首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 6 毫秒
1.
The fast spin-echo (FSE) sequence is frequently used as a fast data-readout technique in conjunction with other pulse sequence elements, such as in fluid-attenuated inversion-recovery (FLAIR) and double inversion-recovery (DIR) sequences. In order to implement those pulse sequences, an understanding is required of how the longitudinal magnetization evolves during the FSE part of the sequence. This evolution has been addressed to a certain extent by previous publications, but the DIR literature in particular appears to be replete with approximations to the exact expression for the longitudinal magnetization, and several papers contain errors. Equations are therefore presented here for the evolution of the longitudinal magnetization for a FSE readout. These are then applied to calculate the magnetization available immediately prior to the 90 degrees imaging pulse for the FLAIR-FSE and DIR-FSE pulse sequences.  相似文献   

2.

Purpose:

To compare the diagnostic accuracy of superparamagnetic iron oxide (SPIO)‐enhanced fluid‐attenuated inversion‐recovery echo‐planar imaging (FLAIR EPI) for malignant liver tumors with that of T2‐weighted turbo spin‐echo (TSE), T2*‐weighted gradient‐echo (GRE), and diffusion‐weighted echo‐planar imaging (DW EPI).

Materials and Methods:

SPIO‐enhanced magnetic resonance imaging (MRI) that included FLAIR EPI, T2‐weighted TSE, T2*‐weighted GRE, and DW EPI sequences was performed using a 3 T system in 54 consecutive patients who underwent surgical exploration with intraoperative ultrasonography. A total of 88 malignant liver tumors were evaluated. Images were reviewed independently by two blinded observers who used a 5‐point confidence scale to identify lesions. Results were correlated with results of histopathologic findings and surgical exploration with intraoperative ultrasonography. The accuracy of each MRI sequence was measured with jackknife alternative free‐response receiver operating characteristic analysis. The sensitivity of each observer with each MRI sequence was compared with McNemar's test.

Results:

Accuracy values were significantly higher with FLAIR EPI sequence (0.93) than with T2*‐weighted GRE (0.80) or DW EPI sequences (0.80) (P < 0.05). Sensitivity was significantly higher with the FLAIR EPI sequence than with any of the other sequences.

Conclusion:

SPIO‐enhanced FLAIR EPI sequence was more accurate in the diagnosis of malignant liver tumors than T2*‐weighted GRE and DW EPI sequences. SPIO‐enhanced FLAIR EPI sequence is helpful for the detection of malignant liver tumors. J. Magn. Reson. Imaging 2010;31:607–616. ©2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
The original article to which this Erratum refers was published in Magnetic Resonance in Medicine (2004) 51(1) 123–134.  相似文献   

6.

Purpose:

To test a newly developed fat suppression magnetic resonance imaging (MRI) prepulse that synergistically uses the principles of fat suppression via inversion recovery (STIR) and spectral fat saturation (CHESS), relative to pure CHESS and STIR. This new technique is termed dual fat suppression (Dual‐FS).

Materials and Methods:

To determine if Dual‐FS could be chemically specific for fat, the phantom consisted of the fat‐mimicking NiCl2 aqueous solution, porcine fat, porcine muscle, and water was imaged with the three fat‐suppression techniques. For Dual‐FS and STIR, several inversion times were used. Signal intensities of each image obtained with each technique were compared. To determine if Dual‐FS could be robust to magnetic field inhomogeneities, the phantom consisting of different NiCl2 aqueous solutions, porcine fat, porcine muscle, and water was imaged with Dual‐FS and CHESS at the several off‐resonance frequencies. To compare fat suppression efficiency in vivo, 10 volunteer subjects were also imaged with the three fat‐suppression techniques.

Results:

Dual‐FS could suppress fat sufficiently within the inversion time of 110–140 msec, thus enabling differentiation between fat and fat‐mimicking aqueous structures. Dual‐FS was as robust to magnetic field inhomogeneities as STIR and less vulnerable than CHESS. The same results for fat suppression were obtained in volunteers.

Conclusion:

The Dual‐FS‐STIR‐CHESS is an alternative and promising fat suppression technique for turbo spin echo MRI. J. Magn. Reson. Imaging 2010;31:1277–1281. ©2010 Wiley‐Liss, Inc.  相似文献   

7.
Conventional T2‐weighted turbo/fast spin echo imaging is clinically accepted as the most sensitive method to detect brain lesions but generates a high signal intensity of cerebrospinal fluid (CSF), yielding diagnostic ambiguity for lesions close to CSF. Fluid‐attenuated inversion recovery can be an alternative, selectively eliminating CSF signals. However, a long time of inversion, which is required for CSF suppression, increases imaging time substantially and thereby limits spatial resolution. The purpose of this work is to develop a phase‐sensitive, dual‐acquisition, single‐slab, three‐dimensional, turbo/fast spin echo imaging, simultaneously achieving both conventional T2‐weighted and fluid‐attenuated inversion recovery–like high‐resolution whole‐brain images in a single pulse sequence, without an apparent increase of imaging time. Dual acquisition in each time of repetition is performed, wherein an in phase between CSF and brain tissues is achieved in the first acquisition, while an opposed phase, which is established by a sequence of a long refocusing pulse train with variable flip angles, a composite flip‐down restore pulse train, and a short time of delay, is attained in the second acquisition. A CSF‐suppressed image is then reconstructed by weighted averaging the in‐ and opposed‐phase images. Numerical simulations and in vivo experiments are performed, demonstrating that this single pulse sequence may replace both conventional T2‐weighted imaging and fluid‐attenuated inversion recovery. Magn Reson Med 63:1422–1430, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.

Purpose:

To provide improved blood suppression in three‐dimensional inner‐volume fast spin‐echo (3D IV‐FSE) carotid vessel wall imaging by using a hybrid preparation consisting of double inversion‐recovery (DIR) and diffusion sensitizing gradients (DSG).

Materials and Methods:

Multicontrast black‐blood MRI is widely used for vessel wall imaging and characterization of atherosclerotic plaque composition. Blood suppression is difficult when using 3D volumetric imaging techniques. DIR approaches do not provide robust blood suppression due to incomplete replacement of blood spins, and DSG approaches compromise vessel wall signal, reducing the lumen‐wall contrast‐to‐noise ratio efficiency (CNReff). In this work a hybrid DIR+DSG preparation is developed and optimized for blood suppression, vessel wall signal preservation, and vessel‐wall contrast in 3D IV‐FSE imaging. Cardiac gated T1‐weighted carotid vessel wall images were acquired in five volunteers with 0.5 × 0.5 × 2.5 mm3 spatial resolution in 80 seconds.

Results:

Data from healthy volunteers indicate that the proposed method yields a statistically significant (P < 0.01) improvement in blood suppression and lumen‐wall CNReff compared to standard DIR and standard DSG methods alone.

Conclusion:

A combination of DIR and DSG preparations can provide improved blood suppression and lumen‐wall CNReff for 3D IV‐FSE vessel wall imaging. J. Magn. Reson. Imaging 2010; 31: 398–405. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.

Purpose:

To evaluate the impact of motion on T1 values acquired by using either inversion‐recovery fast spin echo (IR‐FSE) or three‐dimensional (3D) spoiled gradient recalled‐echo (SPGR) sequences for delayed gadolinium‐enhanced magnetic resonance imaging of cartilage (dGEMRIC) in volunteers.

Materials and Methods:

Single‐slice IR‐FSE and 3D SPGR sequences were applied to perform dGEMRIC in five healthy volunteers. A mutual information‐based approach was used to correct for image misregistration. Displacements were expressed as averaged Euclidean distances and angles. Averages of differences in goodness of fit (Δχ2) tests and averages of relative differences in T1 values (ΔT1) before and after motion correction were computed.

Results:

Maximum Euclidean distance was 3.5 mm and 1.2 mm for IR‐FSE and SPGR respectively. Mean ± SD of Δχ2 were 10.18 ± 8.4 for IR‐FSE and ?1.37 ± 5.5 for SPGR. Mean ± SD of ΔT1 were 0.008 ± 0.0048 for IR‐FSE and ?0.002 ± 0.019 for FSPGR. Pairwise comparison of Δχ2 values showed a significant difference for IR‐FSE, but not for 3D‐SPGR. Significantly greater variability in T1 values was also noted for IR‐FSE than for 3D‐SPGR.

Conclusion:

Involuntary motion has a significant influence on T1 values acquired with IR‐FSE, but not with 3D‐SPGR in healthy volunteers. J. Magn. Reson. Imaging 2010;32:394–398. © 2010 Wiley‐Liss, Inc.
  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号