首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human connexin40 gap junction channels are modulated by cAMP   总被引:7,自引:0,他引:7  
OBJECTIVE: Gap junction channels provide for direct electrical coupling between cells, and play an important role in homeostasis and electrical coupling. One of the proteins that form gap junctions, Connexin40 (Cx40), shows restricted expression in the body, and is found in blood vessels and in the atrium and conduction system of the heart. We have investigated whether gap junction channels formed of Cx40 are modulated by protein-kinase-A-mediated phosphorylation. METHODS: A communication-deficient human hepatoma cell line (SKHep1) was stably transfected with human Cx40 cDNA and the properties of Cx40 gap junctions channels and their modulation by cAMP were analyzed using immunocytochemistry, Western blotting, dual patch clamp, and dye coupling. RESULTS: Administration of 1 mM 8-Br-cAMP resulted in a mobility shift of Cx40 protein on western blot and increased macroscopic gap junctional conductance between cell pairs by 46.2 +/- 12.0% (mean +/- S.E.M., n = 8). Under control conditions, single channel experiments revealed three single channel conductances around 30, 80 and 120 pS. When cAMP was added, channel conductances of 46 and 120 pS were observed. In monolayers, cAMP also increased the permeability of Cx40 gap junction channels for Lucifer Yellow by 58%. CONCLUSIONS: Macroscopic conductance and permeability of Cx40 gap junctions is strongly increased by cAMP and may play a role in the regulation of intercellular communication in the heart and vasculature.  相似文献   

2.
Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of gamma oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a knockout of the neuronal (primarily interneuronal) connexin36. We have recently shown that pharmacological gap junction blockade abolishes kainate-induced gamma oscillations in connexin36 knockout mice; without such gap junction blockade, gamma oscillations do occur in the knockout mice, albeit at reduced power compared with wild-type mice. As interneuronal dendritic electrical coupling is almost absent in the knockout mice, these pharmacological data indicate a role of axonal electrical coupling in generating the gamma oscillations. We construct a network model of an experimental gamma oscillation, known to be regulated by both types of electrical coupling. In our model, axonal electrical coupling is required for the gamma oscillation to occur at all; interneuron dendritic gap junctions exert a modulatory effect.  相似文献   

3.
OBJECTIVES: Conduction of vasoconstrictor and vasodilator responses in the microcirculation involves electrical coupling through gap junction channels among cells of the vascular wall. The present study determined whether reported differences in the properties of conduction along the arterioles of the epithelial hamster cheek pouch (CPA) and feed arteries of its retractor skeletal muscle (RFA) result from differences in the expression profile of specific connexin (Cx) isoforms and the gap junctions they comprise. METHODS: Real-time PCR, immunohistochemistry and serial section electron microscopy were used to compare wall morphology and the distribution of gap junctions between respective vessels. RESULTS: Expression of mRNA for Cx37, 40, 43 and 45 was similar between CPA and RFA. In the endothelium, Cx37, 40 and 43 proteins were expressed abundantly between adjacent cells while Cx37 was present in the smooth muscle. In both vessels, endothelial and smooth muscle cell (SMC) layers were well connected by myoendothelial gap junctions (MEGJs), which were found near endothelial cell (EC) gap junctions. CONCLUSIONS: The absence of differential gap junctional expression between CPA and RFA, in spite of documented differences in cellular conduction pathways, supports the hypothesis that conductance of vascular gap junction channels can be differentially modulated in resistance microvessels.  相似文献   

4.
Gap junctions are formed by a family of homologous proteins termed connexins. Their channels are dodecamers, and homomeric forms differ in their properties with respect to control by voltage and other gating stimuli. We report here the properties of coupling from expression of connexin complementary RNAs (cRNAs; sense to mRNA, antisense to cDNA) in Xenopus oocyte pairs in which endogenous coupling was blocked by injection of DNA oligonucleotides antisense to the mRNA of Cx38, the principal endogenous connexin. We found that a connexin recently sequenced from rat liver, Cx26, formed functional gap junctions whose conductance exhibited voltage dependence with unusual characteristics suggestive of two gating mechanisms. Junctional conductance (gj) was increased to a small degree by depolarization and decreased by hyperpolarization of either cell in a coupled pair, indicating dependence on the potential between the inside and outside of the cells (Vi-o). These changes were fast compared with the resolution of their measurement (ca. 10 ms). On a slower timescale, large transjunctional potentials (Vj) of either sign caused a more substantial decrease in conductance similar to that previously reported for several other gap junctions. Homotypic junctions formed of another connexin, Cx32, exhibited a similar slow dependence on Vj but no dependence on Vi-o. In contrast, heterotypic junctions between an oocyte expressing Cx26 and one expressing Cx32 were electrically asymmetric; they exhibited a greater fast change in gj, which depended, however, on Vj, such that gj increased with relative positivity on the Cx26 side and decreased with relative negativity on the Cx26 side. There was also a large slow decrease in gj in response to Vj for relative positivity on the Cx26 side but not for Vj of the opposite sign. These data indicate that properties of the hemichannels contributed by the two connexins in the heterotypic case were changed from their properties in homotypic junctions. The fast change in gj may involve a mechanism analogous to that at fast rectifying electrical synapses. Experiments in which oocytes expressing Cx32 were paired with oocytes expressing both Cx26 and Cx32 demonstrated that asymmetric junctions would form between oocytes expressing both connexins, thereby confirming their potential relevance in vivo, where the same coupled cells are known to express both proteins.  相似文献   

5.
To characterize the role of connexin43 (Cx43) as a determinant of cardiac propagation, we synthesized strands and pairs of ventricular myocytes from germline Cx43-/- mice. The amount of Cx43, Cx45, and Cx40 in gap junctions was analyzed by immunohistochemistry and confocal microscopy. Intercellular electrical conductance, gj, was measured by the dual-voltage clamp technique (DVC), and electrical propagation was assessed by multisite optical mapping of transmembrane potential using a voltage-sensitive dye. Compared with wild-type (Cx43+/+) strands, immunoreactive signal for Cx43 was reduced by 46% in Cx43+/- strands and was absent in Cx43-/- strands. Cx45 signal was reduced by 46% in Cx43+/- strands and to the limit of detection in Cx43-/- strands, but total Cx45 protein levels measured in immunoblots of whole cell homogenates were equivalent in all genotypes. Cx40 was detected in 2% of myocytes. Intercellular conductance, gj, was reduced by 32% in Cx43+/- cell pairs and by 96% in Cx43-/- cell pairs. The symmetrical dependence of gj on transjunctional voltage and properties of single-channel recordings indicated that Cx45 was the only remaining connexin in Cx43-/- cells. Propagation in Cx43-/- strands was very slow (2.1 cm/s versus 52 cm/s in Cx43+/+) and highly discontinuous, with simultaneous excitation within and long conduction delays (2 to 3 ms) between individual cells. Propagation was abolished by 1 mmol/L heptanol, indicating residual junctional coupling. In summary, knockout of Cx43 in ventricular myocytes leads to very slow conduction dependent on the presence of Cx45. Electrical field effect transmission does not contribute to propagation in synthetic strands.  相似文献   

6.
BACKGROUND: Ischemic preconditioning delays the onset of electrical uncoupling and prevents loss of the primary ventricular gap junction protein connexin 43 (Cx43) from gap junctions during subsequent ischemia. OBJECTIVE: To test the hypothesis that these effects are mediated by protein kinase C epsilon (PKCepsilon), we studied isolated Langendorff-perfused hearts from mice with homozygous germline deletion of PKCepsilon (PKCepsilon-KO). METHODS: Cx43 phosphorylation and distribution were measured by quantitative immunoblotting and confocal microscopy. Changes in electrical coupling were monitored using the 4-electrode technique to measure whole-tissue resistivity. RESULTS: The amount of Cx43 located in gap junctions, measured by confocal microscopy under basal conditions, was significantly greater in PKCepsilon-KO hearts compared with wild-type, but total Cx43 content measured by immunoblotting was not different. These unanticipated results indicate that PKCepsilon regulates subcellular distribution of Cx43 under normal conditions. Preconditioning prevented loss of Cx43 from gap junctions during ischemia in wild-type but not PKCepsilon-KO hearts. Specific activation of PKCepsilon, but not PKCdelta, also prevented ischemia-induced loss of Cx43 from gap junctions. Preconditioning delayed the onset of uncoupling in wild-type but hastened uncoupling in PKCepsilon-KO hearts. Cx43 phosphorylation at the PKC site Ser368 increased 5-fold after ischemia in wild-type hearts, and surprisingly, by nearly 10-fold in PKCepsilon-KO hearts. Preconditioning prevented phosphorylation of Cx43 in gap junction plaques at Ser368 in wild-type but not PKCepsilon-KO hearts. CONCLUSION: Taken together, these results indicate that PKCepsilon plays a critical role in preconditioning to preserve Cx43 signal in gap junctions and delay electrical uncoupling during ischemia.  相似文献   

7.
He DS  Burt JM 《Circulation research》2000,86(11):E104-E109
Volatile anesthetics alter tissue excitability by decreasing the extent of gap junction-mediated cell-cell coupling and by altering the activity of the channels that underlie the action potential. In the present study, we demonstrate, using dual whole-cell voltage-clamp techniques, that coexpression of connexin (Cx) 40 and Cx43 rendered cells more sensitive to uncoupling by halothane than cells that express only Cx40 or only Cx43. The halothane-induced reduction in junctional conductance was caused by decreased channel mean open time and increased channel mean closed time. The magnitude of the effect of halothane on channel open time was least for Cx40-like channels and greatest for heteromeric channels. Thus, the data indicate that halothane gates gap junction channels to the closed state in a dose-dependent and connexin-specific manner. One consequence of the selectivity of halothane is that the profile of single-channel events observed in the presence of halothane may not be quantitatively representative of the population of channels contributing to macroscopic conductance in cells that express more than one connexin. In addition, in tissues that express multiple connexins, such as heart and blood vessels, the capacity of the gap junctions to transmit electrical and chemical signals in the presence of halothane could vary according to the pattern of connexin expression.  相似文献   

8.
Although regulation of chemical transmission is known to involve the interaction of receptors with scaffold proteins, little is known about the existence of protein–protein interactions in regulating gap junction-mediated electrical synapses. The scaffold protein zonula-occludens-1 (ZO-1), a member of the MAGUK family of proteins, was reported to interact with several connexins (Cxs). We show here that ZO-1 extensively colocalizes with Cx35 at identifiable “mixed” (electrical and chemical) contacts on goldfish Mauthner cells, a model synapse for the study of vertebrate electrical transmission where it is possible to correlate physiological properties with molecular composition. Further, our analysis indicates that these proteins directly interact at goldfish electrical synapses. In contrast to Cx43, which interacts with ZO-1 via the PDZ2 domain, Cx35 interacts with ZO-1 via the PDZ1 domain, and this association is of lower affinity. The properties of the ZO-1/Cx35 association suggest the existence of a more dynamic relation between these two proteins, possibly including a role of ZO-1 in regulating gap junctional conductance at these highly modifiable electrical synapses. The interaction of ZO-1 with conserved regions of the C termini of Cx35/Cx36 orthologs may have a common function at electrical synapses of mammals and other vertebrates.  相似文献   

9.
Mice with cardiac-restricted inactivation of the connexin43 gene (CKO mice) have moderate slowing of ventricular conduction and lethal arrhythmias. Mechanisms through which propagation is maintained in the absence of Cx43 are unknown. We evaluated gap junctional conductance in CKO ventricular pairs using dual patch clamp methods. Junctional coupling was reduced to 4+/-2 nS (side-to-side) and 11+/-2 nS (end-to-end), including 21% of cell-pairs with no detectable coupling, compared with 588+/-104 nS (side-to-side) and 558+/-92 nS (end-to-end) in control cell-pairs. Voltage dependence of control gap junctions was characteristic of Cx43. CKO conductance showed increased voltage dependence, suggesting low-level expression of other connexin isoforms. From theoretical models, this degree of CKO coupling is not expected to support levels of conduction persisting in vivo, suggesting the possibility that there are additional mechanisms for maintained propagation when gap junctional conductance is severely reduced.  相似文献   

10.
Objective: To compare gap junction expression and intercellular coupling in wildtype neonatal cardiac myocytes to those from mice lacking the most abundant cardiac gap junction protein (connexin43, Cx43). Methods: Northern and Western blots compared connexin mRNA and protein levels, immunocytochemistry evaluated connexin distribution in neonatal Cx43 null(-/-), heterozygous(+/-) and wildtype(+/+) mouse hearts. Ca(2+) imaging, dye coupling and electrophysiological methods evaluated intercellular communication. Results: Similar levels of Cx40 and Cx45 were detected in all genotypes, although in adult cardiac tissue from wildtype mice, Cx43 expression was higher than in heterozygotes. After culturing dissociated cells for 3-4 days, cardiocytes beat spontaneously; in Cx43(+/+) and (+/-) cultures, the beating was generally quite synchronous. In Cx43(-/-) mice, interbeat intervals were on average twice as long and more variable than in Cx43(+/+) or Cx43(+/-) cultures. Junctional conductance was lower by about 60% in Cx43(-/-) as compared to Cx43(+/-) and (+/+) littermates; Lucifer Yellow dye coupling was virtually absent in Cx43(-/-) cardiomyocytes but was comparably strong in wildtype and heterozygous siblings. Macroscopic junctional conductance measurements on Cx43(-/-) cardiocytes showed slightly stronger voltage sensitivity in these cells than in Cx43(+/+) cardiocytes. Unitary junctional conductance measurements revealed distinct populations of channels contributing to macroscopic conductance for Cx43(+/+) and Cx43(-/-) genotypes. Conclusions: In Cx43-deficient cardiac myocytes, the expression of other connexins only partially compensates for the functional loss, with dye coupling and spontaneous beating being strongly impaired.  相似文献   

11.
OBJECTIVE: We studied a transgenic mouse model of human desmin-related cardiomyopathy with cardiac-specific expression of a 7-amino acid deletion mutation in desmin (D7-des) to test the hypothesis that impaired linkage between desmin and desmosomes alters expression and function of the electrical coupling protein, connexin43 (Cx43). METHODS: Expression of Cx43 and selected mechanical junctions proteins was characterized in left ventrices of D7-des and control mice by quantitative confocal microscopy and immunoblotting. Remodeling of gap junctions was also analyzed by electron microscopic morphometry. The electrophysiological phentoype of D7-des mice was characterized by electrocardiography and optical mapping of transmembrane voltage. RESULTS: Cx43 signal at intercalated disks was decreased by approximately 3-fold in D7-des ventricular tissue due to reductions in both gap junction number and size. Immunoreactive signal at cell-cell junctions was also reduced significantly for adhesion molecules and linker proteins of desmosomes and fascia adherens junctions. Electron microscopy showed decreased gap junction remodeling. However, immunoblotting showed that the total tissue content of Cx43 and mechanical junction proteins was not reduced, suggesting that diminished signal at cell-cell junctions was not due to insufficient protein expression, but to failure of these proteins to assemble properly within electrical and mechanical junctions. Remodeling of gap junctions in D7-des mice led to slowing of ventricular conduction as demonstrated by optical electrophysiological mapping. CONCLUSIONS: These results illustrate how a defect in a protein conventionally thought to fulfill a mechanical function in the heart can also lead to electrophysiological alterations that may contribute to arrhythmogenesis.  相似文献   

12.
Physiological and ultrastructural evidence indicates that gap junctions link many classes of neurons in mammalian central nervous system (CNS), allowing direct electrical and metabolic communication. Among at least six gap junction-forming connexin proteins in adult rat brain, connexin- (Cx) 32, Cx36, and Cx43 have been reported to occur in neurons. However, no connexin has been documented at ultrastructurally defined neuronal gap junctions. To address this question directly, freeze-fracture replica immunogold labeling (FRIL) and immunofluorescence (IF) were used to visualize the subcellular and regional localization of Cx36 in rat brain and spinal cord. Three antibodies were generated against different sequences in Cx36. By Western blotting, these antibodies detected protein at 36 and 66 kDa, corresponding to Cx36 monomer and dimer forms, respectively. After double-labeling for Cx36 and Cx43 by FRIL, neuronal gap junctions in inferior olive, spinal cord, and retina were consistently immunogold-labeled for Cx36, but none were labeled for Cx43. Conversely, Cx43 but not Cx36 was detected in astrocyte and ependymocyte gap junctions. In >250 Cx32/Cx43 single- and double-labeled replicas from 10 CNS regions, no neuronal gap junctions were labeled for either Cx32 or Cx43. Instead, Cx32 and Cx43 were restricted to glial gap junctions. By IF, Cx36 labeling was widely distributed in neuropil, including along dendritic processes and within neuronal somata. On the basis of FRIL identification of Cx36 in neuronal gap junctions and IF imaging of Cx36 throughout rat brain and spinal cord, neuronal gap junctions containing Cx36 appear to occur in sufficient density to provide widespread electrical and metabolic coupling in adult CNS.  相似文献   

13.
Connexin 43 and ischemic preconditioning   总被引:8,自引:0,他引:8  
Connexin 43 (Cx43) is the essential protein to form hemichannels and gap junctions in the myocardium. The phosphorylation status of Cx43 which is regulated by a variety of protein kinases and phosphatases determines hemichannel and/or gap junction conductance and permeability. Gap junctions are involved in cell-cell coupling while hemichannels contribute to cardiomyocyte volume regulation. Cx43-formed channels are involved in ischemia/reperfusion injury, since blockade of a large portion of Cx43-formed channels attenuates ischemic hypercontracture, infarct development and post myocardial infarction remodeling. Ischemic preconditioning's protection also depends on functional Cx43-formed channels, since uncoupling of channels or genetic Cx43 deficiency abolishes infarct size reduction by ischemic preconditioning. The exact underlying mechanism(s) how Cx43 mediates protection remain to be established.  相似文献   

14.
The role of gap junctions in the neural control of fertility remains poorly understood. Using acute brain slices from adult GnRH-green fluorescent protein transgenic mice, individual GnRH neurons were filled with a mixture of fluorescent dextran and neurobiotin. No dye transfer was found between any GnRH neurons, although approximately 30% of GnRH neurons exchanged neurobiotin with closely apposed cells. Dual electrophysiological recordings from pairs of GnRH neurons revealed an absence of electrical coupling. Using adult connexin 36 (Cx36)-cyan fluorescent protein transgenic mice, Cx36 was identified in cells within several hypothalamic brain regions, including 64% of preoptic area kisspeptin neurons but not in GnRH neurons. To assess the potential role of Cx36 in non-GnRH neurons within the GnRH neuronal network (i.e. neurons providing afferent inputs to GnRH neurons), a calmodulin kinase IIα-Cre (CKC)-LoxP strategy was used to generate mice with a neuron-specific deletion of Cx36 beginning in the first postnatal week. Mutant female mice exhibited normal puberty onset but disordered estrous cyclicity, although their fecundity was normal as was their estrogen-negative and -positive feedback mechanisms. The effects of adult deletion of Cx36 from neurons were assessed using a tamoxifen-dependent inducible CKC-Cx36 transgenic strategy. Mutant mice exhibited the same reproductive phenotype as the CKC-Cx36 animals. Together these observations demonstrate that there is no gap junctional coupling between GnRH neurons. However, it is apparent that other neurons within the GnRH neuronal network, potentially the preoptic kisspeptin neurons, are dependent on Cx36 gap junctions and that this is critical for normal estrous cyclicity.  相似文献   

15.
Gap junctions formed between transfected cells expressing connexin (Cx) 40 and Cx43 (Cx43-RIN, Cx40-HeLa, and Cx43-HeLa) revealed a relationship, g(j)=f(V(j)), at steady state, that is typified by a nonsymmetrical behavior similar to that previously reported for other heterotypic channels (gap junction conductance [g(j)]; transjunctional voltage [V(j)]). The unitary conductance of the channels was sensitive to the polarity of V(j). A main state conductance of 61 pS was found when the Cx43 cell was stepped positively or the Cx40 cell negatively (V(j)=70 mV); the reverse polarities yielded a conductance of 100 pS. These heterotypic channels were permeable to carboxyfluorescein. In addition, two other heterotypic forms are illustrated to demonstrate that endogenous Cx45 expression cannot explain the results. The demonstration of heterotypic Cx40-Cx43 channels may have implications for the propagation of the electrical impulse in heart. For example, they may contribute to the slowing of the impulse propagation through the junctions between Purkinje fibers and ventricular muscle.  相似文献   

16.
BACKGROUND: Disruptions to intermyocyte coupling have been implicated in arrhythmogenesis and development of conduction disturbances. At present, understanding of the relationship between the microscopic organization of intercellular coupling and the macroscopic spread of impulse in the normal and diseased heart is largely confined to theoretical analyses. METHODS AND RESULTS: The abundance and arrangement of gap junctions, as well as conduction properties, were assessed in terminal crest preparations isolated from the atria of neonate, weanling, and adult rabbits. We report that the connexin composition of terminal crest was uncomplicated, with Cx43 being the most prominent isoform detectable by Western blotting and immunostaining. Terminal crest myocytes showed little change in total Cx43-gap junction per cell during postnatal growth as assessed by stereology. However, marked non-uniformities emerged in the sarcolemmal distribution of Cx43-gap junctions. Cx43-gap junction area at myocyte termini increased 3.5-fold from birth to adulthood. Correlated with this change in Cx43, impulse propagation velocity parallel to the myofiber axis, as assessed by multi-site optical mapping using voltage-sensitive dye (di-4-ANEPPS), increased 2.4-fold. Conversely, the amount of Cx43-gap junctions on myocyte sides, and the conduction velocity transverse to the myofiber axis, remained relatively invariant during maturation. Hence, the increasing electrical anisotropy of maturing terminal crest was wholly accounted for by increases in conductance velocity along the bundle. This increase in longitudinal conduction velocity was correlated with changes in the sarcolemmal pattern, but not the overall density, of Cx43-gap junctions. CONCLUSIONS: This study provides the first correlative structure/function analysis of the relationship between the macroscopic conduction of impulse and the microscopic cellular organization of gap junctions in a differentiating cardiac bundle. Confirmation is provided for theoretical predictions which emphasize the importance of the cell-to-cell geometry of coupling in determining the spread and pattern of myocardial activation.  相似文献   

17.
Introduction: Gap junctions consist of connexin (Cx) proteins that enable electrical coupling of adjacent cells and propagation of action potentials. Cx40 is solely expressed in the atrium and His-Purkinje system. The purpose of this study was to evaluate atrioventricular (AV) conduction in mice with a homozygous deletion of Connexin40 (Cx40–/–). Methods: Surface ECGs, intracardiac electrophysi-ology (EP) studies, and ambulatory telemetry were performed in Cx40–/– mutant mice and wild-type (WT) controls. Atrioventricular (AV) conduction parameters and arrhythmia inducibility were evaluated using programmed stimulation. Analysis of heart rate variability was based on results of ambulatory monitoring. Results: Significant findings included prolonged measures of AV refractoriness and conduction in connexin40-deficient mice, including longer PR, AH, and HV intervals, increased AV refractory periods, and increased AV Wenckebach and 2:1 block cycle lengths. Connexin40-deficient mice also had an increased incidence of inducible ventricular tachycardia, decreased basal heart rates, and increased heart rate variability. Conclusion: A homozygous disruption of Cx40 results in prolonged AV conduction parameters due to abnormal electrical coupling in the specialized conduction system, which may also predispose to arrhythmia vulnerability.  相似文献   

18.
Rat cortical astrocytes in pure culture are functionally coupled to neighboring cells via connexin (Cx) 43 gap junctions under ordinary conditions. Small fluorescent molecules such as Lucifer yellow (LY) pass between cell interiors via gap junctions, but do not enter the cells when externally applied. Subjecting rat and mouse cortical astrocytes to "chemical ischemia" by inhibition of glycolytic and oxidative metabolism induced permeabilization of cells to Lucifer yellow and ethidium bromide before loss of membrane integrity determined by dextran uptake and lactate dehydrogenase release. The gap junction blockers octanol and 18alpha-glycyrrhetinic acid markedly reduced dye uptake, suggesting that uptake was mediated by opening of unapposed hemichannels. Extracellular La(3+) also reduced dye uptake and delayed cell death. The purinergic blocker, oxidized ATP, was ineffective. Astrocytes isolated from mice with targeted deletion of the Cx43 coding DNA exhibited greatly reduced dye coupling and ischemia-induced dye uptake, evidence that dye uptake is mediated by Cx43 hemichannels. Dye coupling was reduced but not blocked by metabolic inhibition. Blockade of lipoxygenases or treatment with free radical scavengers reduced dye uptake by rat astrocytes, suggesting a role for arachidonic acid byproducts in hemichannel opening. Furthermore, permeabilization was accompanied by reduction in ATP levels and dephosphorylation of Cx43. Although hemichannel opening would tend to collapse electrochemical and metabolic gradients across the plasma membrane of dying cells, healthy cells might rescue dying cells by transfer of ions and essential metabolites via Cx43 gap junctions. Alternatively, dying astrocytes might compromise the health of neighboring cells via Cx43 gap junctions, thereby promoting the propagation of cell death.  相似文献   

19.
BACKGROUND: The epicardial border zone (EBZ) of surviving myocytes in the healing, 4- to 5-day-old canine infarct is an arrhythmogenic substrate characterized by both structural and functional remodeling of Cx43. Unknown is whether the remodeling of gap junction conductance is heterogeneous in the EBZ like that of sarcolemmal ion channel remodeling and how remodeling of the gap junction influences conduction and anisotropy. METHODS AND RESULTS: Ventricular tachycardia was initiated by programmed stimulation in healing canine infarcted hearts. Reentrant circuits were mapped and the central common pathway (CCP) and outer pathway (OP) regions localized. Epimyocardium removed from the CCP was disaggregated to generate myocyte pairs for conductance measurements. Cx43 distribution was determined by immunofluorescent confocal microscopy. While transverse coupling (gap junction conductance) was markedly decreased in OP cells, CCP cells with lateralized Cx43 gap junctions showed normal conductance. Longitudinal coupling in both OP and CCP was no different than normal. Consistent with conductance measurements, the anisotropic ratio in the CCP was similar to that of normal tissue. In the OP it was increased. Despite normal longitudinal and transverse conductance and anisotropic ratio, longitudinal and transverse conduction velocities were decreased in the CCP with respect to normal epicardium, possibly as a result of the remodeling of sarcolemmal ion channels in this region. CONCLUSIONS: Gap junction conductance and distribution is heterogeneous in different regions of reentrant circuits. Lateralization of Cx43 gap junctions in CCP of reentrant circuits is associated with normal transverse conductance between cell pairs. In contrast, absence of lateralization in OP is associated with reduced transverse conductance. Despite normal anisotropic ratio, conduction velocity in CCP region remains slower than normal. This suggests that the effects of Cx43 remodeling in the infarcted heart should be interpreted in conjunction with other types of remodeling occurring in the EBZ (i.e. sarcolemmal ion channels).  相似文献   

20.
Regulation of neuronal connexin-36 channels by pH   总被引:1,自引:0,他引:1  
Neurotransmission through electrical synapses plays an important role in the spike synchrony among neurons and oscillation of neuronal networks. Indeed, electrical transmission has been implicated in the hypersynchronous electrical activity of epilepsy. We have investigated the influence of intracellular pH on the strength of electrical coupling mediated by connexin36 (Cx36), the principal gap junction protein in the electrical synapses of vertebrates. In striking contrast to other connexin isoforms, the activity of Cx36 channels decreases following alkalosis rather than acidosis when it is expressed in Xenopus oocytes and N2A cells. This uncoupling of Cx36 channels upon alkalinization occurred in the vertebrate orthologues analyzed (human, mouse, chicken, perch, and skate). While intracellular acidification caused a mild or moderate increase in the junctional conductance of virtually all these channels, the coupling of the skate Cx35 channel was partially blocked by acidosis. The mutational analysis suggests that the Cx36 channels may contain two gating mechanisms operating with opposing sensitivity to pH. One gate, the dominant mechanism, closes for alkalosis and it probably involves an interaction between the C- and N-terminal domains, while a secondary acid sensing gate only causes minor, albeit saturating, changes in coupling following acidosis and alkalosis. Thus, we conclude that neuronal Cx36 channels undergo unique regulation by pHi since their activity is inhibited by alkalosis rather than acidosis. These data provide a novel basis to define the relevance and consequences of the pH-dependent modulation of Cx36 synapses under physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号