首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5-year survival rate for patients with stage III non-small cell lung cancer (NSCLC) is 10%. A number of genetic alterations are associated with this disease including mutations and amplifications of EGFR (70%) and Ras (20–30%), both of which are upstream of PI3K. Our previous data show that these regulate tumor radiation sensitivity. Here we ask whether the activation of this pathway has prognostic relevance in NSCLC. Two series of patients were retrospectively analyzed. The first series consisted of 23 Stage III NSCLC patients treated preoperatively with a chemo/radiation protocol. The second consisted of 12 Stage III NSCLC patients treated with chemo/radiation without surgery who had survived more than 2 years. Expression levels of EGFR and Her-2 were assessed by immunohistochemical staining. PI3K signaling was evaluated by staining for phosphorylated Akt (P-Akt), a downstream target of PI3K. The staining for EGFR, Her-2, and P-Akt were related to outcome in the two groups. Additionally, the importance of PI3K signaling was evaluated in 3 NSCLC cell lines using a pharmacological blockade of PI3K by LY294002. In the first series of patients, 43% were positive for EGFR, 5% for Her-2, and 82.6% for P-Akt. Of the survivors, 25% were positive for EGFR, 0% for Her-2, and 42% for P-Akt. For P-Akt, this difference had a probability calculation of 0.003. The three NSCLC cell lines that we tested were found to have high levels of P-Akt. Pharmacologically inhibiting PI3K led to decreased Akt phosphorylation and radio sensitization of all three cell lines. The finding that NSCLC survivors treated by radiation have lower levels of PI3K and Akt signaling is consistent with the idea that inhibition of Akt leads to radio sensitization. This further suggests that Akt might be a useful target for sensitization of NSCLC to radiation.  相似文献   

2.
To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer (PCa) to more invasive forms. One of the major targets for the therapy in PCa can be epidermal growth factor receptor (EGFR), which signals via the phosphoinositide 3'-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways, among others. Despite multiple reports of overexpression in PCa, the reliance on activated EGFR and its downstream signalling to the PI3K and/or MAPK/extracellular signal-regulated kinase (ERK) pathways has not been fully elucidated. We reported that the EGFR-selective tyrosine kinase inhibitor gefitinib (ZD1839; Iressa) is able to induce growth inhibition, G(1) arrest and apoptosis in PCa cells and that its effectiveness is associated primarily with phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression (and thus Akt activity). In fact PTEN-negative PCa cells are slowly sensitive to gefitinib treatment, because this molecule is unable to downregulate PI3K/Akt activity. PI3K inhibition, by LY294002 or after PTEN transfection, restores EGFR-stimulated Akt signalling and sensitizes the cells to pro-apoptotic action of gefitinib. The MAPK pathway seems to be involved primarily on cell-growth modulation because dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition (both not cell apoptosis) in PTEN-positive PCa cells and reduced EGF-mediated growth in PTEN-negative cells. Thus the effectiveness of gefitinib requires growth factor receptor-stimulated PI3K/Akt and MAPK signalling to be intact and functional. The loss of the PTEN activity leads to uncoupling of this signalling pathway, determining a partial gefitinib resistance. Moreover, gefitinib sensitivity may be maintained in these cells through its inhibitory potential in MAPK/ERK pathway activity, modulating proliferative EGFR-triggered events. Therefore, our data suggest that the inhibition of EGFR signalling can result in a significant growth reduction and in increased apoptosis in EGFR-overexpressing PCa cells with different modalities, which are regulated by PTEN status, and this may have relevance in the clinical setting of PCa.  相似文献   

3.

Background  

Epidermal growth factor receptor (EGFR) mutations are associated with sensitivity to gefitinib or erlotinib in non-small cell lung cancer (NSCLC). We investigated the relationships between the two most common types of somatic EGFR mutations, exon 19 deletions and L858R mutations, and clinical outcomes of Korean NSCLC patients after treatment with gefitinib or erlotinib.  相似文献   

4.
孙秀华  张洪开  李玉  于爱鸣 《山东医药》2011,51(12):30-32,118
目的探讨非小细胞肺癌(NSCLC)中Cdc20同源蛋白1(Cdh1)参与磷脂酰肌醇三羟基激酶(PI3K)/Akt信号通路对S期激酶相关蛋白2(Skp2)表达调控的机制。方法体外培养NSCLC细胞系A549、LK2和H460,LY294002特异性阻断PI3K/Akt信号通路后,Western blot检测Skp2、Cdh1及p-Akt蛋白表达的变化,免疫荧光(IF)检测Cdh1在NSCLC中的定位变化。结果 LY294002处理后,与对照组相比3种细胞中Skp2蛋白表达和Akt磷酸化水平均降低(P〈0.01),Cdh1在3种细胞的核内表达均增多。结论 NSCLC中PI3K/Akt信号通路抑制剂LY294002使Skp2蛋白表达下调与Cdh1由细胞质向细胞核转位有关。  相似文献   

5.
目的文献报道RANKL/RANK/OPG途径与肿瘤细胞迁移及骨转移密切相关,但RANKL/RANK途径是否参与胃癌细胞迁移,尚无文献报道。本文拟检测RANK在胃癌细胞系SGC-7901细胞中的表达,并进一步探讨磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(PI3K/Akt)信号通路在RANKL诱导的胃癌细胞迁移中的作用。方法 West-ern blot检测SGC-7901细胞表面RANK蛋白的表达;RANKL刺激后磷酸化Akt(P-Akt)及Akt的表达;Transwell法测定RANKL及抑制剂刺激后细胞迁移能力的改变。结果 SGC7901细胞表达RANK蛋白。RANKL(1μg/mL)诱导SGC-7901细胞迁移能力增强,迁移增加率为57.2%±5.9%,RANKL抑制剂rOPG(5μg/mL)显著抑制RANKL诱导的细胞迁移(13.88%±3.57%,P<0.05)。RANKL刺激后30 min~3 h,SGC-7901细胞p-Akt表达升高,应用PI3K的抑制剂LY294002(50 mmol/L)显著抑制RANKL诱导的胃癌细胞SGC-7901的迁移(57.28%±5.91%vs23.18%±2.79%,P<0.05)。结论胃癌细胞系SGC-7901细胞表达受体RANK,PI3K/Akt信号通路参与RANKL诱导的SGC-7901细胞迁移。  相似文献   

6.
The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to identify patients who may benefit from particular therapeutic agents and approaches with improved efficacy and safety profiles. To this goal, we developed 4-[(3-iodophenyl)amino]-7-{2-[2-{2-(2-[2-{2-([(18)F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}-ethoxy]-quinazoline-6-yl-acrylamide ([(18)F]F-PEG6-IPQA), a radiotracer with increased selectivity and irreversible binding to the active mutant L858R EGFR kinase. We show that PET with [(18)F]F-PEG6-IPQA in tumor-bearing mice discriminates H3255 NSCLC xenografts expressing L858R mutant EGFR from H441 and PC14 xenografts expressing EGFR or H1975 xenografts with L858R/T790M dual mutation in EGFR kinase domain, which confers resistance to EGFR inhibitors (i.e., gefitinib). The T790M mutation precludes the [(18)F]F-PEG6-IPQA from irreversible binding to EGFR. These results suggest that PET with [(18)F]F-PEG6-IPQA could be used for the selection of NSCLC patients for individualized therapy with small molecular inhibitors of EGFR kinase that are currently used in the clinic and have a similar structure (i.e., iressa, gefitinib, and erlotinib).  相似文献   

7.
Nicotinic acetylcholine receptors (nAChR) are expressed on non-neuronal cell types, including normal bronchial epithelial cells, and nicotine has been reported to cause Akt activation in cultured normal airway cells. This study documents mRNA and protein expression of subunits known to form a muscle-type nAChR in non-small cell lung cancer (NSCLC) cell lines. In one NSCLC examined, mRNA and protein for a heteropentamer neuronal-type alpha3beta2 nAChR was detected in addition to a muscle-type receptor. Protein for the alpha5 nAChR was also detected in NSCLC cells. Although, mRNA for the alpha7 nAChR subunit was observed in all cell lines, alpha7 protein was not detectable by immunoblot in NSCLC cell extracts. Immunohistochemistry (IHC) of NSCLC primary tissues from 18 patients demonstrated protein expression of nAChR alpha1 and beta1 subunits, but not alpha7 subunit, in lung tumors, indicating preferential expression of the muscle-type receptor. In addition, the beta1 subunit showed significantly increased expression in lung tumors as compared to non-tumor bronchial tissue. The alpha1 subunit also showed evidence of high expression in lung tumors. Nicotine at a concentration of 10 microM caused phosphorylation of mitogen-activated protein kinase (MAPK) (p44/42) that could be inhibited using nAChR antagonists. Inhibition was observed at 100 nM alpha-bungarotoxin (alpha-BTX) or 10 microM hexamethonium (HEX); maximal inhibition was achieved using a combination of alpha-BTX and HEX. Akt was also phosphorylated in NSCLC cells after exposure to nicotine; this effect was inhibited by the PI3K inhibitor LY294002 and antagonists to the neuronal-type nAChR, but not to the muscle-type receptor. Nicotine triggered influx of calcium in the 273T NSCLC cell line, suggesting that L-type calcium channels were activated. 273T cells also showed greater activation of p44/42 MAPK than of Akt in response to nicotine. Cultures treated with nicotine and the EGFR tyrosine kinase inhibitor gefitinib showed a significant increase in the number of surviving cells compared to gefitinib alone. These data indicate that the muscle-type nAChR, rather than the alpha7 type, is highly expressed in NSCLC and leads to downstream activation of the p44/42 MAPK pathway. Neuronal-type receptors are also present and functional, as evidenced by antagonist studies, although, the expression levels are lower than muscle-type nAChR. They also lead to downstream activation of MAPK and Akt. Nicotine may play a role in regulating survival of NSCLC cells and endogenous acetylcholine released locally in the lung and/or chronic nicotine exposure might play a role in NSCLC development. In addition, exposure of NSCLC patients to nicotine through use of nicotine replacement products or use of tobacco products may alter the efficacy of therapy with EGFR inhibitors.  相似文献   

8.
Activation of the phosphoinositide 3-kinase (PI3-K)/Akt signalling pathway has been linked with resistance to chemotherapeutic drugs, and its down-regulation, by means of pharmacological inhibitors of PI3-K, considerably lowers resistance to various types of therapy in cell lines derived from solid tumours. Recently, a new class of Akt inhibitors, referred to as phosphatidylinositol ether lipids (PIAs), have been synthesized. We tested whether two new PIAs could lower the sensitivity threshold to chemotherapeutic drugs of human leukaemia cell lines with an activated PI3-K/Akt network. We used HL60AR (for apoptosis resistant), K562 and U937 cells. The two pharmacological inhibitors, used at 5 micromol/l, down-regulated Akt kinase activity and phosphorylation. Neither of the two chemicals affected the activity of other signalling proteins in the Akt pathway, such as phosphoinositide-dependent protein kinase-1 or PTEN. When employed at 5 micromol/l, the Akt inhibitors markedly reduced the resistance of the leukaemic cell lines to etoposide or cytarabine. Remarkably, a 5 micromol/l concentration of the inhibitors did not negatively affect the survival rate of human cord blood CD34(+) cells. Overall, our results indicate that new selective Akt pharmacological inhibitors might be used in the future for overcoming Akt-mediated resistance to therapeutic treatments of acute leukaemia cells.  相似文献   

9.
目的探讨氯离子通道阻断剂DIDS对十字孢碱诱导心肌细胞凋亡与磷脂酰肌醇3激酶/蛋白激酶B信号及其下游分子一氧化氮合酶/一氧化氮的关系。方法实验分为对照组、十字孢碱组、DIDS组、LY294002(特异性磷脂酰肌醇3激酶抑制剂)组和L-NAME(非特异性一氧化氮合酶抑制剂)组。在十字孢碱诱导心肌细胞凋亡模型上,观察DIDS对心肌细胞存活率、凋亡和磷脂酰肌醇3激酶/蛋白激酶B及其下游分子一氧化氮合酶/一氧化氮的影响。结果与十字孢碱组比,DIDS明显改善了细胞存活率,提高了细胞磷酸化蛋白激酶B活性2.1倍(P<0.01),增加了一氧化氮合酶和磷酸化一氧化氮合酶的水平和一氧化氮水平(P<0.01);LY294002预处理完全抑制了磷酸化蛋白激酶B、一氧化氮合酶和磷酸化一氧化氮合酶水平的升高及升高的一氧化氮,完全阻断了DIDS的抗细胞凋亡作用;L-NAME预处理也使升高的一氧化氮水平下降,但仅部分阻断了DIDS的细胞保护作用。结论DIDS通过激活磷脂酰肌醇3激酶/蛋白激酶B信号通路发挥其抑制十字孢碱诱导的心肌细胞凋亡作用。  相似文献   

10.
Our previous study indicated overexpression of metadherin (MTDH) is an adverse prognostic factor in squamous cell carcinoma of the head and neck (SCCHN) and promotes SCCHN cell proliferation and invasion. However, its mechanism remains unclear. Recent studies have indicated that MTDH is a cancer-metastasis-associated molecule that participates in the process of angiogenesis. Therefore, the study is aimed to investigate that whether vascular endothelial growth factor (VEGF), as one of the most potent proangiogenic cytokines, is regulated by MTDH and the role of the phosphatidylinositide 3-kinases/Protein Kinase B (PI3K/Akt) pathway in this process of regulation and the clinical significance of both MTDH and VEGF in SCCHN.Immunohistochemistry was used to assay the expression of MTDH and VEGF in a cohort of 189 SCCHN patients with intact follow-up information. The expression of MTDH was then upregulated or inhibited by lentivirus-mediated MTDH Complementary deoxyribonucleic acid or MTDH short hairpin ribonucleic acid (shRNA) to observe the resulting alterations in VEGF expression and the PI3K/Akt signaling pathway in SCCHN cell lines. In addition, the PI3K/Akt pathway was modulated to observe the resulting changes in the MTDH-mediated expression of VEGF.The immunohistochemistry data showed that MTDH expression is positively correlated with VEGF expression in SCCHN tissues. Moreover, the overexpression of MTDH in SCCHN Tu686 and 5-8F cells led to increases in the expression of VEGF, and this effect was accompanied by activation of the PI3K/Akt pathway. Conversely, shRNA-mediated knockdown of MTDH led to decreased VEGF expression. In addition, inhibition of the Akt signaling pathway reversed the upregulation of VEGF resulting from MTDH overexpression. Moreover, the survival analysis revealed that VEGF is an independent prognostic factor, and a combined survival analysis based on both MTDH and VEGF showed synergistic effects in the prognosis evaluation of SCCHN patients.The findings of the present study demonstrate that MTDH regulates the expression of VEGF via the PI3K/Akt signaling pathway, indicating the potential role of the MTDH-mediated activation of VEGF signaling pathway in SCCHN angiogenesis and metastasis.  相似文献   

11.
12.
Non-small cell lung cancers (NSCLCs) with activating mutations in the kinase domain of the epidermal growth factor receptor (EGFR) demonstrate dramatic, but transient, responses to the reversible tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Some recurrent tumors have a common secondary mutation in the EGFR kinase domain, T790M, conferring drug resistance, but in other cases the mechanism underlying acquired resistance is unknown. In studying multiple sites of recurrent NSCLCs, we detected T790M in only a small percentage of tumor cells. To identify additional mechanisms of acquired resistance to gefitinib, we used NSCLC cells harboring an activating EGFR mutation to generate multiple resistant clones in vitro. These drug-resistant cells demonstrate continued dependence on EGFR and ERBB2 signaling for their viability and have not acquired secondary EGFR mutations. However, they display increased internalization of ligand-activated EGFR, consistent with altered receptor trafficking. Although gefitinib-resistant clones are cross-resistant to related anilinoquinazolines, they demonstrate sensitivity to a class of irreversible inhibitors of EGFR. These inhibitors also show effective inhibition of signaling by T790M-mutant EGFR and killing of NSCLC cells with the T790M mutation. Both mechanisms of gefitinib resistance are therefore circumvented by irreversible tyrosine kinase inhibitors. Our findings suggest that one of these, HKI-272, may prove highly effective in the treatment of EGFR-mutant NSCLCs, including tumors that have become resistant to gefitinib or erlotinib.  相似文献   

13.
放线菌素D诱导人离体HL7702肝细胞株凋亡及其作用机理   总被引:1,自引:0,他引:1  
目的 探讨放线菌素D(ActD)诱导正常人HL7702肝细胞凋亡及PI3K/Akt信号通路对此过程的作用。方法 采用HL7702正常人肝细胞株,MTT法检测ActD对其存活力的影响;Hoechst33342形态学染色;流式细胞仪检测细胞凋亡情况;Western blot方法检测细胞总Akt(丝氨酸/苏氨酸蛋白激酶)及p-Akt蛋白表达。结果 ActD可诱导HL7702肝细胞凋亡,其浓度在0.25~8μg/ml范围内呈现剂量效应关系;PI3K/Akt特异性抑制剂wortmannin能够增强ActD诱导的肝细胞凋亡。结论 ActD可诱导肝细胞凋亡,其机理可能是抑制PI3K/Akt信号通路。  相似文献   

14.
Purpose  The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens. Methods  We have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry. Results  We show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
目的:探讨西洛他唑(Cilostazol)对乳鼠心肌细胞PI3K-Akt-eNOS信号通路的影响。方法:观察西洛他唑对乳鼠心肌细胞NO影响的时效和量效关系,再用PI3K及eNOS抑制剂进行干预。检测NO的浓度,Western免疫印迹法检测总Akt、磷酸化Akt(p—Akt—ser473)及总eNOS、磷酸化eNOS(p-eNOS-Ser1177)表达水平。结果:西洛他唑升高心肌细胞NO浓度呈剂量和时间依赖性,不同浓度的西洛他唑均能升高Akt和eNOS磷酸化水平,但对Akt及eNOS总蛋白表达无明显影响。eNOS抑制剂L—NAME和P13K抑制剂Wortmannin均能抑制西洛他唑诱导的NO浓度升高,Wortmannin还能阻断西洛他唑诱导的Akt和eNOS的磷酸化。结论:西洛他唑可能激活乳鼠心肌细胞的PI3K—Akt—eNOS信号通路而促进NO的产生。  相似文献   

16.
[目的]探讨PI3K/Akt信号通路对肝癌细胞系HepG2中肿瘤干细胞比例及干细胞特性的影响.[方法]使用PI3K/Akt通路抑制剂处理HepG2细胞后,使用流式技术分析HepG2细胞系中的侧群(SP)细胞的变化.软琼脂克隆形成实验检测PI3K/Akt抑制剂对HepG2细胞中SP细胞和非SP细胞成克隆能力的影响.[结果]HepG2细胞中存在SP细胞,经过LY294002处理后,SP细胞比例下降.LY294002可以显著降低SP细胞的软琼脂成克隆能力,对非SP细胞的软琼脂成克隆能力影响不明显.[结论]HepG2细胞中的SP细胞具有干细胞特性,PI3K/Akt信号通路对HepG2细胞中SP细胞的维持起重要作用,抑制PI3K/Akt信号通路后HepG2细胞中的SP细胞比例明显减低,并能显著抑制SP细胞的增殖速度、软琼脂成克隆能力,增加SP细胞对化疗药物的敏感性,为更加深入地了解肝癌干细胞的特性以及探索针对肿瘤干细胞的治疗提供理论依据.  相似文献   

17.
18.
Background  To assess the role of various epidermal growth factor receptor (EGFR) mutations and HER2/3 protein expression as predictive markers of responsiveness to gefitinib therapy in Chinese patients with advanced non-small cell lung cancer (NSCLC). Methods  A total of 106 Chinese NSCLC patients who had failed at least one chemotherapy regimen received gefitinib 250 mg once daily. All the 106 tumors from these patients were screened for mutations in the EGFR exons 18–24, and 84 tumors were studied by immunohistochemistry for HER2/3 expression and correlated with clinical treatment outcome. Results  Patients with EGFR mutations had a significantly higher overall response rate (ORR), longer time to progression (TTP) and overall survival (OS) compared with those with wild-type receptor. No difference in ORR was observed between patients with exon 19 deletion and patients with other EGFR mutations. ORR in HER2-positive patients was significantly higher than in the HER2-negative group, irrespective of EGFR mutational status, and a trend for better ORR was observed for HER3-positive patients. HER2 and HER3 expression levels were not associated with any difference in terms of TTP and OS. Nevertheless, when considering the subgroups of non-responders to gefitinib, median TTP in patients with mutated EGFR was significantly longer than in those with no mutations (8.0 vs. 3.0 months, P = 0.0065). EGFR-mutated patients had no significant difference in ORR, TTP and OS according to HER2 and/or HER3 expression. Conclusions  EGFR mutations are effective predictors for gefitinib efficacy in Chinese patients with advanced NSCLC. HER2 and HER3 expression does not provide any additional information for selecting patients most likely to benefit from gefitinib treatment.  相似文献   

19.
目的 观察二黄糖肾康对糖尿病肾病(DN)大鼠细胞凋亡及PI3 K/AKT信号转导系统的影响. 方法 SD大鼠单侧肾切除加腹腔注射链脲佐菌素(STZ)复制DN模型,每日二黄糖肾康灌胃,8 w后流式细胞术检测细胞凋亡数目及调控因子Bax、Bcl-2、Fas、Fas-L的蛋白表达,采用Western 印迹方法检测细胞内磷酸化Akt蛋白质的表达.结果 二黄糖肾康明显减少DN大鼠肾脏皮质细胞凋亡数目,降低Bax、Fas、Fas-L的的蛋白表达,增加Bcl-2的蛋白表达,激活PI3 K/AKT信号通路.结论 二黄糖肾康能有效降低肾脏细胞凋亡,激活PI3 K/AKT信号通路.  相似文献   

20.
Wu JY  Shih JY  Chen KY  Yang CH  Yu CJ  Yang PC 《Medicine》2011,90(3):159-167
Gefitinib is effective in treating advanced non-small cell lung cancer (NSCLC), especially in Asian patients in whom the prevalence of epidermal growth factor receptor (EGFR) mutation was high. We analyzed our gefitinib treatment use in patients for advanced NSCLC to study the influence of clinical factors on the treatment outcomes in a tertiary referral medical center in Taiwan. Clinical data and EGFR mutational status of the tumors were collected. A total of 907 patients received gefitinib for advanced NSCLC: 466 patients (51.4%) underwent testing for EGFR mutations, and the other 441 patients did not. In the 466 patients who were tested for EGFR mutations, 272 (58.4%) had EGFR mutations, and an EGFR mutation was a prominent factor for objective response to gefitinib (67.3% vs. 18.3% in wildtype EGFR, p < 0.001). In the 441 patients who did not receive EGFR mutation sequencing, nonsmoker status, female sex, and adenocarcinoma cell type were predictors for better gefitinib response (p < 0.005). We found that testing for EGFR mutations was helpful in NSCLC patients in Taiwan to guide the use of gefitinib. In patients with positive activating EGFR mutations, gefitinib efficacy was prominent and significant. Therefore, analysis for EGFR mutation should be advocated. In those patients who have unknown EGFR mutation status, demographic and histopathology characteristics can be relied on to judge the potential efficacy of gefitinib use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号