首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
OBJECTIVE: The aim of the present study was to determine the role of adrenomedullin (AM) in cardiac fibroblasts. METHODS: The production and secretion of AM were examined in cultured neonatal rat cardiac fibroblasts, and the effects of AM on proliferation and protein synthesis of these cells were assessed by [3H]thymidine and [3H]phenylalanine incorporation, respectively. RESULTS: Cultured cardiac fibroblasts secreted AM into the medium time-dependently at a rate of 20.3 +/- 3.0 fmol/5 x 10(4) cells/48 h, mean +/- S.D. Northern blot analysis showed expression of preproAM mRNA of 1.6 kb in these cells. In addition, 10(-6) mol/l of angiotensin II (Ang II) and endothelin-1 (ET-1) significantly increased the AM secretion by 55 and 48%, respectively. Synthetic AM significantly reduced 10(-6) mol/l Ang II- or 10(-7) mol/l ET-1-stimulated [3H]thymidine and [3H]phenylalanine incorporation in a dose-dependent manner, and these effects were attenuated by a calcitonin gene-related peptide (CGRP) type 1 receptor antagonist, CGRP(8-37). Synthetic AM also had a dose-dependent stimulatory effect on cAMP accumulation in these cells, which was significantly attenuated by CGRP(8-37). A cAMP analogue, 8-bromo-cAMP, mimicked the AM effects, inhibiting the Ang II-stimulated [3H]thymidine and [3H]phenylalanine incorporation. Blockage of the effect of endogenous AM by anti-AM monoclonal antibody not only significantly reduced the basal level of intracellular cAMP, but also enhanced the [3H]thymidine and [3H]phenylalanine incorporation into the cells. CONCLUSIONS: Cultured neonatal rat cardiac fibroblasts produce and secrete AM, and the secreted AM may inhibit proliferation and protein synthesis of these cells. AM may exert these inhibitory effects partly by elevating intracellular cAMP. It is suggested that AM has an important role in modulating the growth of cardiac fibroblasts in an autocrine or a paracrine manner.  相似文献   

2.
3.
The incorporation of [3H]thymidine by rat costal cartilage in vitro was studied at different fetal and postnatal ages and the effect of partially purified human somatomedin, mouse epidermal growth factor, platelet secretion products, insulin and growth hormone on thymidine uptake by fetal cartilage was examined. Thymidine uptake in plasma-free medium was many times greater in late fetal life than after birth. The incorporation of [3H]thymidine into costal cartilage from 21-day fetuses was significantly (P less than 0.05) increased above control values in the presence of 10 micrograms somatomedin/1, and when cartilage was incubated in medium containing somatomedin and diluted human plasma there was a synergistic action. Epidermal growth factor at a concentration of 1 ng/l was a potent stimulator of thymidine uptake. Secretion products from human platelets after their aggregation by thrombin stimulated [3H]thymidine uptake at a concentration of 2% (v/v), but were inhibitory at high concentrations. High concentrations of platelet secretion products stimulated the incorporation of [35S]sulphate by cartilage. A pharmacological concentration of 10 mu. insulin/ml stimulated [3H]thymidine uptake, but not concentrations of 1 or 100 mu./ml. Growth hormone had no effect. The results showed that fetal cartilage had a greater endogenous mitogenic activity than postnatal cartilage. While somatomedins may be important in the regulation of fetal body growth, other protein growth factors also stimulate fetal skeletal tissues.  相似文献   

4.
Results on the effects of peptides on the phospholipid metabolism and steroid and cyclic AMP (cAMP) outputs of rat adrenal capsular cells (96% zona glomerulosa, 4% zona fasciculata) were obtained in a series of three batch experiments. Their significance was examined by analysis of variance. Incorporation of [32P] into phosphatidylcholine, phosphatidic acid and phosphatidylinositol was measured. Production of [3H]inositol-1 monophosphate, inositol-1,4 bisphosphate and inositol-1,4,5 tris-phosphate was estimated after prelabelling with [3H]inositol followed by 1 min incubation with a steroidogenic stimulus. Angiotensin II (0.25 nmol/l to 0.25 mumol/l) highly significantly (P less than 0.01) stimulated aldosterone and corticosterone outputs, [32P] incorporation into phosphatidic acid and phosphatidylinositol (but not into phosphatidylcholine) and the production of the three [3H]inositol phosphates. Aldosterone and corticosterone outputs were stimulated by alpha-MSH (above 0.1 nmol/l). However, incorporation of [32P] was not significantly increased until 10 mumol alpha-MSH/l but, unlike with angiotensin II, incorporation into phosphatidylcholine was also then stimulated. Also, the production of the inositol phosphates was not increased significantly (P greater than 0.05) by any dose of alpha-MSH (10 nmol/l, 1 mumol/l and 0.1 mmol/l) used. Therefore, it can be concluded that alpha-MSH does not stimulate phospholipase C in rat zona glomerulosa cells. In further experiments, it was also found that there were significant increases in cAMP as well as in steroid outputs above 1 nmol alpha MSH/l (highly significant above 10 nmol alpha-MSH/l). There were plateaux of the outputs of both steroids and cAMP from 0.1 to 1 mumol alpha-MSH/l. However, there were further increases in steroid and cAMP outputs of the capsular cells at higher doses. Concomitant results on the stimulation of corticosterone output by zona fasciculata-reticularis cells indicate that this additional increase was mostly due to the stimulation of the contaminating zona fasciculata cells. It was also confirmed that alpha-MSH preferentially stimulates steroidogenesis by the zona glomerulosa. However, under our conditions, alpha-MSH highly significantly increased the output of cAMP by both zona fasciculata and glomerulosa cells.  相似文献   

5.
The actions of partially purified porcine platelet-derived growth factor (PDGF) and highly purified multiplication-stimulating activity (MSA) II and MSA III-2, which are somatomedins, were investigated on the incorporation of [3H]thymidine and [35S]sulphate by fetal rat costal cartilage in vitro. This was compared with their effects in the presence of 1% fetal calf serum (FCS) on the uptake of thymidine by growth-arrested fetal rat fibroblasts. Platelet-derived growth factor at concentrations of 0.21-21 micrograms/l enhanced the incorporation of both isotopes by fetal cartilage in the presence of 1% FCS, but had an inconsistent action on thymidine uptake and no significant action on sulphate uptake in serum-free medium. Platelet-derived growth factor promoted thymidine uptake by growth-arrested, isolated fetal rat fibroblasts. Multiplication-stimulating activity II (10-100 micrograms/l) stimulated the uptake of thymidine and sulphate by fetal cartilage in medium containing 1% FCS but had no consistent action in serum-free medium, although MSA II and PDGF had a synergistic effect on thymidine uptake in the absence of serum. Multiplication-stimulating activity III-2 had no consistent action on thymidine or sulphate incorporation by fetal cartilage in either serum-free or serum-supplemented medium. However, the same preparation of MSA III-2 stimulated the uptake of [3H]thymidine into fetal rat fibroblasts with a half-maximal response at a concentration of 5-10 micrograms/l. The results identify PDGF as a possible mitogenic agent for fetal rat connective tissues in vitro and show a differential sensitivity of fetal cartilage to MSA peptides.  相似文献   

6.
The effects of somatomedin and certain nucleotides on nuclear labelling of cartilage cells with [3H]thymidine were determined by autoradiography. Segments of costal cartilage from hypophysectomized rats were incubated for 24 h in a basal medium with or without additions and then pulsed for 2 h with [3H]thymidine in the basal medium. Both somatomedin (0.1 U/ml) and Bt2cAMP (10(-4)M) increased the number of labelled nuclei, and the combined effects were more than additive. A parallelism between the effects of these agents on nuclear labelling and their effects on total thymidine incorporation into DNA was demonstrated. The 8-bromated derivative of cAMP (10(-4)M) also enhanced chondrocyte nuclear labelling, but neither 8-Br-5'-AMP (10(-4)7) nor 8-Br-cGMP (10(-4)M) exhibited actions of the cAMP analogues. It is concluded that in cartilage obtained from hypophysectomized rats and incubated under the specified conditions (1) both somatomedin and cAMP analogues increase the number of cells synthesizing DNA as well as total thymidine incorporation into DNA, (2) the effects of the hormone and cyclic nucleotide in combination are synergistic, and (3) the increased incorporation of labelled thymidine into DNA reflects increased DNA synthesis and not merely an alteration of the specific activity of the intracellular thymidine nucleotide pool.  相似文献   

7.
In the present study the effect of iodide on thyroid cell growth was investigated in primary suspension cultures of porcine thyroid cells capable of organifying iodide. The addition of a high dose of iodide (10(-4) M) to such cultures caused a marked increase in c-myc mRNA levels, [3H]thymidine incorporation, and mitotic activity. The incorporation of [3H]thymidine started 30-36 h after the addition of iodide. The stimulatory effect was abolished by a simultaneous incubation with methimazole. The concentration dependence of the iodide-induced stimulation of [3H]thymidine incorporation was similar to that of an inhibitory effect on adenylate cyclase activity. W-7, an inhibitor of calmodulin activity, as well as epinephrine, agents that reduce cAMP levels, also stimulated [3H]thymidine incorporation. Moreover, the stimulatory effect of iodide was reduced in the presence of forskolin. The results suggest that an organic form of iodine stimulates thyroid cell growth by reducing cAMP levels and demonstrate the presence of a growth stimulatory pathway in porcine thyroid cells that is independent of exogenous polypeptide growth factors or hormones.  相似文献   

8.
The crustacean neuropeptide, molt-inhibiting hormone (MIH), directly inhibits Y-organ ecdysteroidogenesis, an effect mediated by cyclic AMP (cAMP) and antagonized by calcium-calmodulin. We investigated regulation of Y-organ protein. RNA, and DNA syntheses by MIH, cAMP, and calcium in relation to steroidogenesis in vitro. Ecdysteroid production and [3H]leucine incorporation into protein were inhibited 50-60 and 80-90%, respectively, by MIH activity in eyestalk extracts (4 eyestalk equivalents), 10(-6) M forskolin, or a combination of 10(-2) M dibutyryl cAMP and 10(-4) M 3-isobutyl-1-methylxanthine (dbcAMP-IBMX). Calcium ionophore A23187 (10(-4) M) stimulated ecdysteroidogenesis two-fold, did not affect the relatively high basal (control) rate of protein synthesis, and reduced the inhibitory effects of forskolin on steroidogenesis and protein synthesis. Incorporation of [3H]uridine into RNA was unaffected by MIH, forskolin, or A23187 but was reduced 50% by dbcAMP-IBMX. Basal rates of [3H]thymidine incorporation into DNA were low and were not affected by treatments. The effects of MIH were specific; extracts of brain or muscle did not alter Y-organ steroidogenesis or protein synthesis, while muscle extract increased precursor incorporation into RNA. Eyestalk extract did not affect [3H]leucine incorporation into protein of brain, muscle, or gill. Cycloheximide (5 micrograms/ml) depressed protein synthesis 90% and steroidogenesis 60%, enhanced the inhibition induced by MIH, and blocked the stimulation of steroidogenesis induced by A23187; effects on basal steroidogenesis were evident after 1 hr. Actinomycin D (1 microgram/ml) depressed RNA synthesis 86% but did not alter basal, MIH-inhibited, or A23187-stimulated ecdysteroidogenesis during incubations. These results indicate that MIH suppresses Y-organ steroidogenesis in part by inhibiting protein synthesis at the translational level; the effect is mediated by cAMP. The stimulation of steroidogenesis by calcium, mediated by lowering cAMP, also appears to depend in part upon protein synthesis.  相似文献   

9.
The mechanism by which tripeptide aldehyde proteinase inhibitors decrease prolactin (PRL) and growth hormone (GH) secretion was studied. Agents known to modify the intracellular levels of cyclic adenosine monophosphate (cAMP) or cytosolic free calcium were used in monolayer cultures of the rat anterior pituitary gland. The phosphodiesterase inhibitor isobutyl-methylxanthine (IBMX), 8-bromo-cAMP and forskolin all stimulated PRL release. Boc-D-Phe-Pro-arginal (Boc-DPPA) at 1 mmol/l concentration was a potent inhibitor of basal PRL release and significantly decreased the effect of 8-Br-cAMP, forskolin or IBMX (0.5 mmol/l). Forskolin (1 mumol/l) stimulated ACTH, PRL and GH release and all these effects were decreased by 100 mumol/l of Boc-D-Phe-Phe-lysinal (Boc-DPPL). Neither tripeptide aldehyde affected the forskolin-induced rise in intracellular cAMP. Growth hormone releasing factor (hpGRF, 1 nmol/l) stimulated both GH release and intracellular cAMP generation; Boc-DPPL (100 mumol/l) significantly decreased stimulated GH release without affecting cAMP accumulation. Increasing medium K+ to 10 times normal level stimulated PRL release presumably by enhancing Ca2+ entry into the cells and 1 mmol/l Boc-DPPA decreased high potassium-stimulated PRL release. The ionophore A-23187 stimulated PRL release at 10 mumol/l but not at 1 mumol/l. At 1 mumol/l A-23187 prevented the Boc-DPPA-induced inhibition of PRL release. These findings suggest that the tripeptide aldehyde proteinase inhibitors inhibit PRL and GH release at a site beyond cAMP formation.  相似文献   

10.
We investigated the direct effect of lithium on porcine thyroid cells in culture to exclude the secondary regulatory factors. First we have studied the effect of lithium on TSH-induced iodide uptake. Significant suppression was seen at 0.1 mmol/liter, and half-maximal suppression was obtained at the pharmacological concentration reported in patient serum. The suppression was dose dependent and reversible. Besides the suppression of cAMP production stimulated by TSH, lithium also inhibited iodide uptake stimulated by forskolin or 8-bromo-cAMP. These results demonstrated that lithium inhibits TSH-induced iodide uptake not only by reducing cAMP production, but also by acting on the steps of post-cAMP production. Next, we studied the effect of lithium on DNA synthesis of the cultured porcine thyroid cells. Lithium stimulated [3H]thymidine incorporation of the thyroid cells in the basal condition (0.5% fetal calf serum) as well as those stimulated by insulin-like growth factor-I (100 micrograms/liter). The minimal concentrations for the significant increase were 0.5 and 0.1 mmol/liter, respectively. These results suggest that lithium might contribute to the formation of the goiter directly at the cellular levels in patients treated with the agent.  相似文献   

11.
Repeatedly passed or aged rat FRTL-5 thyroid cells develop a high level of basal [3H]thymidine incorporation into DNA and a reduced response to TSH in medium containing 5% serum and insulin (5H medium). The basal [3H]thymidine incorporation into DNA of aged cells can exceed the TSH-induced increase in earlier passages of the same cell line (fresh cells) and the TSH response decreases from more than 10-fold above basal in fresh cells to less than 2-fold in aged cells. This change is not associated with a loss of the diploid karyotype, a change in basal cAMP levels, or a change in dependence on TSH for cell growth. Attenuation of the TSH response in the [3H]thymidine incorporation assay is more evident than the reduced effect of TSH on cAMP levels or iodide transport; moreover, the TSH effect on cAMP levels does not correlate with that on [3H] thymidine incorporation as a function of hormone concentration. The high basal activity in [3H]thymidine incorporation into DNA in aged cells is due to an increased responsiveness to insulin, insulin-like growth factor-I (IGF-I), or serum. Thus, removal of serum and insulin from the medium eliminates the high basal [3H]thymidine incorporation into DNA, and this activity is restored by insulin or IGF-I in a concentration-dependent manner. The increased responsiveness of aged cells to insulin or IGF-I is inhibited by indomethacin or hydrocortisone and is associated with insulin or IGF-I, but not TSH, stimulation of cyclooxygenase and prostaglandin E2 (PGE2) isomerase-like activity. Fresh cells, in contrast, require TSH plus insulin or IGF-I to increase these activities. Increased responsiveness of cyclooxygenase activity to insulin or IGF-I in aged cells reflects at least in part an increase in cyclooxygenase mRNA levels. We suggest that insulin/IGF-I stimulation of PGE2 production leads to the high basal thymidine incorporation into DNA in aged cells maintained in TSH-depleted (5H) medium; the reduced stimulation by TSH of cAMP content or iodide uptake may reflect PG inhibition (negative feedback regulation) of cAMP production.  相似文献   

12.
BACKGROUND: Urotensin II (U-II), the most potent vasoconstrictor, and serotonin (5-HT) are known to play an important role in pulmonary hypertension. However, little is known about the effect of U-II and its interaction with 5-HT on vascular smooth muscle cell (VSMC) proliferation. OBJECTIVE: We assessed the interaction between U-II and 5-HT in inducing VSMC proliferation. METHODS: Growth-arrested rabbit VSMCs were incubated in serum-free medium with different concentrations of U-II and 5-HT. VSMC proliferation was examined by the increase in [3H]thymidine incorporation into DNA and cell number. RESULTS: U-II or 5-HT induced [3H]thymidine incorporation in a dose-dependent manner with a maximal effect at a concentration of 50 nmol/l (161%) or 50 micromol/l (205%), respectively. When added together, low concentrations of U-II (50 nmol/l) and 5-HT (1 micromol/l) interacted synergistically in inducing [3H]thymidine incorporation (382%). These effects on [3H]thymidine incorporation were paralleled by an increase in cell number. The G-protein inactivator GDP-beta-S (100 micromol/l), protein kinase C (PKC) inhibitor Ro31-8220 (0.1 micromol/l), Src family tyrosine kinase inhibitor PP2 (1 micromol/l), and mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 (10 micromol/l) inhibited the mitogenic effects of U-II and 5-HT and also their interaction in inducing [3H]thymidine incorporation. CONCLUSION: Our results suggest that U-II and 5-HT may induce the synergistic interaction in inducing VSMC proliferation via a G-protein-coupled receptor/PKC/Src tyrosine kinase/MAPK pathway, thus contributing to the relatively rapid development of atherosclerosis in hypertensive vascular disease.  相似文献   

13.
We studied antibody-dependent mononuclear cell-mediated growth inhibition of thyroid cells in 18 untreated patients with Graves' disease, 18 patients with chronic thyroiditis, and 15 normal subjects by measuring the ability of their sera to inhibit [3H]thymidine incorporation into DNA in a rat thyroid cell line, FRTL-5, in the presence of normal mononuclear cells. [3H]thymidine incorporation was significantly inhibited in the presence of sera from patients with Graves' disease and chronic thyroiditis (P less than 0.001), whereas it was not affected in normal subjects. A significant correlation was observed between the inhibition of [3H]thymidine incorporation and the titre of anti-microsomal antibodies (P less than 0.05). The inhibitory effect on [3H]thymidine incorporation was significantly abolished when serum pre-absorbed with human thyroid membranes was used (P less than 0.005). These inhibitory effects on [3H]thymidine incorporation significantly correlated with those obtained by using IgG fractions (P less than 0.01). These data indicate that antibody-dependent mononuclear cell-mediated growth inhibition may play a role in thyroid cell growth regulation in patients with autoimmune thyroid disease.  相似文献   

14.
S Taniguchi  A Yoshida  H Mashiba 《Endocrinology》1989,124(5):2046-2051
The direct effect of methimazole (MMI) on FRTL-5 cell growth was examined. TSH, (Bu)2cAMP, calf serum, insulin-like growth factor I, and Graves' immunoglobulin (IgG) increased [3H]thymidine incorporation into DNA during 72-h incubation. MMI (10(-3) M), which does not damage cell viability, significantly enhanced the increase in [3H]thymidine incorporation induced by TSH and (Bu)2cAMP. In contrast, MMI suppressed the increase in [3H]thymidine incorporation induced by calf serum, insulin-like growth factor I, and Graves' IgG. MMI had no effect on the production of cAMP by TSH. Accordingly, we concluded that MMI has opposite effects on cAMP- and non-cAMP-dependent cell growth pathways. Moreover, Graves' IgG, which has a modest effect on cAMP production, is believed to induce cell growth via the non-cAMP dependent cell growth pathway.  相似文献   

15.
We studied thyroid growth-blocking activity in immunoglobulin G (IgG) fractions of serum from 24 patients with primary myxedema, 24 patients with goitrous Hashimoto's thyroiditis, and 18 normal subjects by measuring the ability of their IgG to inhibit TSH-induced [3H]thymidine incorporation into DNA in a rat thyroid cell line, FRTL-5. Both groups of patients were receiving T4 when studied. [3H]Thymidine incorporation induced by 0.1 mU/ml bovine TSH was significantly inhibited by the addition of 2 mg/ml IgG from patients with primary myxedema (P less than 0.01), while it was not affected by IgG from the normal subjects or 23 of the 24 patients with goitrous Hashimoto's thyroiditis. IgG from patients with primary myxedema also inhibited the [3H]thymidine incorporation induced by Graves' IgG, but not that induced by forskolin, cholera toxin, (Bu)2cAMP or phorbol-12-myristate-13-acetate. The inhibition of TSH-induced [3H]thymidine incorporation by IgGs from patients with primary myxedema was significantly correlated with their inhibitory activities against both TSH-induced cAMP generation and TSH binding (P less than 0.001). These data indicate that these growth-blocking antibodies are directed against the TSH receptor and might be one of the causes of the thyroid atrophy in patients with primary myxedema.  相似文献   

16.
In GH4C1 cells, the calmodulin antagonist trifluoperazine (TFP) showed a dose-dependent, biphasic effect on the basal release of PRL. An inhibition of PRL release was observed with 15-50 mumol/l TFP, whereas a concentration of 100 mumol/l and above had a stimulatory effect. The increase in basal hormone release evoked by TRH (1 mumol/l) and high extracellular concentration of K+ (50 mmol/l) was eliminated by 30 mumol/l TFP. The stimulatory effect of 100 mumol/l TFP on basal hormone release was not affected by addition of TRH (1 mumol/l) or K+ (50 mmol/l). The Ca2+ antagonists Co2+ (5 mmol/l) and verapamil (100 mumol/l), and the Ca2+ chelator EgTA (4 mmol/l) abolished the stimulatory effect of TRH (1 mumol/l) and of K+ (50 mmol/l) on PRL release, whereas only Co2+ inhibited the stimulation caused by 100 mumol/l TFP. TFP (75 mumol/l) caused a transient increase in the concentration of cellular cAMP. Incubation of intact GH4C1 cells with TFP (75 mumol/l), had an inhibitory effect on both the low and the high affinity form of cAMP phosphodiesterase. Basal as well as TRH-stimulated adenyl cyclase activity were inhibited by TFP, and this effect was counteracted by addition of calmodulin.  相似文献   

17.
H L Henry 《Endocrinology》1986,118(3):1134-1138
The ability of dexamethasone to alter the metabolism of [3H]25-hydroxyvitamin D3 ([3H]25OHD3) metabolism by primary cultures of chick kidney cells was tested. Dexamethasone, present for 24 or 48 h at 10(-8)-10(-6) M, decreased production of [3H]1,25-dihydroxyvitamin D3 to approximately 60% of control levels. If cultures were pretreated with 1,25-dihydroxyvitamin D3 to reduce 25OHD3-1-hydroxylase activity and induce 25OHD3-24-hydroxylase activity, no effect of dexamethasone on either of the enzymes was observed. When the substrate concentration was varied, analysis of the data revealed that dexamethasone decreases both the maximal velocity of the rate of 1-hydroxylation to 25OHD3 and the half-maximal substrate concentration for 25OHD3. Dexamethasone had no effect on the cell number of the cultures, as assessed by DNA content, but did reduce the total protein content to approximately 70% of control values. Dexamethasone did not alter the response of chick kidney cells to PTH in terms of cAMP production or the metabolism of 25OHD3. The results suggest that dexamethasone has the potential to alter 25OHD3 metabolism through a direct effect on the renal cell.  相似文献   

18.
In previous studies we have shown that clinically effective concentrations of fluoride (5 to 30 mumol/L) could also have direct effects in vitro on skeletal tissues to increase embryonic chick bone formation and bone cell proliferation (3[H]-thymidine incorporation into DNA). From these observations, we hypothesized that fluoride-stimulated bone formation might be mediated by a direct effect of fluoride to increase bone cell proliferation. The current studies were intended to investigate the mechanism of fluoride-stimulated 3[H]-thymidine incorporation, in chick calvarial cell cultures, by assessing mitogenic interactions between fluoride and inorganic phosphate, bone-derived growth factors, and systemic skeletal effectors. With respect to fluoride-phosphate interactions, the results of our studies indicate that the effect of fluoride was dependent on the phosphate concentration in the medium. Fluoride did not increase 3[H]-thymidine incorporation in BGJb medium containing 1 mmol/L (total) phosphate; but, in 1.6 mmol/L phosphate medium, fluoride caused a dose-dependent increase in 3[H]-thymidine incorporation, between 1 and 20 mumol/L (P less than .001). The action of fluoride was also dependent on the presence of a bone cell mitogen. Fluoride increased 3[H]-thymidine incorporation when added to calvarial cell cultures in the cell-conditioned medium, but had no effect in unconditioned (ie, fresh) medium. The action of fluoride could be restored by adding an exogenous growth factor (ie, concentrated cell-conditioned medium, bone-derived growth factors, or a systemic bone cell mitogen) to the unconditioned culture medium, P less than .05 for each effector.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have previously reported that serotonin (5-hydroxytryptamine [5HT]) alters cultured bovine pulmonary artery smooth muscle cell (SMC) configuration through two different regulatory mechanisms. We now report that 5HT also regulates SMC growth through these same two mechanisms--a stimulatory event initiated intracellularly and inhibition of growth resulting from a cell surface action. 5HT (1 microM) plus 0.1 mM iproniazid (a 5HT metabolic inhibitor) produced a severalfold stimulation of DNA synthesis (as measured by [3H]thymidine incorporation) of SMCs after a 17-24-hour incubation with only a slight elevation of cellular cAMP. This stimulatory effect responded synergistically with other growth factors including platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor and was effectively reversed by 5HT uptake inhibition. It was not produced by 5-hydroxyindoleacetic acid, a metabolite of 5HT. In the presence of 1 microM 5HT plus 0.1 mM isobutylmethylxanthine (IBMX), cAMP was elevated eightfold, dendritic formation occurred, and [3H]thymidine labeling of SMCs was inhibited. Inhibition of labeling by [3H]thymidine was mimicked by other agents that elevated cellular cAMP (10 microM histamine, 1 microM isoproterenol plus 0.1 mM IBMX, and 10 microM forskolin) and by 1 mM dibutyryl cAMP. This inhibitory effect was not blocked by either inhibition of 5HT uptake or 5HT-receptor antagonists ketanserin (5HT2); methiothepin, spiperone, and mianserin (5HT1/5HT2); and 3-tropanyl-indole-3-carboxylate and 3-tropanyl-3,5-dichlorobenzoate (5HT3). However, similar to 5HT, the 5HT1A agonist, (+/-)-8-hydroxy-(+/-)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalenehydrobromide, in association with IBMX, produced an elevation in cAMP and inhibition of labeling by [3H]thymidine. 5HT, in the presence of either iproniazid or IBMX, did not alter [Ca2+]i, indicating that [Ca2+]i was not a signal for either of these actions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The regulation of thyroid follicular cell growth in vitro involves autocrine or paracrine actions of insulin-like growth factor-I (IGF-I), which are partially suppressed by transforming growth factor-beta (TGF-beta). Using subconfluent monolayers of porcine thyroid follicular cells, the aims of this study were to establish whether the actions of TGF-beta involve changes in the synthesis of, or response to, IGF-I. We also investigated the extent to which inhibitory actions of iodide on IGF-I-dependent proliferation of thyroid follicular cells may be attributable to the production of TGF-beta by follicular cells, as opposed to iodide-mediated autoregulation events. Exposure of porcine thyroid follicular cells in subconfluent monolayer culture to TGF-beta over a 7-day period reduced both IGF-I release and the incorporation of [methyl-3H]thymidine into trichloroacetic acid-precipitable cellular material, while preincubation of cells with NaI (0.1 mmol/l) for 24 h prior to the addition of TSH reduced the stimulatory effect of the latter on IGF-I release over the following 7 days. Preincubation of cells with iodide also reduced basal (i.e. autonomous) [methyl-3H]thymidine incorporation. This effect was partially reversed when, following initial exposure to follicular cells, iodide-containing preincubation medium was immunoadsorbed with a neutralizing TGF-beta antiserum, and subsequently re-added to the cells. Furthermore, similar immunoadsorption of iodide-free preincubation medium resulted in an enhancement of the control level of [methyl-3H]thymidine incorporation when the treated medium was returned to the original cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号