首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.  相似文献   

2.
Odor stimulation may excite or inhibit olfactory receptor neurons (ORNs). It is well established that the excitatory response involves a cyclic AMP (cAMP) transduction mechanism that activates a nonselective cationic cyclic nucleotide-gated (CNG) conductance, accompanied by the activation of a Ca2+-dependent Cl(-) conductance, both causing a depolarizing receptor potential. In contrast, odor inhibition is attributed to a hyperpolarizing receptor potential. It has been proposed that a Ca2+-dependent K+ (K(Ca)) conductance plays a key role in odor inhibition, both in toad and rat isolated olfactory neurons. The mechanism underlying odor inhibition has remained elusive. We assessed its study using various pharmacological agents and caged compounds for cAMP, Ca2+, and inositol 1,4,5-triphosphate (InsP3) on isolated toad ORNs. The odor-triggered K(Ca) current was reduced on exposing the cell either to the CNG channel blocker LY83583 (20 microM) or to the adenylyl cyclase inhibitor SQ22536 (100 microM). Photorelease of caged Ca2+ activated a Cl- current sensitive to niflumic acid (10 microM) and a K+ current blockable by charybdotoxin (20 nM) and iberiotoxin (20 nM). In contrast, photoreleased Ca2+ had no effect on cells missing their cilia, indicating that these conductances are confined to the cilia. Photorelease of cAMP induced a charybdotoxin-sensitive K+ current in intact ORNs. Photorelease of InsP3 did not increase the membrane conductance of olfactory neurons, arguing against a direct role of InsP3 in chemotransduction. We conclude that a cAMP cascade mediates the activation of the ciliary Ca2+-dependent K+ current and that the Ca2+ ions that activate the inhibitory current enter the cilia through CNG channels.  相似文献   

3.
Some olfactory sensory neurons (OSNs) respond to odors with hyperpolarization. Although transduction for excitatory responses is mediated by opening of a cyclic nucleotide-gated (CNG) channel, there is controversy on the mechanism underlying inhibitory responses. We find that mouse OSNs respond to odorants by either depolarizing or hyperpolarizing responses in loose-patch measurements. In the perforated-patch configuration, OSNs not only responded with a current consistent with CNG channel-mediated excitation but also displayed enhancement of outward currents, consistent with inhibitory responses. Increasing cAMP levels pharmacologically elicited excitatory or inhibitory responses in different OSNs. In addition, OSNs from mice defective for the CNGA2 subunit of the CNG channel displayed neither excitatory nor inhibitory responses. Thus CNG channels mediate inhibitory olfactory responses.  相似文献   

4.
The responses of olfactory receptor neurons (ORNs) to odors have complex dynamics. Using genetics and pharmacology, we found that these dynamics in Drosophila ORNs could be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributed distinct dynamics. Transduction dynamics could be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics were well described by a differentiating linear filter that was stereotyped across odors and cells. Genetic knock-down of sodium channels reshaped this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding.  相似文献   

5.
Although D2 dopamine receptors have been localized to olfactory receptor neurons (ORNs) and dopamine has been shown to modulate voltage-gated ion channels in ORNs, dopaminergic modulation of either odor responses or excitability in mammalian ORNs has not previously been demonstrated. We found that <50 microM dopamine reversibly suppresses odor-induced Ca2+ transients in ORNs. Confocal laser imaging of 300-microm-thick slices of neonatal mouse olfactory epithelium loaded with the Ca(2+)-indicator dye fluo-4 AM revealed that dopaminergic suppression of odor responses could be blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The dopamine-induced suppression of odor responses was completely reversed by 100 microM nifedipine, suggesting that D2 receptor activation leads to an inhibition of L-type Ca2+ channels in ORNs. In addition, dopamine reversibly reduced ORN excitability as evidenced by reduced amplitude and frequency of Ca2+ transients in response to elevated K(+), which activates voltage-gated Ca2+ channels in ORNs. As with the suppression of odor responses, the effects of dopamine on ORN excitability were blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The observation of dopaminergic modulation of odor-induced Ca2+ transients in ORNs adds to the growing body of work showing that olfactory receptor neurons can be modulated at the periphery. Dopamine concentrations in nasal mucus increase in response to noxious stimuli, and thus D2 receptor-mediated suppression of voltage-gated Ca2+ channels may be a novel neuroprotective mechanism for ORNs.  相似文献   

6.
Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity.  相似文献   

7.
Necturus gallbladder epithelium (NGE) expresses a CFTR-like apical Cl- conductance that can be activated by cAMP. Here, we show that extracellular ATP (100 microM), which is known to elevate intracellular Ca2+ and to hyperpolarize cells by stimulating apical and basolateral K+ conductances, also stimulates an apical Cl- conductance (Ga,Cl), however with a much slower time course. The selectivity sequence of Ga,Cl was SCN- > I- > NO3- > Br- > Cl- > isethionate (ISE-), but SCN- and I- partially blocked it, which is analogous to observations of CFTR Cl- channels. To disclose a possible role for intracellular Ca2+, gallbladders were incubated with the Ca2+ chelator BAPTA/AM or bathed in solutions containing only submicromolar Ca2+ concentrations. BAPTA partially inhibited the Ca(2+)-mediated hyperpolarization, but did not reduce the ATP-dependent activation of Ga,Cl and the latter was also seen in low extracellular Ca2+. On the other hand, the cAMP-antagonist Rp-8-Br-cAMPS strongly inhibited the stimulation of Ga,Cl by ATP (as well as by forskolin), but left the ATP-induced hyperpolarization unchanged. Preincubation with a low concentration of forskolin markedly enhanced the stimulatory effect of ATP, and this effect was not modified by the selective inhibition of protein kinase C. These data suggest the involvement of different signal transduction pathways in the ATP-dependent activation of K+ and Cl- conductances in NGE. The stimulation of the Ga,Cl appears to be mediated by cAMP but not by elevation of intracellular Ca2+.  相似文献   

8.
When stimulated with odorants, olfactory receptor neurons (ORNs) produce a depolarizing receptor current. In isolated ORNs, much of this current is caused by an efflux of Cl. This implies that the neurons have one or more mechanisms for accumulating cytoplasmic Cl at rest. Whether odors activate an efflux of Cl in intact olfactory epithelium, where the ionic environment is poorly characterized, has not been previously determined. In mouse olfactory epithelium, we found that >80% of the summated electrical response to odors is blocked by niflumic acid or flufenamic acid, each of which inhibits Ca2+-activated Cl channels in ORNs. This indicates that ORNs accumulate Cl in situ. Recent evidence has shown that NKCC1, a Na+-K+-2Cl cotransporter, contributes to Cl accumulation in mammalian ORNs. However, we find that the epithelial response to odors is only reduced by 39% in mice carrying a null mutation in Nkcc1. As in the wild-type, most of the response is blocked by niflumic acid or flufenamic acid, indicating that the underlying current is carried by Cl. We conclude that ORNs effectively accumulate Cl in situ even in the absence of NKCC1. The Cl-transport mechanism underlying this accumulation has not yet been identified.  相似文献   

9.
Ionic conductances present in the dendritic region of the cerebellar Purkinje neuron were studied using the single-channel and whole-cell recording methods. Several types of voltage-sensitive K+ channels including a Ca2+ activated K+ channel were found to be a prominent components of the dendritic membrane. All patches studied contained K+ channel types and most patches contained more than one K+ channel type. In cell attached recordings, K+ channel activity was associated with the late phase of spontaneous action potentials suggesting a functional relationship. These data demonstrate that voltage-sensitive ion channels contribute to dendritic excitability and suggest that the transduction and integration of synaptic signals may involve both active and passive ionic conductances.  相似文献   

10.
AIMS: We investigated the ion channel regulation of the resting membrane potential of hair cells with the aim to determine if the resting membrane potential is poised close to instability and thereby a potential cause of the spontaneous afferent spike activity. METHODS: The ionic mechanism and the dynamic properties of the resting membrane potential were examined with the whole-cell patch clamp technique in dissociated saccular hair cells and in a mathematical model including all identified ion channels. RESULTS: In hair cells showing I/V curves with a low membrane conductance flanked by large inward and outward rectifying potassium conductances, the inward rectifier (K(IR)), the delayed outward rectifier (K(V)) and the large conductance, calcium-sensitive, voltage-gated potassium channel (BK(Ca)) were all activated at rest. Under current clamp conditions, the outward current through these channels balanced the inward current through mechano-electrical transduction (MET) and Ca2+ channels. In 45% (22/49) of the cells, the membrane potential fluctuated spontaneously between two voltage levels determined by the voltage extent of the low membrane conductance range. These fluctuations were not influenced by blocking the MET channels but could be reversibly stopped by increasing [K+]o or by blocking of K(IR) channels. Blocking the BK(Ca) channels induced regular voltage oscillations. CONCLUSIONS: Two intrinsic dynamical instabilities of V(m) are present in hair cells. One of these is observed as spontaneous voltage fluctuations by currents through K(IR), K(V) and h-channels in combination with a steady current through MET channels. The other instability shows as regenerative voltage changes involving Ca2+ and K(V) channels. The BK(Ca) channels prevent the spontaneous voltage fluctuations from activating the regenerative system.  相似文献   

11.
The effects of Met-enkephalin on Ca2+-dependent K+ channel activity were investigated using the cell-attached patch recording technique on isolated parasympathetic neurones of rat intracardiac ganglia. Large-conductance, Ca2+-dependent K+ channels (BK(Ca)) were examined as an assay of agonist-induced changes in the intracellular free calcium ion concentration ([Ca2+]i). These BK(Ca) channels had a conductance of approximately 200 pS and were charybdotoxin- and voltage-sensitive. Caffeine (5 mM), used as a control, evoked a large increase in BK(Ca) channel activity, which was inhibited by 10 microM ryanodine. Met-enkephalin (10 microM) evoked a similar increase in BK(Ca) channel activity, which was dependent on the presence of extracellular Ca2+ and inhibited by either ryanodine (10 microM) or naloxone (1 microM). In Fura-2-loaded intracardiac neurones, Met-enkephalin evoked a transient increase in [Ca2+]i. Met-enkephalin-induced mobilization of intracellular Ca+ may play a role in neuronal excitability and firing behaviour in mammalian intracardiac ganglia.  相似文献   

12.
An important mechanism by which vertebrate olfactory sensory neurons rapidly adapt to odorants is feedback modulation of the Ca(2+)-permeable cyclic nucleotide-gated (CNG) transduction channels. Extensive heterologous studies of homomeric CNGA2 channels have led to a molecular model of channel modulation based on the binding of calcium-calmodulin to a site on the cytoplasmic amino terminus of CNGA2. Native rat olfactory CNG channels, however, are heteromeric complexes of three homologous but distinct subunits. Notably, in heteromeric channels, we found no role for CNGA2 in feedback modulation. Instead, an IQ-type calmodulin-binding site on CNGB1b and a similar but previously unidentified site on CNGA4 are necessary and sufficient. These sites seem to confer binding of Ca(2+)-free calmodulin (apocalmodulin), which is then poised to trigger inhibition of native channels in the presence of Ca(2+).  相似文献   

13.
Prolactin (PRL) is involved in numerous biological processes in peripheral tissues and the brain. Although numerous studies have been conducted to elucidate the signal transduction pathways associated with the PRL receptor, very few have examined the role of ion conductances in PRL actions. We used the patch-clamp technique in "whole cell" configuration and microspectrofluorimetry to investigate the effects of PRL on membrane ion conductances in the U87-MG human malignant astrocytoma cell line, which naturally expresses the PRL receptor. We found that a physiological concentration (4 nM) of PRL exerted a biphasic action on membrane conductances. First, PRL activated a Ca(2+)-dependent K(+) current that was sensitive to CTX and TEA. This current depended on PRL-induced Ca(2+) mobilization, through a JAK2-dependent pathway from a thapsigargin- and 2-APB-sensitive Ca(2+) pool. Second, PRL also activated an inwardly directed current, mainly due to the stimulation of calcium influx via nickel- and 2-APB-sensitive calcium channels. Both phases resulted in membrane hyperpolarizations, mainly through the activation of Ca(2+)-dependent K(+) channels. As shown by combined experiments (electrophysiology and microspectrofluorimetry), the PRL-induced Ca(2+) influx increased with cell membrane hyperpolarization and conversely decreased with cell membrane depolarization. Thus PRL-induced membrane hyperpolarizations facilitated Ca(2+) influx through voltage-independent Ca(2+) channels. Finally, PRL also activated a DIDS-sensitive Cl(-) current, which may participate in the PRL-induced hyperpolarization. These PRL-induced conductance activations are probably related to the PRL proliferative effect we have already described in U87-MG cells.  相似文献   

14.
Single-channel recordings using the gigohm seal patch-clamp technique were carried out on the somatic membranes of dissociated embryonic rat hippocampal neurons grown in cell culture. The recording medium contained tetrodotoxin to block the voltage-dependent Na+ conductance and Cd2+ to block Ca2+ and Ca2+-activated conductances. In the cell-attached configuration, depolarizing voltage steps activated outward directed single-channel currents with conductance 15-20 pS. The channel openings exhibited a moderate degree of flickering. The mean burst lifetimes ranged from 5 to 13 ms with a tendency to increase slightly at more depolarized potentials (T = 21-25 degrees C). Reversal potential measurements using excised membrane patches indicated that the channels behaved as expected of a K+-selective membrane pore. Channel opening occurred in Ca2+-free EGTA-containing solutions but was never observed in the presence of tetraethylammonium (TEA; 20 mM). The frequency of channel opening increased as the membrane was depolarized by up to 50 mV from resting potential; the fraction of time spent in the open state during the first 300 ms following a step depolarization increased e-fold for a 8-25 mV change in potential. First-latency histograms and simulations of the macroscopic current based on channel data obtained during repeated depolarizing voltage steps indicated that the probability of the channel being in the open state increases gradually with time after a step depolarization. During repeated depolarizing steps the channels appeared to randomly enter and exit a long-lived inactive state. It is concluded that these channels may underly the slowly activating, very slowly inactivating, TEA-sensitive voltage-dependent K+ current (IK) in cultured hippocampal neurons.  相似文献   

15.
1. Whole cell current-clamp recordings show that odors not only depolarize but may also hyperpolarize lobster olfactory receptor cells. Odor-evoked hyperpolarizations occurred in 36% of 178 receptor cells examined. Cell-attached recordings of action potentials followed by current-clamp recordings in the same cell indicate that depolarizing and hyperpolarizing responses were associated with increases (excitation) and decreases (inhibition) in action potential frequency, respectively. Since odorants that hyperpolarized one receptor cell depolarized other cells and since individual cells may be both excited and inhibited, the inhibitory and excitatory nature of the response must be conferred by the odorant-receptor and transduction processes expressed by the receptor cell. 2. The input resistance dropped from 1.73 G omega at rest to 1.45 G omega during odor-evoked hyperpolarization, and the membrane time constant correspondingly decreased from 114 to 61 ms. The increased conductance persisted throughout the stimulation period (5 s). 3. Shifting the K+ reversal to a more negative potential by lowering the [K+]o from 14 to 2.8 mM increased the magnitude of hyperpolarization. The hyperpolarization could be reversibly blocked by dendritic treatment with 5-10 mM 4-aminopyridine (4-AP) or 10 mM cesium ion, but not by 10 mM tetraethylammonium (TEA). 4. Substituting 80% of the [Cl-]o with NO3- increased the amplitude of the hyperpolarization. Based on a calculated equilibrium potential of -32 mV for chloride, an increase in chloride conductance in a low [Cl-]o environment should have decreased the magnitude of the response. Presumably the change in [Cl-]o acts through the dendritic steady-state chloride conductance to shift the membrane potential further from the reversal potential for K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cultured rat hippocampal astrocytes were used to investigate the mechanism underlying the suppression of Ba2+-sensitive K+ currents by GABAA receptor activation. Muscimol application had two effects on whole cell currents: opening of the well-known Cl- channel of the GABAA receptor and a secondary longer-lasting blockade of outward K+ currents displaying both peak and plateau phases. This blockade was independent of both Na+ (inside and outside) and ATP in the pipette. It also seemed to be independent of muscimol binding to the receptor because picrotoxin application showed no effect on the K+ conductance. The effect is blocked when anion efflux is prevented by replacing Cl- with gluconate (both inside and out) and is enhanced with more permeant anions such as Br- and I-. Moreover, the effect is reproduced in the absence of muscimol by promoting Cl- efflux via lowering of extracellular Cl- levels. These results, along with the requirement for Cl- efflux in muscimol experiments, show a strong dependency of the secondary blockade on Cl- efflux through the Cl- channel of the GABAA receptor. We therefore conclude that changes in the intracellular Cl- concentration alter the outward K+ conductances of astrocytes. Such a Cl--mediated modulation of an astrocytic K+ conductance will have important consequences for the progression of spreading depression through brain tissue and for astrocytic swelling in pathological situations.  相似文献   

17.
18.
The predominant form of muscarinic excitation in the forebrain and in sympathetic ganglia arises from m1 receptors coupled to the G(q/11) signal transduction pathway. Functional components of this system have been most completely mapped in frog sympathetic B neurons. Presynaptic stimulation of the B neuron produces a dual-component muscarinic excitatory postsynaptic potential (EPSP) mediated by suppression of voltage-dependent M-type K(+) channels and activation of a voltage-insensitive cation current. Evidence from mammalian systems suggests that the cation current is mediated by cyclic GMP-gated channels. This paper describes the use of a computational model to analyze the consequences of pleiotropic muscarinic signaling for synaptic integration. The results show that the resting potential of B neurons is a logarithmic function of the leak conductance over a broad range of experimentally observable conditions. Small increases (<4 nS) in the muscarinically regulated cation conductance produce potent excitatory effects. Damage introduced by intracellular recording can mask the excitatory effect of the muscarinic leak current. Synaptic activation of the leak conductance combines synergistically with suppression of the M-conductance (40 --> 20 nS) to strengthen fast nicotinic transmission. Overall, this effect can more than double synaptic strength, as measured by the ability of a fast nicotinic EPSP to trigger an action potential. Pleiotropic muscarinic excitation can also double the temporal window of summation between subthreshold nicotinic EPSPs and thereby promote firing. Activation of a chloride leak or suppression of a K(+) leak can substitute for the cation conductance in producing excitatory muscarinic actions. The results are discussed in terms of their implications for synaptic integration in sympathetic ganglia and other circuits.  相似文献   

19.
Whole cell recordings were obtained from pyramidal cell somata acutely isolated from rat neocortex. In voltage-clamp mode, adenosine (0.3-1000 microM), and the GABA(B) receptor agonist, baclofen (1-300 microM), induced K+ current responses mediated by G protein-activated inwardly rectifying K+ (GIRK) channels. In our preparation, adenosine activated GIRK currents with an average EC(50) of 2 microM. Baclofen had an average EC50 of 26 microM. To estimate and compare unitary conductance and density of GIRK channels activated by either adenosine or baclofen, we performed variance analysis of current fluctuations associated with the application of the two agonists at increasing concentrations. Irrespective of the agonist tested, GIRK channels displayed an average single-channel conductance of 25 pS at our recording conditions ([K+]o: 60 mM). Assuming that GIRK channel conductance increases in proportion to the square root of [K+]o, this would translate into 5-6 pS at physiological ion gradients. GIRK channels activated by adenosine or baclofen were not only identical in terms of unitary conductance, they also displayed the same average density of 0.5 channels micron(-2) for both agonists. Our data strongly suggest that the two compounds recruit the same type of channel and thus most likely share a common transduction and effector system.  相似文献   

20.
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号