首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The presence of myocardial fibrosis is associated with worse clinical outcomes in hypertrophic cardiomyopathy (HCM). Cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) sequences can detect regional, but not diffuse myocardial fibrosis. Post-contrast T1 mapping is an emerging CMR technique that may enable the non-invasive evaluation of diffuse myocardial fibrosis in HCM. The purpose of this study was to non-invasively detect and quantify diffuse myocardial fibrosis in HCM with CMR and examine its relationship to diastolic performance.

Methods

We performed CMR on 76 patients - 51 with asymmetric septal hypertrophy due to HCM and 25 healthy controls. Left ventricular (LV) morphology, function and distribution of regional myocardial fibrosis were evaluated with cine imaging and LGE. A CMR T1 mapping sequence determined the post-contrast myocardial T1 time as an index of diffuse myocardial fibrosis. Diastolic function was assessed by transthoracic echocardiography.

Results

Regional myocardial fibrosis was observed in 84% of the HCM group. Post-contrast myocardial T1 time was significantly shorter in patients with HCM compared to controls, consistent with diffuse myocardial fibrosis (498 ± 80 ms vs. 561 ± 47 ms, p < 0.001). In HCM patients, post-contrast myocardial T1 time correlated with mean E/e’ (r = −0.48, p < 0.001).

Conclusions

Patients with HCM have shorter post-contrast myocardial T1 times, consistent with diffuse myocardial fibrosis, which correlate with estimated LV filling pressure, suggesting a mechanistic link between diffuse myocardial fibrosis and abnormal diastolic function in HCM.  相似文献   

2.

Background

Myocardial fibrosis is frequently identified in patients with hypertrophic cardiomyopathy (HCM). The aim of this study was to investigate the role of myocardial fibrosis detected by late gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) as a potential arrhythmogenic substrate in HCM. We hypothesized that the extent of LGE might be associated with the inducibility of ventricular tachyarrhythmias (VT) during programmed ventricular stimulation (PVS).

Methods

We evaluated retrospectively LGE CMR of 76 consecutive HCM patients, of which 43 presented with one or more risk factors for sudden cardiac death (SCD) and were therefore clinically classified as high-risk patients. Of these 43 patients, 38 additionally underwent an electrophysiological testing (EP). CMR indices and the extent of LGE, given as the % of LV mass with LGE were correlated with the presence of risk factors for SCD and the results of EP.

Results

High-risk patients had a significant higher prevalence of LGE than low-risk patients (29/43 [67%] versus 14/33 [47%]; p = 0.03). Also the % of LV mass with LGE was significantly higher in high-risk patients than in low-risk patients (14% versus 3%, p = 0.001, respectively). Of the 38 high- risk patients, 12 had inducible VT during EP. LV function, volumes and mass were comparable in patients with and without inducible VT. However, the % of LV mass with LGE was significantly higher in patients with inducible VT compared to those without (22% versus 10%, p = 0.03). The prevalence of LGE was, however, comparable between HCM patients with and those without inducible VT (10/12 [83%] versus 15/26 [58%]; p = 0.12). In the univariate analysis the % of LV mass with LGE and the septal wall thickness were significantly associated with the high-risk group (p = 0.001 and 0.004, respectively). Multivariate analysis demonstrated that the extent of LGE was the only independent predictor of the risk group (p = 0.03).

Conclusions

The extent of LGE in HCM patients correlated with risk factors of SCD and the likelihood of inducible VT. Furthermore, LGE extent was the only independent predictor of the risk group. This supports the hypothesis that the extent of fibrosis may serve as potential arrhythmogenic substrate for the occurrence of VT, especially in patients with clinical risk factors for SCD.  相似文献   

3.

Background

In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown.

Methods

8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars.

Results

LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery.

Conclusions

Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined.  相似文献   

4.

Background

This study was designed to assess whether cardiovascular magnetic resonance imaging (CMR) in Duchenne muscular dystrophy carriers (DMDc) may index any cell milieu elements of LV dysfunction and whether this cardiac phenotype may be related to genotype. The null hypothesis was that myocardial fibrosis, assessed by late gadolinium enhancement (LGE), might be similarly accounted for in DMDc and gender and age-matched controls.

Methods

Thirty DMDc patients had CMR and genotyping with 37 gender and age-matched controls. Systolic and diastolic LV function was assessed by 2D-echocardiography.

Results

Absolute and percent LGE were higher in muscular symptomatic (sym) than asymptomatic (asy) DMDc (1.77 ± 0.27 vs 0.76 ± 0.17 ml; F = 19.6, p < 0.0001 and 1.86 ± 0.26% vs 0.68 ± 0.17%, F = 22.1, p < 0.0001, respectively). There was no correlation between LGE and age. LGE was seen most frequently in segments 5 and 6; segment 5 was involved in all asy-DMDc. Subepicardial LGE predominated, compared to the mid-myocardial one (11 out of 14 DMDc). LGE was absent in the subendocardium. No correlations were seen between genotyping (type of mutation, gene region and protein domain), confined to the exon’s study, and cardiac phenotype.

Conclusions

A typical myocardial LGE-pattern location (LV segments 5 and 6) was a common finding in DMDc. LGE was more frequently subepicardial plus midmyocardial in sym-DMDc, with normal LV systolic and diastolic function. No genotype-phenothype correlation was found.  相似文献   

5.

Background

In the situation of acute coronary occlusion, the myocardium supplied by the occluded vessel is subject to ischemia and is referred to as the myocardium at risk (MaR). Single photon emission computed tomography has previously been used for quantitative assessment of the MaR. It is, however, associated with considerable logistic challenges for employment in clinical routine. Recently, T2-weighted cardiovascular magnetic resonance (CMR) has been introduced as a new method for assessing MaR several days after the acute event. Furthermore, it has been suggested that the endocardial extent of infarction as assessed by late gadolinium enhanced (LGE) CMR can also be used to quantify the MaR. Hence, we sought to assess the ability of endocardial extent of infarction by LGE CMR to predict MaR as compared to T2-weighted imaging.

Methods

Thirty-seven patients with early reperfused first-time ST-segment elevation myocardial infarction underwent CMR imaging within the first week after percutaneous coronary intervention. The ability of endocardial extent of infarction by LGE CMR to assess MaR was evaluated using T2-weighted imaging as the reference method.

Results

MaR determined with T2-weighted imaging (34 ± 10%) was significantly higher (p < 0.001) compared to the MaR determined with endocardial extent of infarction (23 ± 12%). There was a weak correlation between the two methods (r2 = 0.17, p = 0.002) with a bias of -11 ± 12%. Myocardial salvage determined with T2-weighted imaging (58 ± 22%) was significantly higher (p < 0.001) compared to myocardial salvage determined with endocardial extent of infarction (45 ± 23%). No MaR could be determined by endocardial extent of infarction in two patients with aborted myocardial infarction.

Conclusions

This study demonstrated that the endocardial extent of infarction as assessed by LGE CMR underestimates MaR in comparison to T2-weighted imaging, especially in patients with early reperfusion and aborted myocardial infarction.  相似文献   

6.

Background

Clinical data on myocardial function in HCM mutation carriers (carriers) is sparse but suggests that subtle functional abnormalities can be measured with tissue Doppler imaging before the development of overt hypertrophy. We aimed to confirm the presence of functional abnormalities using cardiovascular magnetic resonance (CMR), and to investigate if sensitive functional assessment could be employed to identify carriers.

Results

28 carriers and 28 controls were studied. Global left atrial (LA) and left ventricular (LV) dimensions, segmental peak systolic circumferential strain (SCS) and peak diastolic circumferential strain rate (DCSR), as well as the presence of late Gadolinium enhancement (LGE) were determined with CMR. Septal and lateral myocardial velocities were measured with echocardiographic tissue Doppler imaging. lv mass and volumes were comparable between groups. Maximal septal to lateral wall thickness ratio (SL ratio) was larger in carriers than in controls (1.3 ± 0.2 versus 1.1 ± 0.1, p < 0.001). Also, LA volumes were larger in carriers compared to controls (p < 0.05). Both peak SCS (p < 0.05) and peak DCSR (p < 0.01) were lower in carriers compared to controls, particularly in the basal lateral wall. Focal LGE was present in 2 carriers and not in controls. The combination of a SL ratio >1.2 and a peak DCSR <105%.s-1 was present in 45% of carriers and in none of the controls, yielding a positive predictive value of 100%. Two carriers and 18 controls had a SL ratio < 1.2 and peak DCSR >105%.s-1, yielding a negative predictive value of 90%. With multivariate analysis, HCM mutation carriership was an independent determinant of reduced peak SCS and peak DCSR.

Conclusions

HCM mutation carriership is an independent determinant of reduced peak SCS and peak DCSR when LV wall thickness is within normal limits, and is associated with increased LA volumes and SL ratio. Using SL ratio and peak DCSR has a high accuracy to identify carriers. However, since carriers also display structural abnormalities and focal LGE, we advocate to also evaluate morphology and presence of LGE when screening for carriers.  相似文献   

7.

Background

Increased left ventricular (LV) torsion has been observed in patients with manifest familial hypertrophic cardiomyopathy (HCM), and is thought to be caused by subendocardial dysfunction. We hypothesize that increased LV torsion is already present in healthy mutation carriers with normal wall thickness.

Methods

Seventeen carriers with an LV wall thickness <10 mm, and seventeen age and gender matched controls had cardiovascular magnetic resonance (CMR) cine imaging and tissue tagging. LV volumes and mass were calculated from the cine images. LV torsion, torsion rate, endocardial circumferential strain and torsion-to-endocardial-circumferential-shortening (TECS) ratio, which reflects the transmural distribution in contractile function, were determined using tissue tagging.

Results

LV volumes, mass and circumferential strain were comparable between groups, whereas LV ejection fraction, torsion and TECS-ratio were increased in carriers compared to controls (63 ± 3% vs. 60 ± 3%, p = 0.04, 10.1 ± 2.5° vs. 7.7 ± 1.2°, p = 0.001, and 0.52 ± 0.14°/% vs. 0.42 ± 0.10°/%, p = 0.02, respectively).

Conclusions

Carriers with normal wall thickness display increased LV torsion and TECS-ratio with respect to controls, which might be due to subendocardial myocardial dysfunction. As similar abnormalities are observed in patients with manifest HCM, the changes in healthy carriers may be target for clinical intervention to delay or prevent the onset of hypertrophy.  相似文献   

8.

Background

Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. The prevalence and features of cocaine cardiotoxicity are not well known. We aimed to assess these effects using a comprehensive cardiovascular magnetic resonance (CMR) protocol in a large group of asymptomatic cocaine users.

Methods

Consecutive (n = 94, 81 males, 36.6 ±7 years), non-selected, cocaine abusers were recruited and had a medical history, examination, ECG, blood test and CMR. The CMR study included measurement of left and right ventricular (LV, RV) dimensions and ejection fraction (EF), sequences for detection of myocardial oedema and late gadolinium enhancement (LGE). Images were compared to a cohort of healthy controls.

Results

Years of regular cocaine use were 13.9 ± 9. When compared to the age-matched healthy cohort, the cocaine abusers had increased LV end-systolic volume, LV mass index and RV end-systolic volume, with decreased LVEF and RVEF. No subject had myocardial oedema, but 30% had myocardial LGE indicating myocardial damage.

Conclusions

CMR detected cardiovascular disease in 71% of this cohort of consecutive asymptomatic cocaine abusers and mean duration of abuse was related to probability of LV systolic dysfunction.  相似文献   

9.

Background

Severe aortic stenosis (AS) patients with late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) or left ventricular (LV) systolic dysfunction are known to have worse outcome. We aimed to investigate whether LGE on CMR would be useful in early detection of subclinical LV structural and functional derangements in AS patients.

Methods

118 patients with moderate to severe AS were prospectively enrolled. Echocardiography and CMR images were taken and the patients were divided into groups according to the presence/absence of LGE and of LV systolic dysfunction (LV ejection fraction (EF) <50%). The stiffness of LV was calculated based on Doppler and CMR measurements.

Results

Patients were grouped into either group 1, no LGE and normal LVEF, group 2, LGE but normal LVEF and group 3, LGE with depressed LVEF. There was a significant trend towards increasing LV volumes, worsening of LV diastolic function (E/e’, diastolic elastance), systolic function (end-systolic elastance) and LV hypertrophy between the three groups, which coincided with worsening functional capacity (all p-value < 0.001 for trend). Also, significant differences in the above parameters were noted between group 1 and 2 (E/e’, 14.6 ± 4.3 (mean ± standard deviation) in group 1 vs. 18.2 ± 9.4 in group 2; end-systolic elastance, 3.24 ± 2.31 in group 1 vs. 2.38 ± 1.16 in group 2, all p-value < 0.05). The amount of myocardial fibrosis on CMR correlated with parameters of diastolic (diastolic elastance, Spearman’s ρ = 0.256, p-value = 0.005) and systolic function (end-systolic elastance, Spearman’s ρ = -0.359, p-value < 0.001).

Conclusions

These findings demonstrate the usefulness of CMR for early detection of subclinical LV structural and functional deterioration in AS patients.  相似文献   

10.

Background

In hypertrophic cardiomyopathy (HCM), autopsy studies revealed both increased focal and diffuse deposition of collagen fibers. Late gadolinium enhancement imaging (LGE) detects focal fibrosis, but is unable to depict interstitial fibrosis. We hypothesized that with T1 mapping, which is employed to determine the myocardial extracellular volume fraction (ECV), can detect diffuse interstitial fibrosis in HCM patients.

Methods

T1 mapping with a modified Look-Locker Inversion Recovery (MOLLI) pulse sequence was used to calculate ECV in manifest HCM (n = 16) patients and in healthy controls (n = 14). ECV was determined in areas where focal fibrosis was excluded with LGE.

Results

The total group of HCM patients showed no significant changes in mean ECV values with respect to controls (0.26 ± 0.03 vs 0.26 ± 0.02, p = 0.83). Besides, ECV in LGE positive HCM patients was comparable with LGE negative HCM patients (0.27 ± 0.03 vs 0.25 ± 0.03, p = 0.12).

Conclusions

This study showed that HCM patients have a similar ECV (e.g. interstitial fibrosis) in myocardium without LGE as healthy controls. Therefore, the additional clinical value of T1 mapping in HCM seems limited, but future larger studies are needed to establish the clinical and prognostic potential of this new technique within HCM.  相似文献   

11.

Background

Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) enables state-of-the-art in vivo evaluations of myocardial fibrosis. Although LGE patterns have been well described in asymmetrical septal hypertrophy, conflicting results have been reported regarding the characteristics of LGE in apical hypertrophic cardiomyopathy (ApHCM). This study was undertaken to determine 1) the frequency and distribution of LGE and 2) its prognostic implication in ApHCM.

Methods

Forty patients with asymptomatic or minimally symptomatic pure ApHCM (age, 60.2 ± 10.4 years, 31 men) were prospectively enrolled. LGE images were acquired using the inversion recovery segmented spoiled-gradient echo and phase-sensitive inversion recovery sequence, and analyzed using a 17-segment model. Summing the planimetered LGE areas in all short axis slices yielded the total volume of late enhancement, which was subsequently presented as a proportion of total LV myocardium (% LGE).

Results

Mean maximal apical wall thickness was 17.9±2.3mm, and mean left ventricular (LV) ejection fraction was 67.7 ± 8.0%. All but one patient presented with electrocardiographic negative T wave inversion in anterolateral leads, with a mean maximum negative T wave of 7.2 ± 4.7mm. Nine patients (22.5%) had giant negative T waves, defined as the amplitude of ≥10mm, in electrocardiogram. LGE was detected in 130 segments of 30 patients (75.0%), occupying 4.9 ± 5.5% of LV myocardium. LGE was mainly detected at the junction between left and right ventricles in 12 (30%) and at the apex in 28 (70%), although LGE-positive areas were widely distributed, and not limited to the apex. Focal LGE at the non-hypertrophic LV segments was found in some ApHCM patients, even without LGE of hypertrophied apical segments. Over the 2-year follow-up, there was no one achieving the study end-point, defined as all-cause death, sudden cardiac death and hospitalization for heart failure.

Conclusions

LGE was frequently observed not only in the thickened apex of the heart but also in other LV segments, irrespective of the presence or absence of hypertrophy. The simple presence of LGE on CMR was not representative of adverse prognosis in this population.  相似文献   

12.

Background

Limb girdle muscular dystrophies (LGMD) are inclusive of 7 autosomal dominant and 14 autosomal recessive disorders featuring progressive muscle weakness and atrophy. Studies of cardiac function have not yet been well-defined in deficiencies of dysferlin (LGMD2B) and fukutin related protein (LGMD2I). In this study of patients with these two forms of limb girdle muscular dystrophy, cardiovascular magnetic resonance (CMR) was used to more specifically define markers of cardiomyopathy including systolic dysfunction, myocardial fibrosis, and diastolic dysfunction.

Methods

Consecutive patients with genetically-proven LGMD types 2I (n = 7) and 2B (n = 9) and 8 control subjects were enrolled. All subjects underwent cardiac magnetic resonance (CMR) on a standard 1.5 Tesla clinical scanner with cine imaging for left ventricular (LV) volume and ejection fraction (EF) measurement, vector velocity analysis of cine data to calculate myocardial strain, and late post-gadolinium enhancement imaging (LGE) to assess for myocardial fibrosis.

Results

Sixteen LGMD patients (7 LGMD2I, 9 LGMD2B), and 8 control subjects completed CMR. All but one patient had normal LV size and systolic function; one (type 2I) had severe dilated cardiomyopathy. Of 15 LGMD patients with normal systolic function, LGE imaging revealed focal myocardial fibrosis in 7 (47%). Peak systolic circumferential strain rates were similar in patients vs. controls: εendo was -23.8 ± 8.5vs. -23.9 ± 4.2%, εepi was -11.5 ± 1.7% vs. -10.1 ± 4.2% (p = NS for all). Five of 7 LGE-positive patients had grade I diastolic dysfunction [2I (n = 2), 2B (n = 3)]. that was not present in any LGE-negative patients or controls.

Conclusions

LGMD2I and LGMD2B generally result in mild structural and functional cardiac abnormalities, though severe dilated cardiomyopathy may occur. Long-term studies are warranted to evaluate the prognostic significance of subclinical fibrosis detected by CMR in these patients.  相似文献   

13.

Background

Cardiovascular Magnetic resonance (CMR) with the late gadolinium enhancement (LGE) technique allows the detection of myocardial fibrosis in Hypertrophic cardiomyopathy (HCM). The aim of this study was to compare different methods of automatic quantification of LGE in HCM patients. Methods: Forty HCM patients (mean age 48 y, 30 males) and 20 normal subjects (mean age 38 y, 16 males) underwent CMR, and we compared 3 methods of quantification of LGE: 1) in the SD2 method a region of interest (ROI) was placed within the normal myocardium and enhanced myocardium was considered as having signal intensity >2 SD above the mean of ROI; 2) in the SD6 method enhanced myocardium was defined with a cut-off of 6 SD above mean of ROI; 3) in the RC method a ROI was placed in the background of image, a Rayleigh curve was created using the SD of that ROI and used as ideal curve of distribution of signal intensity of a perfectly nulled myocardium. The maximal signal intensity found in the Rayleigh curve was used as cut-off for enhanced myocardium. Parametric images depicting non enhanced and enhanced myocardium was created using each method. Three investigators assigned a score to each method by the comparison of the original LGE image to the respective parametric map generated.

Results

Patients with HCM had lower concordance between the measured curve of distribution of signal intensity and the Rayleigh curve than controls (63.7 ± 12.3% vs 92.2 ± 2.3%, p < 0.0001).A cut off of concordance < 82.9% had a 97.1% sensitivity and 92.3% specificity to distinguish HCM from controls. The RC method had higher score than the other methods. The average extent of enhanced myocardium measured by SD6 and Rayleigh curve method was not significant different but SD6 method showed underestimation of enhancement in 12% and overestimation in 5% of patients with HCM.

Conclusions

Quantification of fibrosis in LGE images with a cut-off derived from the Rayleigh curve is more accurate than using a fixed cut-off.  相似文献   

14.

Background

Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is a rare coronary artery anomaly. This study shows the role of cardiovascular magnetic resonance (CMR) in assessing young patients following surgical repair of ALCAPA.

Methods

6 patients, aged 9-21 years, with repaired ALCAPA (2 Tackeuchi method, 4 direct re-implantation) underwent CMR because of clinical suspicion of myocardial ischemia. Imaging used short and long axis cine images (assess ventricular function), late-gadolinium enhancement (LGE) (detect segmental myocardial fibrosis), adenosine stress perfusion (detect reversible ischaemia) and 3D whole-heart imaging (visualize proximal coronary arteries).

Results

The left ventricular (LV) global systolic function was preserved in all patients (mean LV ejection fraction = 62.7% ± 4.23%). The LV volumes were within the normal ranges, (mean indexed LVEDV = 75.4 ± 3.5 ml/m2, LVESV = 31.6 ± 9.4 ml/m2). In 1 patient, hypokinesia of the anterior segments was visualized. Five patients showed sub-endocardial LGE involving the basal, antero-lateral wall and the anterior papillary muscle. Three patients had areas of reversible ischemia. In these 3, 3D whole-heart MRA showed that the proximal course of the left coronary artery was occluded (confirmed with cardiac catheterisation).

Conclusions

CMR is a good, non-invasive, radiation-free investigation in the post-surgical evaluation of ALCAPA. In referred patients we show that basal, antero-lateral sub-endocardial myocardial fibrosis is a characteristic finding. Furthermore, stress adenosine CMR perfusion, can identify reversible ischemia in this group, and was indicative of left coronary artery occlusion.  相似文献   

15.

Background

Different patterns of late gadolinium enhancement (LGE) including mid-wall fibrosis using cardiovascular magnetic resonance (CMR) have been reported in adult patients presenting with non-ischemic dilated cardiomyopathy (DCM). In these studies, LGE was associated with pronounced LV remodelling and predicted adverse cardiac outcomes. Accordingly, the purpose of our study was to determine the presence and patterns of LGE in children and adolescents with DCM.

Methods

Patients <18 years of age presenting with severe congestive heart failure who were admitted for evaluation of heart transplantation at our centre underwent CMR examination which consisted of ventricular functional analysis and assessment of LGE for detection of myocardial fibrosis. Ischemic DCM was excluded by coronary angiography, and right ventricular endomyocardial biopsies ruled out acute myocarditis.

Results

Thirty-one patients (mean age 2.1 ± 4.2 years) with severe LV dilatation (mean indexed LVEDV 136 ± 48 ml/m2) and LV dysfunction (mean LV-EF 23 ± 8%) were examined. LGE was detected in 5 of the 31 patients (16%) appearing in various patterns characterized as mid-wall (n = 1), focal patchy (n = 1), RV insertion site (n = 1) and transmural (n = 2). Based on histopathological analysis, 4 of the 5 LGE positive patients had lymphocytic myocarditis, whereas one patient was diagnosed with idiopathic DCM.

Conclusions

In children and adolescents with DCM, focal histologically proven myocardial fibrosis is rarely detected by LGE CMR despite marked LV dilatation and severely depressed LV function. LGE occurred in various patterns and mostly in patients with inflammatory cardiomyopathy. It remains unclear whether myocardial fibrosis in childhood DCM reflects different endogenous repair mechanisms that enable favourable reverse remodelling. Larger trials are needed to assess the prognostic implications of LGE in childhood DCM.  相似文献   

16.

Background

This study sought to evaluate the relation between long-term segmental and global functional outcome after revascularisation in patients with chronic ischaemic left ventricular dysfunction (LVD) and baseline markers of viability: late gadolinium enhancement (LGE) transmurality and contractile reserve (CR).

Methods

Forty-two patients with chronic ischaemic LVD underwent low-dose dobutamine- (LDD) and late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) before surgical or percutaneous revascularisation. Regional and global left ventricular (LV) functions and LGE were repeatedly assessed 6 ± 1 and 35 ± 6 months after revascularisation. In total, 319 at baseline dysfunctional and successfully revascularised segments were available for statistical analysis.

Results

The likelihood of long-term functional improvement was directly related to the presence of CR and inversely related to both the LGE and the degree of contractile dysfunction at baseline. The time course of functional improvement was protracted, with significantly more delay in segments with more extensive LGE (p = 0.005) and more severe contractile dysfunction at baseline (p = 0.002). The presence of CR was the predictor of earlier functional improvement (p < 0.0001). Using a definition of viable segment as a segment without any LGE or with any LGE and producing CR during LDD stimulation, ≥55% of viable segments from all dysfunctional and revascularised segments in a patient was the only independent predictor of significant improvement (≥5%) in the left ventricular ejection fraction (LVEF) after revascularisation, with a 72% sensitivity and an 80% specificity (AUC 0.76, p = 0.014). Reverse LV remodelling was observed in patients who had a significant amount of viable myocardium successfully revascularised.

Conclusions

In patients with chronic ischaemic LVD, improvement of dysfunctional but viable myocardium can be considerably delayed. Both the likelihood and the time course of functional improvement are related to the LGE, CR and the degree of contractile dysfunction at baseline. At 35 ± 6 months after revascularisation, patients with ≥55% of viable segments from all dysfunctional and revascularised segments significantly improve LVEF and experience reverse LV remodelling. A combination of LDD–CMR and LGE–CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from revascularisation.  相似文献   

17.

Background

Myocardial scarring at the LV pacing site leads to incomplete resynchronization and a suboptimal symptomatic response to CRT. We sought to determine whether the use of late gadolinium cardiovascular magnetic resonance (LGE-CMR) to guide left ventricular (LV) lead deployment influences the long-term outcome of cardiac resynchronization therapy (CRT).

Methods

559 patients with heart failure (age 70.4 ± 10.7 yrs [mean ± SD]) due to ischemic or non-ischemic cardiomyopathy underwent CRT. Implantations were either guided (+CMR) or not guided (-CMR) by LGE-CMR prior to implantation. Fluoroscopy and LGE-CMR were used to localize the LV lead tip and and myocardial scarring retrospectively. Clinical events were assessed in three groups: +CMR and pacing scar (+CMR+S); CMR and not pacing scar (+CMR-S), and; LV pacing not guided by CMR (-CMR).

Results

Over a maximum follow-up of 9.1 yrs, +CMR+S had the highest risk of cardiovascular death (HR: 6.34), cardiovascular death or hospitalizations for heart failure (HR: 5.57) and death from any cause or hospitalizations for major adverse cardiovascular events (HR: 4.74) (all P < 0.0001), compared with +CMR-S. An intermediate risk of meeting these endpoints was observed for -CMR, with HRs of 1.51 (P = 0.0726), 1.61 (P = 0.0169) and 1.87 (p = 0.0005), respectively. The +CMR+S group had the highest risk of death from pump failure (HR: 5.40, p < 0.0001) and sudden cardiac death (HR: 4.40, p = 0.0218), in relation to the +CMR-S group.

Conclusions

Compared with a conventional implantation approach, the use of LGE-CMR to guide LV lead deployment away from scarred myocardium results in a better clinical outcome after CRT. Pacing scarred myocardium was associated with the worst outcome, in terms of both pump failure and sudden cardiac death.  相似文献   

18.

Background

The extent of surgical scarring in Tetralogy of Fallot (TOF) may be a marker of adverse outcomes and provide substrate for ventricular arrhythmia. In this study we evaluate the feasibility of high resolution three dimensional (3D) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) for volumetric scar quantification in patients with surgically corrected TOF.

Methods

Fifteen consecutive patients underwent 3D LGE imaging with 3 Tesla CMR using a whole-heart, respiratory-navigated technique. A novel, signal-histogram based segmentation technique was tested for the quantification and modeling of surgical scar. Total scar volume was compared to the gold standard manual expert segmentation. The feasibility of segmented scar fusion to matched coronary CMR data for volumetric display was explored.

Results

Image quality sufficient for 3D scar segmentation was acquired in fourteen patients. Mean patient age was 32.2 ± 11.9 years (range 21 to 57 years) with mean right ventricle (RV) ejection fraction (EF) of 53.9 ± 9.2% and mean RV end diastolic volume of 117.0 ± 41.5 mL/m2. The mean total scar volume was 11.1 ± 8.2 mL using semi-automated 3D segmentation with excellent correlation to manual expert segmentation (r = 0.99, bias = 0.89 mL, 95% CI -1.66 to 3.44). The mean segmentation time was significantly reduced using the novel semi-automated segmentation technique (10.1 ± 2.6 versus 45.8 ± 12.6 minutes). Excellent intra-observer and good inter-observer reproducibility was observed.

Conclusion

3D high resolution LGE imaging with semi-automated scar segmentation is clinically feasible among patients with surgically corrected TOF and shows excellent accuracy and reproducibility. This approach may offer a valuable clinical tool for risk prediction and procedural planning among this growing population.  相似文献   

19.

Background

The presence and extent of microvascular obstruction (MO) after acute myocardial infarction can be measured by first-pass gadolinium-enhanced perfusion cardiovascular magnetic resonance (CMR) or after gadolinium injection with early or late enhancement (EGE/LGE) imaging. The volume of MO measured by these three methods may differ because contrast agent diffusion into the MO reduces its apparent extent over time. Theoretically, first-pass perfusion CMR should be the most accurate method to measure MO, but this technique has been limited by lower spatial resolution than EGE and LGE as well as incomplete cardiac coverage. These limitations of perfusion CMR can be overcome using spatio-temporal undersampling methods. The purpose of this study was to compare the extent of MO by high resolution first-pass k-t SENSE accelerated perfusion, EGE and LGE.

Methods

34 patients with acute ST elevation myocardial infarction, treated successfully with primary percutaneous coronary intervention (PPCI), underwent CMR within 72 hours of admission. k-t SENSE accelerated first-pass perfusion MR (7 fold acceleration, spatial resolution 1.5 mm × 1.5 mm × 10 mm, 8 slices acquired over 2 RR intervals, 0.1 mmol/kg Gd-DTPA), EGE (1-4 minutes after injection with a fixed TI of 440 ms) and LGE images (10-12 minutes after injection, TI determined by a Look-Locker scout) were acquired. MO volume was determined for each technique by manual planimetry and summation of discs methodology.

Results

k-t SENSE first-pass perfusion detected more cases of MO than EGE and LGE (22 vs. 20 vs. 14, respectively). The extent of MO imaged by first-pass perfusion (median mass 4.7 g, IQR 6.7) was greater than by EGE (median mass 2.3 g, IQR 7.1, p = 0.002) and LGE (median mass 0.2 g, IQR 2.4, p = 0.0003). The correlation coefficient between MO mass measured by first-pass perfusion and EGE was 0.91 (p < 0.001).

Conclusion

The extent of MO following acute myocardial infarction appears larger on high-resolution first-pass perfusion CMR than on EGE and LGE. Given the inevitable time delay between gadolinium administration and acquisition of either EGE or LGE images, high resolution first-pass perfusion imaging may be the most accurate method to quantify MO.  相似文献   

20.

Background

The natural history of acute myocarditis (AM) remains highly variable and predictors of outcome are largely unknown. The objectives were to determine the potential value of various cardiovascular magnetic resonance (CMR) parameters for the prediction of adverse long-term outcome in patients presenting with suspected AM.

Methods

In a single-centre longitudinal prospective study, 203 routine consecutive patients with an initial CMR-based diagnosis of AM (typical Late Gadolinium Enhancement, LGE) were followed over a mean period of 18.9 ± 8.2 months. Various CMR parameters were evaluated as potential predictors of outcome. The primary endpoint was defined as the occurrence of at least one of the combined Major Adverse Clinical Events (MACE) (cardiac death or aborted sudden cardiac death, cardiac transplantation, sustained documented ventricular tachycardia, heart failure, recurrence of acute myocarditis, and the need for hospitalization for cardiac causes).

Results

The vast majority of patients (N = 143,70 %) presented with chest pain, mild to moderate troponin elevation and ST-segment or T wave abnormalities. Various CMR parameters were evaluated on initial CMR performed 3 ± 2 days after acute clinical presentation (LV functional parameters, presence/extent of edema on T2 CMR, and extent of late gadolinium enhancement lesions). Out of the 203 patients, 22 experienced at least one major cardiovascular event (10.8 %) during follow-up for a total of 31 major cardiovascular events. Among all CMR parameters, the only independent CMR predictor of adverse clinical outcome by multivariate analysis was an initial alteration of LVEF (p = 0.04).

Conclusions

In routine consecutive patients without severe hemodynamic compromise and a CMR-based diagnosis of AM, various CMR parameters such as the presence and extent of myocardial edema and the extent of late gadolinium-enhanced LV myocardial lesions were not predictive of outcome. The only independent CMR predictor of adverse clinical outcome was an initial alteration of LVEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号