-treated patients) showed mean efficacy of 60% vs. 37% in controls (OR = 2.56; 95% CI = 1.51–4.34). When only studies comparing AZA/MP vs. placebo were considered, OR was 2.59 (95% CI = 1.26–5.3), absolute risk reduction was 23% and number-needed-to-treat (NNT) to prevent one recurrence was 5.
Conclusion  Thiopurine drugs (AZA/MP) are more effective than placebo for the prevention of relapse in UC, with an NNT of 5 and an absolute risk reduction of 23%.  相似文献   

9.
Aims The response to 6-mercaptopurine (6MP) is highly variable. Its antileukaemic effect can be related to drug derived 6-thioguanine nucleotides (TGNs). The inherited level of thiopurine methyltransferase (TPMT) activity may be a major factor in the clinical response to 6MP because TPMT forms methylmercaptopurine metabolites (MeMPs) at the expense of TGNs. The aim of this study was to explore the clinical importance of TPMT phenotype.
Methods Thiopurine metabolism was studied in a consecutive cohort of children with acute lymphoblastic leukaemia (ALL) treated according to the Medical Research Council trial UK ALL XI. TPMT phenotype was measured in 38 children at diagnosis, and thiopurine metabolites were measured at defined times during 2 years treatment in 29 of these children.
Results TPMT activities at diagnosis ranged from 5.5 to 18.5 units  ml−1 packed RBCs, no different from the range of activities reported in healthy children. TGNs and MeMPs measured during the first 6MP cycle at 75  mg  m−2 ranged from 187 to 594  pmol 6TGNs, median 327, and 0.5 to 22.0  nmol MeMPs, median 4.5, per 8×108 RBCs. TPMT activity was not significantly related to the generation of MeMPs ( r s=0.06), but was negatively correlated to 6TGNs ( r s=−0.44, P <0.025, n =29). TGNs were related to neutropenia at the point of dose reduction ( r s=−0.5, P <0.01). TPMT activity was also inversely related to the duration of cytopenia driven 6MP withdrawal ( r s=−0.41, P <0.05).
Conclusions These findings support the suggestion that the inherited activity of TPMT in a given individual can modulate the cytotoxic effect of 6MP, and this information may help in clinical management.  相似文献   

10.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability, mainly as a result of genetic polymorphism. Patients with intermediate or deficient TMPT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. It has previously been reported that 3 variant alleles: TPMT*2, *3A, and *3C are responsible for over 95% cases of low enzyme activity. The purpose of this study was to explore the association between these polymorphisms and the occurrence of azathioprine adverse effects in 112 renal transplant recipients undergoing triple immunosuppressive therapy including azathioprine, cyclosporine, and prednisone. TPMT genetic polymorphism was determined using PCR-RFLP and allele-specific PCR methods. Azathioprine dose, leukocyte, erythrocyte, and platelet counts, graft rejection episodes, as well as cyclosporine levels were analyzed throughout the first year after organ transplantation. We found the frequency of leukopenia episodes (WBC < 4.0 x 10(9)/L) significantly higher in heterozygous patients (53.8%) compared with those with TPMT wild-type genotype (23.5%). One patient, who was a compound homozygote (3A/*3C), experienced severe azathioprine-related myelotoxicity each time after receiving the standard drug dose. Our results suggest that polymorphisms in TPMT gene may be responsible for approximately 12.5% of all leukopenia episodes in renal transplant recipients treated with azathioprine. Genotyping for the major TPMT variant alleles may be a valuable tool in preventing AZA toxicity and optimization of immunosuppressive therapy.  相似文献   

11.
We investigated the genotypic status of thiopurine methyltransferase (TPMT) polymorphism to evaluate the possible risk of the toxicity of azathioprine (AZA) in 68 patients with systemic lupus erythematosus (SLE). The allele frequency of TPMT mutation in the SLE group (2.9%) was higher than that in 174 Japanese healthy volunteers (1.1%), although it did not reach statistically significant difference (p=0.23). The mean value of TPMT activities in 51 subjects with TPMT*1/*1 was 40% higher than that of 4 subjects with TPMT*1/*3C in SLE group (18.1+/-6.1 nmol/h/ml packed red blood cells (pRBC) versus 13.2+/-3.2 nmol/h/ml pRBC; p=0.11). Two out of 4 SLE patients with TPMT*1/*3C had been treated with AZA, and one patient showed a leucopenia. The TPMT genotyping before AZA treatment is recommended for Japanese SLE patient group to avoid the AZA-induced adverse events, although detection of the patient with low TPMT activity by genotyping is still imperfect.  相似文献   

12.
Background One‐third of patients with inflammatory bowel disease (IBD) receiving azathioprine (AZA) withdraw treatment due to side effects or lack of clinical response. Aim To investigate whether pharmacogenetic loci or metabolite concentrations explain clinical response or side effects to AZA. Methods Patients with IBD were given 2 mg/kg of AZA without dose escalation or adjustment. Serial clinical response, thiopurine methyl transferase (TPMT) activity and thioguanine nucleotide (TGN) concentrations were measured over 6 months. All patients were genotyped for inosine triphosphatase (ITPase) and TPMT. Clinical response and side effects were compared to these variables. Results Two hundred and seven patients were analysed. Thirty‐nine per cent withdrew due to adverse effects. Heterozygous TPMT genotype strongly predicted adverse effects (79% heterozygous vs. 35% wild‐type TPMT, P < 0.001). The ITPA 94C>A mutation was associated with withdrawal due to flu‐like symptoms (P = 0.014). A baseline TPMT activity below 35 pmol/h/mg/Hb was associated with a greater chance of clinical response compared with a TPMT above 35 pmol/h/mg/Hb (81% vs. 43% respectively, P < 0.001). Patients achieving a mean TGN level above 100 were significantly more likely to respond (P = 0.0017). Conclusions TPMT testing predicts adverse effects and reduced chance of clinical response (TPMT >35 pmol/h/mg/Hb). ITPase deficiency is a predictor of adverse effects and TGN concentrations above 100 correlate with clinical response.  相似文献   

13.
Background  Despite the wide use of azathioprine/mercaptopurine (AZA/MP) therapy in the management of both Crohn's disease (CD) and ulcerative colitis (UC), approximately 20% of patients cannot tolerate the drugs and 30% do not respond.
Aim  To examine the efficacy and safety profile of methotrexate (MTX) in patients with CD or UC who are either intolerant or non-responsive to AZA/MP.
Methods  A total of 131 patients with IBD treated with MTX were identified. Retrospective data were obtained by case note review. Clinical response (defined as steroid withdrawal, normalization of previously raised CRP or physician's clinical assessment of improvement) was assessed at 6 months.
Results  Clinical response in Crohn's disease occurred in 18 of 29 patients (62%) refractory to AZA/MP and 42 of 70 patients (60%) intolerant to AZA/MP, with no difference between the groups ( P  = 1.0). In UC, clinical response was seen in 7 of 9 (78%) patients refractory to AZA/MP and 15 of 23 (65%) intolerant to thiopurines. MTX was well tolerated in a majority of individuals.
Conclusions  Methotrexate appears effective in both CD and UC patients who fail to respond to or are intolerant to AZA/MP therapy.  相似文献   

14.
The efficacy of the immunosuppressants azathioprine and 6-mercaptopurine has been well established in the therapy of inflammatory bowel diseases (IBD). However, its use has been complicated by a high incidence of serious adverse drug reactions such as hematotoxicity, hepatotoxicity, pancreatitis and gastrointestinal disturbances. Whereas azathioprine-related pancytopenia has been clearly linked to thiopurine S-methyltransferase (TPMT) polymorphism limited data are available to explain gastrointestinal side effects. In a retrospective analysis of 93 adults with IBD and azathioprine therapy both phenotyping and genotyping was used to explore systematically the relationship between TPMT and azathioprine-related adverse reactions. At time of inclusion, 69 patients were still receiving azathioprine therapy and had never experienced side effects. Azathioprine had been withdrawn in 10 patients for non-medical reasons or lack of response and 14 patients (15%) had stopped medication or were on reduced dose due to severe azathioprine-related side effects. Nine of these 14 patients had developed gastrointestinal side effects (hepatotoxicity, n = 3; pancreatitis, n = 3; others, n = 3), but their normal red blood cell TPMT activities were in accordance to TPMT wild-type. TPMT deficiency in one patient had led to pancytopenia whereas only two of the remaining four patients with hematotoxicity displayed an intermediate phenotype of TPMT. This study demonstrates that azathioprine-related gastrointestinal side effects are independent of the TPMT polymorphism. Nevertheless pharmacogenetic testing for TPMT prior to commencing thiopurine therapy should become routine practice in order to avoid severe hematotoxicity in TPMT deficient patients and lowering the incidence of hematological side effects in individuals heterozygous for TPMT.  相似文献   

15.
Background  Thiopurines are increasingly used in the treatment of inflammatory bowel disease (IBD), being the most common immunosuppressive therapy; however, potentially harmful interactions between thiopurines and other drugs (especially 5-aminosalicylic acid, 5-ASA) were described.
Aim  To explore potential interactions between thiopurines and concomitant medications.
Methods  A total of 183 consecutive IBD patients were enrolled. Clinical characteristics and concomitant medications were recorded. Thiopurine metabolism was analysed with thiopurine S-methyl transferase (TPMT) genetic variants and enzyme activity assays. Comparisons were carried out with stratification of patients according to clinical characteristics and active treatments.
Results  Based on TPMT genetics, 95% IBD patients were wild-type homozygous, the remaining being heterozygous. Median TPMT activity was 24.9 U/Hgb g (IQR 20.7–29.5). No difference in TPMT activity was noted according to 5-ASA exposure. IBD patients on thiopurines had higher TPMT activity levels, but no dose-effect was evident. No difference in TPMT activity was observed in 41 (63%) patients co-treated with 5-ASA. In patients on active thiopurines also, 6-TGN and 6-MMP levels were evaluated and no significant difference was observed based on co-medication. TPMT activity was independently associated only with thiopurines dose ( P  =   0.016).
Conclusions  Our data suggest the absence of significant interactions between thiopurines and 5-ASA.  相似文献   

16.
This review summarises clinical pharmacological aspects of thiopurines in the treatment of chronic inflammatory bowel disease (IBD). Current knowledge of pharmacogenetically guided dosing is discussed for individualisation of thiopurine therapy, particularly to avoid severe adverse effects. Both azathioprine and mercaptopurine are pro-drugs that undergo extensive metabolism. The catabolic enzyme thiopurine S-methyltransferase (TPMT) is polymorphically expressed, and currently 23 genetic variants have been described. On the basis of an excellent phenotype-genotype correlation for TPMT, genotyping has become a safe and reliable tool for determination of a patient's individual phenotype. Thiopurine-related adverse drug reactions are frequent, ranging from 5% up to 40%, in both a dose-dependent and -independent manner. IBD patients with low TPMT activity are at high risk of developing severe haematotoxicity if pharmacogenetically guided dosing is not performed. Based on several cost-benefit analyses, assessment of TPMT activity is recommended prior to thiopurine therapy in patients with IBD. The underlying mechanisms of azathioprine/mercaptopurine-related hepatotoxicity, pancreatitis and azathioprine intolerance are still unknown. Although the therapeutic response appears to be related to 6-thioguanine nucleotide (6-TGN) concentrations above a threshold of 230-260 pmol per 8 x 10(8) red blood cells, at present therapeutic drug monitoring of 6-TGN can be recommended only to estimate patients' compliance.Drug-drug interactions between azathioprine/mercaptopurine and aminosalicylates, diuretics, NSAIDs, warfarin and infliximab are discussed. The concomitant use of allopurinol without dosage adjustment of azathioprine/mercaptopurine leads to clinically relevant severe haematotoxicity due to elevated thiopurine levels. Several studies indicate that thiopurine therapy in IBD during pregnancy is safe. Thus, azathioprine/mercaptopurine should not be withdrawn in strictly indicated cases of pregnant IBD patients. However, breastfeeding is contraindicated during azathioprine/mercaptopurine therapy. Use of azathioprine/mercaptopurine for induction and maintenance of remission in corticosteroid-dependent or corticosteroid-refractory IBD, particularly Crohn's disease, is evidence based. To improve response rates in thiopurine therapy of IBD, comprehensive analyses including metabolic patterns and genome-wide profiling in patients with azathioprine/mercaptopurine treatment are required to identify novel candidate genes.  相似文献   

17.
目的:研究服用硫唑嘌呤(AZA)中国肾移植患者红细胞(RBC)内活性代谢物6-硫鸟嘌呤核苷酸(6-TGNs)分布特征及影响因素,为临床合理应用嘌呤类药物提供依据。方法:以89例中国肾移植患者为研究对象,关联分析年龄、性别、体质量、AZA剂量和TPMT活性对RBC内6-TGNs浓度的影响,并应用SPSS v20.0软件进行多元线性回归分析。结果:89例中国肾移植患者RBC内6-TGNs浓度呈非正态分布(P<0.000 1),6-TGNs浓度中位数为167.60(四分位间距,108.10~300.80) pmol/8×108 RBC,个体间差异约24.3倍。关联分析显示患者年龄、性别、体质量、TPMT活性对6-TGNs浓度均无显著影响(P>0.05);而AZA剂量与6-TGNs浓度间呈显著正相关性(rs=0.307 1,P<0.01)。多元线性回归分析显示,RBC内6-TGNs浓度与AZA剂量间呈显著正相关(P<0.001),与TPMT活性呈显著负相关(P<0.05)。结论:AZA剂量和RBC内TPMT活性协同影响嘌呤类药物活性代谢物6-TGNs浓度,进而影响该类药物临床疗效和毒性反应。  相似文献   

18.
Background  Azathioprine (AZA) pharmacogenetics are complex and much studied. Genetic polymorphism in TPMT is known to influence treatment outcome. Xanthine oxidase/dehydrogenase (XDH) and aldehyde oxidase (AO) compete with TPMT to inactivate AZA.
Aim  To assess whether genetic polymorphism in AOX1 , XDH and MOCOS (the product of which activates the essential cofactor for AO and XDH) is associated with AZA treatment outcome in IBD.
Methods  Real-time PCR was conducted for a panel of single nucleotide polymorphism (SNPs) in AOX1, XDH and MOCOS using TaqMan SNP genotyping assays in a prospective cohort of 192 patients receiving AZA for IBD.
Results  Single nucleotide polymorphism AOX1 c.3404A > G (Asn1135Ser, rs55754655) predicted lack of AZA response ( P  = 0.035, OR 2.54, 95%CI 1.06–6.13) and when combined with TPMT activity, this information allowed stratification of a patient's chance of AZA response, ranging from 86% in patients where both markers were favourable to 33% where they were unfavourable ( P  < 0.0001). We also demonstrated a weak protective effect against adverse drug reactions (ADRs) from SNPs XDH c.837C > T ( P  = 0.048, OR 0.23, 95% CI 0.05–1.05) and MOCOS c.2107A > C, ( P  = 0.058 in recessive model, OR 0.64, 95%CI 0.36–1.15), which was stronger where they coincided ( P  = 0.019).
Conclusion  These findings have important implications for clinical practice and our understanding of AZA metabolism.  相似文献   

19.
Clinical pharmacology and pharmacogenetics of thiopurines   总被引:3,自引:1,他引:2  
The thiopurine drugs-azathioprine (AZA), 6-mercaptopurine (6-MP), and thioguanine-are widely used to treat malignancies, rheumatic diseases, dermatologic conditions, inflammatory bowel disease, and solid organ transplant rejection. However, thiopurine drugs have a relatively narrow therapeutic index and are capable of causing life-threatening toxicity, most often myelosuppression. Thiopurine S-methyltransferase (TPMT; EC 2.1.1.67), an enzyme that catalyzes S-methylation of these drugs, exhibits a genetic polymorphism in 10% of Caucasians, with 1/300 individuals having complete deficiency. Patients with intermediate or deficient TPMT activity are at risk for excessive toxicity after receiving standard doses of thiopurine medications. This report reviews the recent advances in the knowledge of the mechanism of action as well as the molecular basis and interethnic variations of TPMT and inosine triphosphate pyrophosphatase (ITPase; EC 3.6.1.19), another enzyme implicated in thiopurine toxicity. In addition, an update on pharmacokinetics, metabolism, drug-drug interactions, safety, and tolerability of thiopurine drugs is provided.  相似文献   

20.
Polymorphisms at three loci in the thiopurine methyltransferase (TPMT) gene are known to be responsible for azathioprine and 6-mercaptopurine (6MP) toxicity. Among them, only TPMT*3C variant allele with A719G mutation was found in 15/522 (2.9%; 17/1044 alleles; 1.6%) Japanese individuals including two homozygotes. The allele frequency was different from that in Caucasians, and investigation of TPMT polymorphisms with consideration of ethnic differences before administration of azathioprine or 6MP may provide clinically useful information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号