首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.  相似文献   

2.
We studied the effects of the novel Na(+)/Ca(2+) exchange inhibitor KB-R7943, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate, on the native nicotinic receptors present at the bovine adrenal chromaffin cells, as well as on rat brain alpha(3)beta(4) and alpha(7) nicotinic acetylcholine receptors (AChRs) expressed in XENOPUS: oocytes. As expected, KB-R7943 blocked the Na(+)-gradient dependent (45)Ca(2+) uptake into chromaffin cells (IC(50) of 5.5 microM); but in addition, the compound also inhibited the (45)Ca(2+) entry and the increase of cytosolic Ca(2+) concentration, [Ca(2+)](c), stimulated by 5 s pulses of ACh (IC(50) of 6.5 and 1.7 microM, respectively). In oocytes expressing alpha(3)beta(4) and alpha(7) nicotinic AChRs, voltage-clamped at -60 mV, inward currents elicited by 1 s pulses of 100 microM ACh (I(ACh)) were blocked by KB-R7943 with an IC(50) of 0.4 microM and a Hill coefficient of 0.9. Blockade of alpha(3)beta(4) currents by KB-R7943 was noncompetitive; moreover, the blocker (0.3 microM) became more active as the ACh concentration increased (34 versus 66% blockade at 30 microM and 1 mM ACh, respectively). Inhibition of alpha(3)beta(4) currents by 0.3 microM KB-R7943 was more pronounced at hyperpolarized potentials. If given within the ACh pulse (10 microM), the inhibition amounted to 33, 64 and 80% in oocytes voltage-clamped at -40, -60 and -100 mV, respectively. The onset of blockade was faster and the recovery slower at -100 mV; the reverse was true at -40 mV. In conclusion, KB-R7943 is a potent blocker of nicotinic AChRs; moreover, it displays many features of an open-channel blocker at the rat brain alpha(3)beta(4) AChR. These results should be considered when KB-R7943 is to be used to study Ca(2+) homeostasis in cells expressing nicotinic AChRs and the Na(+)/Ca(2+) exchanger.  相似文献   

3.
Memantine is a blocker of Ca(2+)-permeable glutamate and nicotinic acetylcholine receptors (nAChR). We investigated the action of memantine on cholinergic synaptic transmission at cochlear outer hair cells (OHCs). At this inhibitory synapse, hyperpolarization of the postsynaptic cell results from opening of SK-type Ca(2+)-activated K(+) channels via a highly Ca(2+)-permeable nAChR containing the alpha 9 subunit. We show that inhibitory postsynaptic currents recorded from OHCs were reversibly blocked by memantine with an IC(50) value of 16 microM. RT-PCR revealed that a newly cloned nAChR subunit, alpha 10, is expressed in OHCs. In contrast to homomeric expression, coexpression of alpha 9 and alpha 10 subunits in Xenopus laevis oocytes resulted in robust acetylcholine-induced currents, indicating that the OHC nAChR may be an alpha 9/alpha 10 heteromer. Accordingly, nAChR currents evoked by application of the ligand to OHCs and currents through alpha 9/alpha 10 were blocked by memantine with a similar IC(50) value of about 1 microM. Memantine block of alpha 9/alpha 10 was moderately voltage dependent. The lower efficacy of memantine for inhibition of inhibitory postsynaptic currents (IPSCs) most probably results from a blocking rate that is slow with respect to the short open time of the receptor channels during an IPSC. Thus, synaptic transmission in OHCs is inhibited by memantine block of Ca(2+) influx through nAChRs. Importantly, prolonged receptor activation and consequently massive Ca(2+) influx, as might occur under pathological conditions, is blocked at low micromolar concentrations, whereas the fast IPSCs initiated by short receptor activation are only blocked at concentrations above 10 microM.  相似文献   

4.
There is evidence that nifedipine (Nif) - a dihydropyridine (DHP) Ca(2+)-channel antagonist mostly known for its L-type-specific action--is capable of blocking low voltage-activated (LVA or T-type) Ca(2+) channels as well. However, the discrimination by Nif of either various endogenous T-channel subtypes, evident from functional studies, or cloned Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 T-channel alpha 1 subunits have not been determined. Here, we investigated the effects of Nif on currents induced by Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 expression in Xenopus oocytes or HEK-293 cells (I(alpha 1G), I(alpha 1H) and I(alpha 1I), respectively) and two kinetically distinct, "fast" and "slow", LVA currents in thalamic neurons (I(LVA,f) and I(LVA,s)). At voltages of the maximums of respective currents the drug most potently blocked I(alpha 1H) (IC(50)=5 microM, max block 41%) followed by I(alpha 1G) (IC(50)=109 microM, 23%) and I(alpha 1I) (IC(50)=243 microM, 47%). The mechanism of blockade included interaction with Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 open and inactivated states. Nif blocked thalamic I(LVA,f) and I(LVA,s) with nearly equal potency (IC(50)=22 microM and 28 microM, respectively), but with different maximal inhibition (81% and 51%, respectively). We conclude that Ca(v)3.2 is the most sensitive to Nif, and that quantitative characteristics of drug action on T-type Ca(2+) channels depend on cellular system they are expressed in. Some common features in the voltage- and state-dependence of Nif action on endogenous and recombinant currents together with previous data on T-channel alpha 1 subunits mRNA expression patterns in the thalamus point to Ca(v)3.1 and Ca(v)3.3 as the major contributors to thalamic I(LVA,f) and I(LVA,s), respectively.  相似文献   

5.
Rat alpha3beta4 or alpha7 neuronal nicotinic acetylcholine receptors (AChRs) were expressed in Xenopus laevis oocytes, and the effects of various toxins and non-toxin Ca2+ channel blockers studied. Nicotinic AChR currents were elicited by 1 s pulses of dimethylphenylpiperazinium (DMPP, 100 microM) applied at regular intervals. The N/P/Q-type Ca2+ channel blocker omega-conotoxin MVIIC inhibited alpha3beta4 currents with an IC50 of 1.3 microM; the blockade was non-competitive and reversible. The alpha7 currents were unaffected. At 1 microM, omega-conotoxin GVIA (N-type Ca2+ channel blocker) inhibited by 24 and 20% alpha3beta4 and alpha7 currents, respectively. At 1 microM, omega-agatoxin IVA (a P/Q-type Ca2+ channel blocker) did not affect alpha7 currents and inhibited alpha3beta4 currents by only 15%. L-type Ca2+ channel blockers furnidipine, verapamil and, particularly, diltiazem exhibited a preferential blocking activity on alpha3beta4 nicotinic AChRs. The mechanism of alpha3beta4 currents blockade by omega-conotoxins and diltiazem differed in the following aspects: (i) the onset and reversal of the blockade was faster for toxins; (ii) the blockade by the peptides was voltage-dependent, while that exerted by diltiazem was not; (iii) diltiazem promoted the inactivation of the current while omega-toxins did not. These data show that, at concentrations currently employed as Ca2+ channel blockers, some of these compounds also inhibit certain subtypes of nicotinic AChR currents. Our data calls for caution when interpreting many of the results obtained in neurons and other cell types, where nicotinic receptor and Ca2+ channels coexist.  相似文献   

6.
S 24795 evoked methyllycaconitine-sensitive inward currents in voltage-clamped hippocampal interneurons with maximum amplitude about 14% that of ACh-evoked responses. Experiments with rat alpha7 receptors expressed in Xenopus oocytes confirmed that S 24795 is a partial agonist of alpha7 nAChR with an EC(50) of 34+/-11 microM and I(max) of approximately 10% relative to ACh. When 60 microM ACh was co-applied to alpha7-expressing oocytes along with increasing concentrations of S 24795, there was a progressive decrease in response compared to the responses to 60 microM ACh alone (IC(50) 45+/-9 microM). The positive allosteric modulator 5-hydroxyindole potentiated ACh- and S 24795-evoked responses of alpha7 receptors in both oocytes and hippocampal interneurons. In hippocampal slice experiments, depending on the ACh concentrations in the application pipette and the ratio of ACh to S 24795, co-application of S 24795 with ACh variously increased, decreased, or had no effect on responses, compared to ACh alone. In order to estimate the effective dilution factor for the pressure application experiments, we tested alpha7 receptors in oocytes with ACh alone and in co-application with S 24795 at the same ratios as in the slice experiments, but at varying dilution factors. The pattern of interaction seen in the slice experiments was most closely matched under the conditions of a 3:100 dilution, suggesting that the pipette solution was diluted approximately 30-fold at the site of action. This dilution factor was consistent with the potency of ACh and S 24795 in the oocyte expression system (EC(50)s approximately 30 microM).  相似文献   

7.
We have previously observed that certain atypical antipsychotic drugs reduce the amplitude and duration of miniature end-plate currents (EPCs) at the frog neuromuscular junction (Effects of atypical antipsychotics on vertebrate neuromuscular transmission, Nguyen, Q.-T., Yang, J., Miledi, R. Neuropharmacology 42, 2002, 670-676), therefore suggesting that these drugs act on nicotinic acetylcholine receptors. In this study we examined the effects of the atypical antipsychotic clozapine on nicotinic receptors of frog neuromuscular end-plates or in Xenopus oocytes expressing the alpha(1)beta(1)gamma delta mouse skeletal muscle nicotinic receptor. At neuromuscular junctions, postsynaptic currents were reduced by micromolar concentrations of clozapine. This compound also acted presynaptically by increasing the quantal content of EPCs of muscles without noticeably affecting paired-pulse facilitation. In oocytes, clozapine inhibited alpha(1)beta(1)gamma delta receptors with an IC(50) of 10 microM and a Hill coefficient of 1. Blockage of alpha(1)beta(1)gamma delta receptors by clozapine bears several hallmarks of open-channel blockers, including faster response decays, strong voltage dependence of the block, large rebound currents upon wash, and reduction of peak responses even at saturating concentrations of acetylcholine. However, clozapine increased the EC(50) for acetylcholine and its blocking effect was enhanced by preincubation. These results suggest that clozapine antagonizes muscle nicotinic receptors by blocking open channels, and possibly also by another mechanism which still remains to be investigated.  相似文献   

8.
The FP(A) and FP(B) prostanoid receptor isoforms are G-protein-coupled receptors that are activated by prostaglandin F(2alpha) (PGF(2alpha)). Differences in their carboxyl termini prompted us to examine the intracellular calcium (Ca(2+)) signaling of these receptor isoforms using the Xenopus oocyte expression system. Protein expression was determined by immunofluorescence microscopy and whole cell binding with [3H]PGF(2alpha). Positive immunolabeling was observed on the outer membranes of oocytes expressing FLAG-tagged FP receptor isoforms, but not on control (water-injected) oocytes. Intracellular signaling was examined using a two-electrode voltage clamp. Specific whole-cell binding was also detected for both receptor isoforms. Bath application of 10 microM PGF(2alpha) to FP(A)-expressing oocytes produced a chloride (Cl-) current response similar to that of an injection of inositol 1,4,5-trisphosphate (InsP(3)) (5.76+/-0.6 microA, peak current; N=23) that returned to control levels within 25 min. In FP(B)-expressing oocytes the activation of the Cl- current was delayed or completely absent (1.38+/-0.2 microA, peak current; N=18). Control oocytes were not responsive to the application of PGF(2alpha) (0.87+/-0.1 microA, peak current; N=10). Activation of Cl- currents for both FP receptor isoforms was dependent upon intracellular Ca(2+) stores as a 30-min pretreatment with thapsigargin (1 microM; N=5) blocked the PGF(2alpha) induction of the Cl- current. These data indicate that the FP prostanoid receptor isoforms differ in their ability to activate Ca(2+)-dependent Cl- channels when expressed in Xenopus oocytes. The difference appears to be in the ability of the two FP prostanoid receptor isoforms to mobilize intracellular calcium.  相似文献   

9.
Clozapine, a commonly used antipsychotic drug, can induce QT prolongation, which may lead to torsades de pointes and sudden death. To investigate the arrhythmogenic side effects of clozapine, we studied the impact of clozapine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells, and on the delayed rectifier K(+) currents of guinea-pig cardiomyocytes. Clozapine dose-dependently decreased the amplitudes of the currents at the end of voltage steps, and the tail currents of HERG. The IC(50) for the clozapine blockade of HERG currents in Xenopus oocytes progressively decreased relative to depolarization (39.9 microM at -40 mV, 28.3 microM at 0 mV and 22.9 microM at +40 mV), whereas the IC(50) for the clozapine-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 2.5 microM at +20 mV. The clozapine-induced blockade of HERG currents was time dependent: the fractional current was 0.903 of the control at the beginning of the pulse, but declined to 0.412 after 4 s at a test potential of 0 mV. The clozapine-induced blockade of HERG currents was use-dependent, exhibiting more rapid onset and greater steady state blockade at higher frequencies of activation, with a partial relief of blockade observed when the frequency of activation was decreased. In guinea-pig ventricular myocytes held at 36 degrees C, treatment with 1 and 5 microM clozapine blocked the rapidly activating delayed rectifier K(+) current (I(Kr)) by 24.7 and 79.6%, respectively, but did not significantly block the slowly activating delayed rectifier K(+) current (I(Ks)). Our findings collectively suggest that blockade of HERG currents and I(Kr), but not I(Ks), may contribute to the arrhythmogenic side effects of clozapine.  相似文献   

10.
The principal alkaloid of the family Calycanthaceae, calycanthine has long been recognized as a central convulsant. The alkaloid inhibited the potassium-stimulated release of [(3)H]GABA from slices of rat hippocampus with an ED(50) of approximately 21 microM. This effect appeared to be moderately selective since calycanthine at 100 microM had only a weak effect on the potassium-stimulated release of [(3)H]acetylcholine (15%) and no significant effects on the release of [(3)H]D-aspartate from hippocampal and cerebellar slices or the release of [(3)H]glycine from spinal cord slices. Calycanthine blocked the L-type calcium currents with an IC(50) of approximately 42 microM and also weakly inhibited the N-type calcium currents (IC(50) > 100 microM) from neuroblastoma X glioma cells, suggesting voltage-dependent calcium channel blockade as a possible mechanism for its inhibition of GABA and ACh release. Calycanthine was also found to directly inhibit GABA-mediated currents (K(B) approximately 135 microM) from human alpha(1)beta(2)gamma(2L) GABA(A) receptors expressed in Xenopus laevis oocytes but had no effect at 100 microM on human rho(1) GABA(c) receptors. The results indicated that calycanthine may mediate its convulsant action predominantly by inhibiting the release of the inhibitory neurotransmitter GABA as a result of interactions with L-type Ca(2+) channels and by inhibiting GABA-mediated chloride currents at GABA(A) receptors.  相似文献   

11.
The effects of 5-hydroxyindole (5-HI) have been investigated on human alpha 7 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes and GH4 cells, on native alpha 7 nAChRs expressed by IMR-32 cells and on alpha 7 nAChR-mediated events in mossy fibre-granule cell synapses in rat cerebellar slices. In oocytes expressing alpha 7 nAChRs, 5-HI potentiated sub-maximal, 60 micro M ACh-induced ion currents in a concentration-dependent manner, the threshold effective concentration being 30 micro M. 5-HI itself did not act as an agonist on alpha 7 nAChRs. A maximum potentiation of 12 times the control was observed at 20 mM 5-HI. The effect of 1 mM 5-HI on the concentration-response curve for ACh revealed that 5-HI increased the potency as well as the efficacy of ACh on alpha 7 nAChRs. 5-HI also potentiated alpha 7-mediated increases in intracellular free calcium levels in both mammalian cells heterologously expressing human alpha 7 nAChRs and in human IMR-32 neuroblastoma cells expressing native alpha 7 nAChRs. At mossy fibre-granule cell synapses, application of 1 mM ACh induced glutamate-evoked excitatory post-synaptic currents (EPSCs). Co-application of 1 mM 5-HI with 1 mM ACh further increased the frequency of the EPSCs. The ACh-induced release, as well as the 5-HI-induced enhancement of release, were blocked by 1-10 nM methyllycaconitine or 200 nM alpha-bungarotoxin, demonstrating that both effects were mediated by presynaptic alpha 7 nAChRs. The results demonstrate that responses mediated by alpha 7 nAChRs are strongly potentiated by 5-HI.  相似文献   

12.
Metabotropic G protein-coupled receptors have recently been recognized as targets for anesthetics and analgesics. In particular, G(q)-coupled receptors such as muscarinic M(1) receptors (M(1)R) and 5-hydroxytryptamine (5-HT) type 2A receptors have been reported to be targets for anesthetics. Much less is known, however, about the effects of anesthetics on G(i)-coupled receptors. Here we report a method to analyze functions of G(i)-coupled receptors in Xenopus oocytes expressing a chimeric G alpha protein. A chimeric G alpha(q) protein G alpha(qi5), which contains carboxy-terminus five amino acids of G alpha(i), enables G(i)-coupled receptors to couple to Gq-coupled receptor-mediated downstream pathways such as activation of phospholipase C. We determined acetylcholine (ACh)-induced Ca(2+)-activated Cl(-) currents in Xenopus oocytes coexpressing G(i)-coupled muscarinic M(2)receptors (M(2)R) with the chimeric G alpha(qi5). Although ACh did not induce any currents in oocytes expressing M(2)R alone, it caused robust Cl(-) currents in oocytes coexpressing M(2)R with G alpha(qi5). The EC(50) of the ACh-induced Cl(-) current mediated through G alpha(qi5) was 0.2 micromol/l, which was 2.2 times higher than that of the ACh-induced G protein-activated inwardly rectifying K(+) currents activated by G beta gamma subunits liberated from endogenously expressed G alpha(i) in Xenopus oocytes. Other G(i)-coupled somatostatin type 2, 5-HT(1A) and delta-opioid receptors, when coexpressed with G alpha(qi5) in oocytes, also caused robust Ca(2+)-activated Cl(-) currents. In oocytes coexpressing M(2)R and G alpha(qi5), a volatile anesthetic halothane inhibited M(2)R-induced Cl(-) currents in a concentration-dependent manner with the IC(50) of 1.1 mmol/l, suggesting that halothane inhibits M(2)R-induced cellular responses at clinically relevant concentrations. Treatment with the protein kinase C inhibitor GF109203X produced a 3.5-fold enhancement of the initial Cl(-) currents induced by 1 micromol/l ACh in oocytes expressing M(2)R and G(qi5). The rate of halothane-induced inhibition of Cl(-) currents elicited by ACh, however, was not changed in such oocytes pretreated with GF109203X. These findings suggest that halothane inhibits the M(2)R-induced signaling by acting at sites other than PKC activity. Collectively these findings suggest that the use of oocyte expressing G alpha(qi5) would be helpful to examine the effects of anesthetics or analgesics on the function of G(i)-coupled receptors in the Xenopus oocyte expression system.  相似文献   

13.
Nootropics are proposed to serve as cognition enhancers. The underlying mechanism, however, is largely unknown. We have attempted to assess the intracellular signal transduction pathways mediating the action of nefiracetam, a nootropic agent, on neuronal Ca2+ channels and nicotinic ACh receptors. In NG108-15 cells, nefiracetam (1 microM) enhanced the activities of N/L-type Ca2+ channels without affecting T-type The nefiracetam action was mimicked by dibutyryl cAMP (1 mM), or blocked by pertussis toxin (PTX), indicating that PTX-sensitive inhibitory G-proteins and cAMP-dependent pathways mediate the drug action. Nefiracetam also exerted a dose-dependent biphasic effect on Torpedo nicotinic acetylcholine (nACh) receptors expressed in Xenopus oocytes, in which the drug induced a short-term depression of ACh-evoked currents at submicromolar concentrations (0.01-0.1 microM) and a long-term enhancement of the currents at micromolar concentrations (1-10 microM). The depression was caused by activation of PTX-sensitive G-protein-regulated cAMP-dependent protein kinase (PKA) with subsequent phosphorylation of the ACh receptors; in contrast, the enhancement was caused by activation of Ca(2+)-dependent protein kinase C (PKC) and the ensuing PKC phosphorylation of the receptors. It is concluded that nefiracetam interacts with PKA and PKC pathways, which may explain a cellular mechanism for the action of cognitive enhancers.  相似文献   

14.
We report the effects of resveratrol, a polyphenol found in the skins of red grapes, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Resveratrol suppressed catecholamine secretion and (22)Na(+) and (45)Ca(2+) influx induced by acetylcholine, an agonist of nicotinic acetylcholine receptors, in a concentration-dependent manner (IC(50)=20.4, 11.0, and 62.8 microM, respectively). Resveratrol also inhibited catecholamine secretion induced by veratridine, an activator of voltage-dependent Na(+) channels, and 56 mM K(+), an activator of voltage-dependent Ca(2+) channels, at concentrations similar to those for (45)Ca(2+) influx. Resveratrol directly inhibited the current evoked by acetylcholine in Xenopus oocytes expressing alpha3beta4 neuronal nicotinic acetylcholine receptors (IC(50)=25.9 microM). Furthermore, resveratrol (IC(50)=5.32 microM) attenuated (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that resveratrol inhibits acetylcholine-induced catecholamine secretion and synthesis through suppressing ion influx in cultured bovine adrenal medullary cells.  相似文献   

15.
Ascidians (sea squirts) contain a wealth of alkaloids, but their influence over neuronal nicotinic acetylcholine receptors (nAChRs) has not been evaluated. In this study, we examined the effects of two synthetic compounds, (-)-pictamine, a quinolizidine alkaloid from Clavelina picta, and (-)-lepadin B, a decahydroquinoline alkaloid from Clavelina lepadiformis, on major types of neuronal nicotinic receptors (alpha4beta2 and alpha7) expressed in Xenopus oocytes. We found that these alkaloids are potent blockers at these receptors: acetylcholine-elicited currents through alpha4beta2 and alpha7 receptors were blocked by (-)-pictamine with IC(50) values of 1.5 microM and 1.3 microM, respectively, and by (-)-lepadin B with IC(50) values of 0.9 microM and 0.7 microM, respectively. Interestingly, no recovery was observed after the removal of (-)-pictamine in oocytes expressing alpha4beta2 receptors, whereas the inhibited alpha7 currents quickly recovered after the removal of (-)-pictamine. Since there are few compounds that elicit irreversible blocks of alpha4beta2 receptors, (-)-pictamine will be a novel, valuable tool to remove the alpha4beta2-nAChR action from neuronal activities mediated by these two major types of nAChRs.  相似文献   

16.
Neuronal nicotinic acetylcholine receptors (nAChR) have been suggested to play a role in a variety of modulatory and regulatory processes, including neuroprotection. Here we have characterized the neuroprotective effects of nicotine against an excitotoxic insult in primary hippocampal cultures. Exposure of hippocampal neurons to 200 microM NMDA for 1 h decreased cell viability by 25+/-5%, an effect blocked by NMDA receptor antagonists. Nicotine (10 microM) counteracted the NMDA-induced cell death when co-incubated with NMDA or when present subsequent to the NMDA treatment. Nicotine protection was prevented by 1 microM MLA, confirming that it was mediated by nAChR, and by 1 microM alpha-bungarotoxin, demonstrating that the alpha7 nAChR subtype was responsible. Both the NMDA evoked neurotoxicity and nicotine neuroprotection were Ca(2+)-dependent. In Fura-2-loaded hippocampal neurons, nicotine (10 microM) and NMDA (200 microM) acutely increased intracellular resting Ca(2+) from 70 nM to 200 and 500 nM, respectively. Responses to NMDA were unaffected by the presence of nicotine. (45)Ca(2+) uptake after a 1 h exposure to nicotine or NMDA also demonstrated quantitative differences between the two drugs. This study demonstrates that the alpha7 subtype of nAChR can support neuronal survival after an excitotoxic stimulus, through a Ca(2+) dependent mechanism that operates downstream of NMDA receptor activation.  相似文献   

17.
Beauvericin is a mycotoxin that infects a wide variety of cereal grains. The toxicological importance of beauvericin is implicated by its cytotoxicity in animal and human cells, which has been suggested to result from an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Despite the fact that beauvericin may activate extracellular Ca(2+) influx, beauvericin-induced cell deaths has been suggested to be exclusively due to Ca(2+) release from internal Ca(2+) stores. We endeavored to elucidate the mechanism of beauvericin-induced [Ca(2+)](i) increase by studying the effects of beauvericin in Xenopus oocytes. By applying a -140-mV prepulse prior to a series of test pulses, we found that beauvericin induced small inward currents at -140 mV, followed by outwardly rectifying currents that displayed an apparent reversal potential close to the expected equilibrium potential of Cl(-). Both the inward and outward currents induced by beauvericin were blocked by niflumic acid, a specific blocker for Ca(2+)-activated Cl(-) currents (I(Cl,Ca)). Removal of extracellular Ca(2+), as well as perfusion of lanthanide, abrogated beauvericin-induced currents. Beauvericin also displayed prominent cytotoxic effects in Xenopus oocytes in a dose-dependent manner. In the absence of extracellular Ca(2+), cytotoxicity-induced by 10 and 30 microM, but not 50 microM, of beauvericin was significantly diminished. Our results are consistent with the idea that beauvericin induces extracellular Ca(2+) influx, which in turn activates I(Cl,Ca) and contributes to beauvericin-induced cell deaths in Xenopus oocytes.  相似文献   

18.
1 Toluene is a representative example of a class of industrial solvents that are voluntarily inhaled as drugs of abuse. Previous data from this lab and others has shown that toluene modulates the function of N-methyl-D-aspartate (NMDA), gamma-aminobutyric acid (GABA) and glycine receptors at concentrations that do not affect non-NMDA receptors. 2 We utilized two-electrode voltage-clamp and whole cell patch-clamp techniques to assess the effects of toluene on neuronal nicotinic acetylcholine receptors expressed in oocytes and cultured hippocampal neurons. Toluene (50 micro M to 10 mM) produced a reversible, concentration-dependent inhibition of acetylcholine-induced current in Xenopus oocytes expressing various nicotinic receptor subtypes. The alpha4beta2 and alpha3beta2 subunit combinations were significantly more sensitive to toluene inhibition than the alpha4beta4, alpha3beta4 and alpha7 receptors. 3 Receptors composed of alpha4 and beta2(V253F) subunits showed alpha4beta4-like toluene sensitivity while those containing alpha4 and beta4(F255V) subunits showed alpha4beta2-like sensitivity. 4 In hippocampal neurons, toluene (50 micro M to 10 mM) dose-dependently inhibited ACh-mediated responses with an IC(50) of 1.1 mM. 5 Taken together, these results suggest that nicotinic receptors, like NMDA receptors, show a subunit-dependent sensitivity to toluene and may represent an important site of action for some of the neurobehavioural effects of toluene.  相似文献   

19.
ADP, an important agonist in thrombosis and haemostasis, has been reported to activate platelets via three receptors, P2X(1), P2Y(1) and P2T(AC). Given the low potency of ADP at P2X(1) receptors and recognized contamination of commercial samples of adenosine nucleotides, we have re-examined the activation of P2X(1) receptors by ADP following HPLC and enzymatic purification. Native P2X(1) receptor currents in megakaryocytes were activated by alpha, beta-meATP (10 microM) and commercial samples of ADP (10 microM), but not by purified ADP (10 - 100 microM). Purified ADP (up to 1 mM) was also inactive at recombinant human P2X(1) receptors expressed in XENOPUS: oocytes. Purification did not modify the ability of ADP to activate P2Y receptors coupled to Ca(2+) mobilization in rat megakaryocytes. In human platelets, P2X(1) and P2Y receptor-mediated [Ca(2+)](i) responses were distinguished by their different kinetics at 13 degrees C. In 1 mM Ca(2+) saline, alpha,beta-meATP (10 microM) and commercial ADP (40 microM) activated a rapid [Ca(2+)](i) increase (lag time < or =0.5 s) through the activation of P2X(1) receptors. Hexokinase treatment of ADP shifted the lag time by approximately 2 s, indicating loss of the P2X(1) receptor-mediated response. A revised scheme is proposed for physiological activation of P2 receptors in human platelets. ATP stimulates P2X(1) receptors, whereas ADP is a selective agonist at metabotropic (P2Y(1) and P2T(AC)) receptors.  相似文献   

20.
In native Xenopus oocytes, injection of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) (30 mM, 5 nl) did not induce Cl- current in 11 out of 22 oocytes. Injection of increased concentration of GTPgammaS (100 mM, 5 nl) into the oocytes induced Cl- currents in 16 out of 17 oocytes; however, the size of the induced currents was extremely varied. In oocytes overexpressing Gq alpha, GTPgammaS (30 mM, 5 nl) faithfully evoked Ca2+-activated Cl- currents. These results indicate that heterogeneous expression of Gq alpha in Xenopus oocytes provides a useful system for studying the functional roles of Gq alpha in regulating cellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号