首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of postinjury hippocampal epileptogenesis may involve gradually developing dentate granule cell hyperexcitability caused by neuron loss and synaptic reorganization. We tested this hypothesis by repeatedly assessing granule cell excitability after pilocarpine-induced status epilepticus (SE) and monitoring granule cell behavior during 235 spontaneous seizures in awake, chronically implanted rats. During the first week post-SE, granule cells exhibited diminished paired-pulse suppression and decreased seizure discharge thresholds in response to afferent stimulation. Spontaneous seizures often began during the first week after SE, recruited granule cell discharges that followed behavioral seizure onsets, and evoked c-Fos expression in all hippocampal neurons. Paired-pulse suppression and epileptiform discharge thresholds increased gradually after SE, eventually becoming abnormally elevated. In the chronic epileptic state, interictal granule cell hyperinhibition extended to the ictal state; granule cells did not discharge synchronously before any of 191 chronic seizures. Instead, granule cells generated only low-frequency voltage fluctuations (presumed "field excitatory postsynaptic potentials") during 89% of chronic seizures. Granule cell epileptiform discharges were recruited during 11% of spontaneous seizures, but these occurred only at the end of each behavioral seizure. Hippocampal c-Fos after chronic seizures was expressed primarily by inhibitory interneurons. Thus, granule cells became progressively less excitable, rather than hyperexcitable, as mossy fiber sprouting progressed and did not initiate the spontaneous behavioral seizures. These findings raise doubts about dentate granule cells as a source of spontaneous seizures in rats subjected to prolonged SE and suggest that dentate gyrus neuron loss and mossy fiber sprouting are not primary epileptogenic mechanisms in this animal model.  相似文献   

2.
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.  相似文献   

3.
Previous studies have demonstrated regional variation in the anatomical organization and physiological properties of the hippocampus along its septotemporal (dorsoventral) axis. In this study, regional variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats was characterized with a scoring method for assessment of the distribution of mossy fiber synaptic terminals detected by Timm histochemistry. In normal rats, there was a sparse projection of the mossy fiber pathway into the supragranular region near the tips and crest of the dentate gyrus along the entire septotemporal axis, and a prominent projection into the supragranular region at the temporal pole. Kindling of the perforant path, amygdala, and olfactory bulb induced synaptic reorganization of the mossy fiber pathway into the supragranular region along the entire septotemporal axis of the dentate gyrus. There was regional variation of the seizure-induced synaptic reorganization along this axis, and distinct septotemporal patterns were observed as a function of the site of kindling stimulation. Kindling of the perforant path induced mossy fiber synaptic reorganization that was relatively more prominent in the septal pole than in the temporal pole of the dentate gyrus. In contrast, rats that received kindling stimulation of the amygdala had a more uniform distribution of synaptic reorganization along the septotemporal axis. As there is regional variation of the anatomical and physiological properties of the human epileptic hippocampus, these observations could be pertinent to human epilepsy.  相似文献   

4.
In the normal granule cells of the dentate gyrus, glutamate and both gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) coexist. GAD expression is increased after seizures, and simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers to CA3 appears, supporting the hypothesis that GABA can be released from the mossy fibers. To sustain GABAergic neurotransmission, the amino acid must be transported into synaptic vesicles. To address this, using RT-PCR we looked for the presence and regulation of expression of the vesicular GABA transporter (VGAT) mRNA in the dentate gyrus and in mossy fiber synaptosomes of control and kindled rats. We found trace amounts of VGAT mRNA in the dentate gyrus and mossy fiber synaptosomes of control rats. In the dentate gyrus of kindled rats with several seizures and of control rats subject to one acute seizure, no changes were apparent either 1 or 24 h after the seizures. However, repetitive synaptic or antidromic activation of the granule cells in slices of control rats in vitro induces an activity-dependent enhancement of VGAT mRNA expression in the dentate. Surprisingly, in the mossy fiber synaptosomes of seizing rats, the levels of VGAT mRNA were significantly higher than in controls. These data show that the granule cells and their mossy fibers, besides containing machinery for the synthesis of GABA, also contain the elements that support its vesiculation. This further supports the notion that local synaptic molecular changes enable mossy fibers to release GABA in response to enhanced excitability.  相似文献   

5.
Electrophysiologically identified and intracellularly biocytin-labeled mossy cells in the dentate hilus of the rat were studied using electron microscopy and postembedding immunogold techniques. Ultrathin sections containing a labeled mossy cell or its axon collaterals were reacted with antisera against the excitatory neurotransmitter glutamate and against the inhibitory neurotransmitter γ-aminobutyric acid (GABA). From single- and double-immunolabeled preparations, we found that 1) mossy cell axon terminals made asymmetric contacts onto postsynaptic targets in the hilus and stratum moleculare of the dentate gyrus and showed immunoreactivity primarily for glutamate, but never for GABA; 2) in the hilus, glutamate-positive mossy cell axon terminals targeted GABA-positive dendritic shafts of hilar interneurons and GABA-negative dendritic spines; and 3) in the inner molecular layer, the mossy cell axon formed asymmetric synapses with dendritic spines associated with GABA-negative (presumably granule cell) dendrites. The results of this study support the view that excitatory (glutamatergic) mossy cell terminals contact GABAergic interneurons and non-GABAergic neurons in the hilar region and GABA-negative granule cells in the stratum moleculare. This pattern of connectivity is consistent with the hypothesis that mossy cells provide excitatory feedback to granule cells in a dentate gyrus associational network and also activate local hilar inhibitory elements. Hippocampus 1997;7:559–570. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Previous studies have demonstrated formation of recurrent excitatory circuits between sprouted mossy fibers and granule cell dendrites in the inner molecular layer of the dentate gyrus (9, 28, 30). In addition, there is evidence that inhibitory nonprincipal cells also receive an input from sprouted mossy fibers (39). This study was undertaken to further characterize possible target cells for sprouted mossy fibers, using immunofluorescent staining for different calcium-binding proteins in combination with Timm histochemical staining for mossy fibers. Rats were injected intraperitoneally with kainic acid in order to induce epileptic convulsions and mossy fiber sprouting. After 2 months survival, hippocampal sections were immunostained for parvalbumin, calbindin D28k, or calretinin followed by Timm-staining. Under a fluorescent microscope, zinc-positive mossy fibers in epileptic rats were found to surround parvalbumin-containing neurons in the granule cell layer and to follow their dendrites, which extended toward the molecular layer. In addition, dendrites of calbindin D28k-containing cells were covered by multiple mossy fiber terminals in the inner molecular layer. However, the calretinin-containing cell bodies in the granule cell layer did not receive any contacts from the sprouted fibers. Electron microscopic analysis revealed that typical Timm-positive mossy fiber terminals established several asymmetrical synapses with the soma and dendrites of nonpyramidal cells within the granule cell layer. These results provide direct evidence that, in addition to recurrent excitatory connections, inhibitory circuitries, especially those responsible for the perisomatic feedback inhibition, are formed as a result of mossy fiber sprouting in experimental epilepsy.  相似文献   

7.
The mossy fiber pathway in the dentate gyrus undergoes sprouting and synaptic reorganization in response to seizures. The types of new synapses, their location and number, and the identity of their postsynaptic targets determine the functional properties of the reorganized circuitry. The goal of this study was to characterize the types and proportions of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. In normal rats, synapses labeled by Timm histochemistry or dynorphin immunohistochemistry were rarely observed in the supragranular region of the inner molecular layer when examined by electron microscopy. In epileptic rats, sprouted mossy fiber synaptic terminals were frequently observed. The ultrastructural analysis of the types of sprouted synapses revealed that 1) in the supragranular region, labeled synaptic profiles were more frequently axospinous than axodendritic, and many axospinous synapses were perforated; 2) sprouted mossy fiber synaptic terminals formed exclusively asymmetric, putatively excitatory synapses with dendritic spines and shafts in the supragranular region and with the soma of granule cells in the granule cell layer; 3) in contrast to the large sprouted mossy fiber synapses in resected human epileptic hippocampus, the synapses formed by sprouted mossy fibers in rats were smaller; and 4) in several cases, the postsynaptic targets of sprouted synapses were identified as granule cells, but, in one case, a sprouted synaptic terminal formed a synapse with an inhibitory interneuron. The results demonstrate that axospinous asymmetric synapses are the most common type of synapse formed by sprouted mossy fiber terminals, supporting the viewpoint that most sprouted mossy fibers contribute to recurrent excitation in epilepsy.  相似文献   

8.
Mossy fiber synaptic reorganization in the epileptic human temporal lobe   总被引:26,自引:0,他引:26  
The distribution of the mossy fiber synaptic terminals was examined using the Timm histochemical method in surgically excised hippocampus and dentate gyrus from patients who underwent lobectomy of the anterior part of the temporal lobe for refractory partial complex epilepsy. The dentate gyrus of epileptic patients demonstrated intense Timm granules and abundant mossy fiber synaptic terminals in the supragranular region and the inner molecular layer. In contrast, the dentate gyrus of presenescent nonepileptic primates demonstrated no Timm granules in the supragranular region. In nonepileptic senescent primates, occasional very sparse supragranular Timm granules were results are morphological evidence of mossy fiber synaptic reorganization in the temporal lobe of epileptic humans, and suggest the intriguing possibility that mossy fiber sprouting and synaptic reorganization induced by repeated partial complex seizures may play a role in human epilepsy.  相似文献   

9.
The hippocampal formation with tightly packed neurons, mainly at the dentate gyrus, CA3, CA2, and CA1 regions, constitutes a one-way neural circuit, which is associated with learning and memory. We previously showed that the cell adhesion molecules nectins and its binding protein afadin play roles in the formation of the mossy fiber synapses which are formed between the mossy fibers of the dentate gyrus granule cells and the dendrites of the CA3 pyramidal cells. We showed here that in the afadin-deficient hippocampal formation, the dentate gyrus granules cells and the CA3, CA2, and CA1 pyramidal cells were abnormally located; the mossy fiber trajectory was abnormally elongated; the CA3 pyramidal cells were abnormally differentiated; and the densities of the presynaptic boutons on the mossy fibers and the apical dendrites of the CA3 pyramidal cells were decreased. These results indicate that afadin plays roles not only in the formation of the mossy fiber synapses but also in the formation of the cellular architecture of the hippocampus and the dentate gyrus.  相似文献   

10.
Intragranular and supragranular mossy fibers arise from granule cells and are present in the dentate gyrus of hippocampi from kindled and epileptic animals. The intragranular fibers often appear as fibers perpendicular to the long axis of the granule cell layer at periodic intervals. Rats and gerbils were analyzed to determine whether such mossy fibers are also associated with nongranule cells (including the basket cells), which send their apical dendrites through this layer with a periodicity similar to that of mossy fibers. The results for rats and both epileptic and nonepileptic gerbils show that many intragranular mossy fibers are apposed to the surfaces of the somata and apical dendrites of basket cells where they form asymmetric synapses. This plexus of mossy fiber axons appears to follow the dendrites of these neurons into the inner molecular layer. Based on previous data indicating that basket cells are GABAergic inhibitory neurons, the present findings in normal rats and both types of gerbils suggest that intragranular and supragranular mossy fibers provide additional circuitry for feedback inhibition to granule cells. It is possible that under pathological conditions, such as denervation or kindling, these fibers sprout and form synapses with granule cells.  相似文献   

11.
Feedforward inhibitory circuits are involved both in the suppression of excitability and timing of action potential generation in principal cells. In the CA3 hippocampus, a single mossy fiber from a dentate gyrus granule cell forms giant boutons with multiple release sites, which are capable of detonating CA3 principal cells. By contrast, mossy fiber terminals form a larger number of Lilliputian-sized synapses with few release sites onto local circuit interneurons, with distinct presynaptic and postsynaptic properties. This dichotomy between the two synapse types endows the circuit with exquisite control over pyramidal cell discharge. Under pathological conditions where feedforward inhibition is compromised, focal excitation is no longer contained, rendering the circuit susceptible to hyperexcitability.  相似文献   

12.
We sought to describe quantitatively the morphological and functional changes that occur in the dentate gyrus of kainate-treated rats, an experimental model of temporal lobe epilepsy. Adult rats were treated systemically with kainic acid, and, months later, after displaying spontaneous recurrent motor seizures, their dentate gyri were examined. Histological, immunocytochemical, and quantitative stereological techniques were used to estimate numbers of neurons per dentate gyrus of various classes and to estimate the extent of granule cell axon reorganization along the septotemporal axis of the hippocampus in control rats and epileptic kainate-treated rats. Compared with control rats, epileptic kainate-treated rats had fewer Nissl-stained hilar neurons and fewer somatostatin-immunoreactive neurons. There was a correlation between the extent of hilar neuron loss and the extent of somatostatin-immunoreactive neuron loss. However, functional inhibition in the dentate gyrus, assessed with paired-pulse responses to perforant-pathway stimulation, revealed enhanced, and not the expected reduced, inhibition in epileptic kainate-treated rats. Numbers of parvalbumin- and cholecystokinin-immunoreactive neurons were similar in control rats and in most kainate-treated rats. A minority (36%) of the epileptic kainate-treated rats had fewer parvalbumin- and cholecystokinin-immunoreactive neurons than control rats, and those few (8%) with extreme loss in these interneuron classes showed markedly hyperexcitable dentate gyrus field-potential responses to orthodromic stimulation. Compared with control rats, epileptic kainate-treated rats had larger proportions of their granule cell and molecular layers infiltrated with Timm stain. There was a correlation between the extent of abnormal Timm staining and the extent of hilar neuron loss. Granule cell axon reorganization and dentate gyrus neuron loss were more severe in temporal vs. septal hippocampus. These findings from the dentate gyrus of epileptic kainate-treated rats are strikingly similar to those reported for human temporal lobe epilepsy, and they suggest that neuron loss and axon reorganization in the temporal hippocampus may be important in epileptogenesis. J. Comp. Neurol. 385:385–404, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Dentate granule cells are generally considered to be relatively resistant to excitotoxicity and have been associated with robust synaptogenesis after neuronal damage. Synaptic reorganization of dentate granule cell axons, the mossy fibers, has been suggested to be relevant for hyperexcitability in human temporal lobe epilepsy and animal models. A recent hypothesis suggested that mossy-fiber sprouting is dependent on newly formed dentate granule cells. However, we recently demonstrated that cycloheximide (CHX) can block the mossy-fiber sprouting that would otherwise be induced by different epileptogenic agents and does not interfere with epileptogenesis in those models. Here, we investigated cell damage and neurogenesis in the dentate gyrus of pilocarpine- or kainate-treated animals with or without coadministration of CHX. Dentate granule cells were highly vulnerable to pilocarpine induced-status epilepticus (SE), but were hardly damaged by kainate-induced SE. CHX pretreatment markedly reduced the number of injured neurons after pilocarpine-induced SE. Induction of SE dramatically increased the mitotic rate of KA- and KA + CHX-treated animals. Induction of SE in animals injected with pilocarpine alone led to 2-7-fold increases in the mitotic rate of dentate granule cells as compared to 5- and 30-fold increases for pilocarpine + CHX animals. We suggest that such increased mitotic rates might be associated with a protection of a vulnerable precursor cell population that would otherwise degenerate after pilocarpine-induced SE. We further suggest that mossy-fiber sprouting and neurogenesis of granule cells are not necessarily linked to one another.  相似文献   

14.
Dentate granule cells and the hippocampal CA2 region are resistant to cell loss associated with mesial temporal lobe epilepsy (MTLE). It is known that granule cells undergo mossy fiber sprouting in the dentate gyrus which contributes to a recurrent, proepileptogenic circuitry in the hippocampus. Here it is shown that mossy fiber sprouting also targets CA2 pyramidal cell somata and that the CA2 region undergoes prominent structural reorganization under epileptic conditions. Using the intrahippocampal kainate mouse model for MTLE and the CA2‐specific markers Purkinje cell protein 4 (PCP4) and regulator of G‐Protein signaling 14 (RGS14), it was found that during epileptogenesis CA2 neurons survive and disperse in direction of CA3 and CA1 resulting in a significantly elongated CA2 region. Using transgenic mice that express enhanced green fluorescent protein (eGFP) in granule cells and mossy fibers, we show that the recently described mossy fiber projection to CA2 undergoes sprouting resulting in aberrant large, synaptoporin‐expressing mossy fiber boutons which surround the CA2 pyramidal cell somata. This opens up the potential for altered synaptic transmission that might contribute to epileptic activity in CA2. Indeed, intrahippocampal recordings in freely moving mice revealed that epileptic activity occurs concomitantly in the dentate gyrus and in CA2. Altogether, the results call attention to CA2 as a region affected by MTLE‐associated pathological restructuring. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Granule cell (GC) neurogenesis increases following seizures, and some newborn GCs develop in abnormal locations within the hilus. These ectopic GCs (EGCs) display robust spontaneous and evoked excitatory activity. However, the pattern of afferent input they receive has not been fully defined. This study used electron microscopic immunolabeling to quantitatively evaluate mossy fiber (MF) input to EGCs since MFs densely innervate the hilus normally and undergo sprouting in many animal models of epilepsy. EGC dendrites were examined in tissue from epileptic rats that had initially been treated with pilocarpine to induce status epilepticus and subsequently had spontaneous seizures. MF terminals were labeled with a zinc transporter-3 antibody, and calbindin immunoreactivity was used to label hilar EGCs and GC layer GCs. The pattern of input provided by sprouted MF terminals to EGC dendrites was then compared to the pattern of MF input to GC dendrites in the inner molecular layer (IML), where most sprouted fibers are thought to project. Analysis of EGC dendrites demonstrated that MF terminals represented their predominant source of afferent input: they comprised 63% of all terminals and, on average, occupied 40% and 29% of the dendritic surface in the dorsal and ventral dentate gyrus, respectively, forming frequent synapses. These measures of connectivity were significantly greater than comparable values for MF innervation of GC dendrites located in the IML of the same tissue sections. Thus, EGCs develop a pattern of synaptic connections that could help explain their previously identified predisposition to discharge in epileptiform bursts and suggest that they play an important role in the generation of seizure activity in the dentate gyrus.  相似文献   

16.
Seizure induction tends to be followed by the development of a predisposition to future seizure activity and the concurrent sprouting of the mossy fiber pathway into the inner molecular layer of the dentate gyrus, where recurrent excitatory synapses are formed. To determine whether synaptic remodeling of mossy fiber terminals within the hilus also occurs, rats were administered pentylenetetrazol and, 2 days later, control and experimental tissue was processed for the ultrastructural immunohistochemical identification of mossy fiber terminals. Examination of the structure of these terminals within random hilar fields indicated that selective changes had occurred, which were only observed in the ventral hilus, and which were specific to terminals forming synapses with mossy cell spines (vs. interneurons). This terminal population displayed significant parallel increases in both the total active zone area and the surface area of an average terminal (measured from random two-dimensional samples of terminal structure). Increases in total active zone area must reflect increases in the number and/or size of individual active zones. These findings suggest that changes in terminal size can subserve adjustments in the overall strength of a set of synaptic connections. In the context of the ventral hilus, a selective increase in the apparent strength of mossy fiber connections with mossy cells could support increases in excitability following seizure induction. Mossy cells form connections with granule cell proximal dendrites, providing another pathway for recurrent excitation.  相似文献   

17.
Morphological organization of rat hippocampal slice cultures.   总被引:6,自引:0,他引:6  
Using various histological methods, we investigated the cellular and morphological organization of rat hippocampal slice cultures. Many of the typical features of the hippocampus were retained in vitro over a long period of time. The principal cell types of the hippocampus and dentate gyrus, the pyramidal cells and granule cells, were well preserved and matured in vitro. Nonpyramidal cells and gamma-aminobutyric-acid (GABA) cells were also present in slice cultures and exhibited a strikingly similar dendritic appearance at the light microscopic level. Moreover, GABA-immunoreactive cell bodies and presynaptic terminals could be identified at the electron microscopic level; they expressed typical symmetric synaptic contacts with cell bodies and dendrites. The course of the intrinsic hippocampal fiber pathways--the mossy fibers, Schaffer collaterals, and alveus--was generally retained in vitro. Additional aberrant fiber projections could be identified. Finally, three types of nonneuronal cells could be distinguished on the basis of immunocytochemical methods.  相似文献   

18.
The "disinhibition" hypothesis contends that (1) seizures begin when granule cells in the dentate gyrus of the dorsal hippocampus are disinhibited and (2) disinhibition occurs because GABAergic interneurons are excessively inhibited by other GABAergic interneurons. We tested the disinhibition hypothesis using the experimental model that inspired it-naturally epileptic Mongolian gerbils. To determine whether there is an excess of GABAergic interneurons in the dentate gyrus of epileptic gerbils, as had been reported previously, GABA immunocytochemistry, in situ hybridization of GAD67 mRNA, and the optical fractionator method were used. There were no significant differences in the numbers of GABAergic interneurons. To determine whether granule cells in epileptic gerbils were disinhibited during the interictal period, IPSPs were recorded in vivo with hippocampal circuits intact in urethane-anesthetized gerbils. The reversal potentials and conductances of IPSPs in granule cells in epileptic versus control gerbils were similar. To determine whether the level of inhibitory control in the dentate gyrus transiently decreases before seizure onset, field potential responses to paired-pulse perforant path stimulation were obtained from the dorsal hippocampus while epileptic gerbils experienced spontaneous seizures. Evidence of reduced inhibition was found after, but not before, seizure onset, indicating that seizures are not triggered by disinhibition in this region. However, seizure-induced depression of inhibition may amplify and promote the spread of seizure activity to other brain regions. These findings do not support the disinhibition hypothesis and suggest that in this model of epilepsy seizures initiate by another mechanism or at a different site.  相似文献   

19.
Previously we have reported a loss of the dentate granule cells and hippocampal CA3 pyramidal cells in adult animals after lengthy periods of low-protein diet. In this study we examined the effects of this cell loss upon the synaptic connections between the granule cell axons (the mossy fibers) and CA3 pyramidal cell dendrites. Three groups of five rats each were given a low-casein (8%) diet for 6, 12, and 18 months, respectively, and the results of the ultrastructural morphometric analysis compared with similarly processed control rats kept on a control diet. The numerical density of synapses was decreased in undernourished rats and the fraction of the mossy fiber terminal membrane occupied by synaptic specializations was reduced. It can be inferred that the synaptic connectivity pattern between mossy fiber terminals and CA3 dendrites is altered due to a reduction in the number of contacts. Besides, as the synapses of low-protein-treated animals do not display any increase in the length of their active zones, evidence is not provided for the existence of morphological synaptic plasticity, contrary to what has been recently described in other experimental circumstances.  相似文献   

20.
Several investigators have shown the existence of dentate granule cells in ectopic locations within the hilus and molecular layer using both Golgi and retrograde tracing studies but the ultrastructural features and synaptic connections of ectopic granule cells were not previously examined. In the present study, the biocytin retrograde tracing technique was used to label ectopic granule cells following injections into stratum lucidum of CA3b of hippocampal slices obtained from epileptic rats. Electron microscopy was used to study hilar ectopic granule cells that were located 20–40 μm from the granule cell layer (GCL). They had ultrastructural features similar to those of granule cells in the GCL but showed differences, including nuclei that often displayed infoldings and thicker apical dendrites. At their origin, these dendrites were 6 μm in diameter and they tapered down to 2 μm at the border with the GCL. Both biocytin-labeled and unlabeled axon terminals formed exclusively asymmetric synapses with the somata and proximal dendrites of hilar ectopic granule cells. The mean number of axosomatic synapses for these cells was three times that for granule cells in the GCL. Together, these data indicate that hilar ectopic granule cells are postsynaptic to mossy fibers and have less inhibitory input on their somata and proximal dendrites than granule cells in the GCL. This finding is consistent with recent physiological results showing that hilar ectopic granule cells from epileptic rats are more hyperexcitable than granule cells in the GCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号