首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
目的构建弓形虫棒状体蛋白(ROP1)基因重组质粒并在E.coli中表达。方法用RH株接种小鼠,收集腹水,纯化速殖子,抽提基因组DNA;据ROP1基因序列设计合成一对引物,将上、下游引物分别引入EcoRI,BamHI酶切位点,用PCR技术从RH株基因组DNA中扩增编码ROP1的基因片段,插入pBV220质粒,转化大肠杆菌DH5α感受态细胞,于氨苄阳性LB培养平板上筛选阳性克隆,酶切鉴定;经温度诱导在E.coli中表达,SDS-PAGE及免疫印迹分析。结果ROP1基因体外扩增产物大小与预期值相符,约756bp;构建成功pBV220-ROP1重组质粒;SDS-PAGE、免疫印迹显示特异蛋白条带的分子量约43kD,表达产量约占菌体蛋白13.23%。结论从弓形虫基因组DNA中获取ROP1基因,并成功构建pBV220-ROP1重组质粒,诱导表达ROP1非融合蛋白,为进一步分离纯化、用于对弓形虫侵入机制及免疫特性的研究做好准备。  相似文献   

2.
为获取具有生物学活性的弓形虫P30蛋白,采用定向克隆的方法,自行设计引物通过PCR扩增得到P30基因片段,用EcoRI和SalI双酶切后,连接到同样酸切的原核表达载体(pBV220和pMALP2)上,转化大肠杆菌DH5α,分别得到含重组闰pBV220-P30和pMALP2-P30的工程菌,扩菌提取质粒经过酶切分析和PCR扩增鉴定后,证实P30基因的两个原核表达载体构建成功,为其在原核系统中的表达作  相似文献   

3.
引形虫P30抗原基因的体外扩增,克隆及原核表达   总被引:1,自引:0,他引:1  
根据已知弓形虫主要表面抗原P30的基因序列,用已合成的一对引物,通过聚合酶链反应从弓形虫RH、ZS1和ZS2株中扩增了P30的编码基因,经纯化及相应酶切后插入质粒pcDNA3中并转化大肠杆菌TG1。经含氨苄青霉素LB培养在初筛后,挑菌扩增双酶切鉴定,阳性克隆子在TG1中表达,产物经SDS-PAGE分析显示,P30基因在大肠杆菌中高效表达。  相似文献   

4.
目的 观察裸DNA重组质粒pCD-SjFABPc在体外转染HepG2细胞以及质粒DNA免疫鼠肌组织中的表达,为进一步应用该质粒进行DNA免疫实验奠定基础。方法 用脂质体介导DNA转染法将pCD-SjFABPc转染贴壁细胞HepG2,G418加压筛选获得阳性克隆细胞并传代培养,SDS-PAGE及Western-blot鉴定目的基因在HepG2细胞中的表达,将pCD-SjFABPc质粒肌注免疫BALB  相似文献   

5.
弓形虫P30抗原基因的体外扩增、克隆及原核表达   总被引:1,自引:0,他引:1  
根据已知弓形虫主要表面抗原P30的基因序列,用已合成的一对引物,通过聚合酶链反应,从弓形虫RH、ZS1和ZS2株中扩增了P30的编码基因,经纯化及相应酶切后插入质粒pcDNA3中并转化大肠杆菌TG1。经含氨苄青霉素LB培养基初筛后,挑菌扩增双酶切鉴定,阳性克隆子在TG1中表达,产物经SDS-PAGE分析显示,P30基因在大肠杆菌中高效表达。  相似文献   

6.
根据已发表的弓形虫主要表面抗原(P30)的基因的序列,设计合成了一对引物,通过聚合酶链反应,扩增出P30基因,将P30基因克隆入表达质粒pGEMEX-1中,经酶切鉴定后,阳性重组质粒转化宿主菌JM109(DE3),宿主菌经IPTG诱导表达后,产物进行SDS-PAGE和Western-blot分析。结果显示,P30基因以融合蛋白的形式表达,实物具有特异的免疫反应性。  相似文献   

7.
目的 为疟疾疫苗的研制提供靶抗原。方法 根据恶性疟原虫IMTM22 株7G8 克隆环子孢子蛋白基因编码区序列, 设计一对引物, 采用PCR技术从恶性疟原虫FCC1/HN株基因组DNA中特异扩增CSP基因的Ⅰ区、中央重复区和Ⅱ区片段, 全长1-08kb; 纯化扩增产物用HindⅢ和BamH Ⅰ双酶切后, 定向克隆入pcDNA3 载体, 转化大肠杆菌TG1 株, 重组克隆经筛选后, 用PCR 扩增和HindⅢ+ BamH Ⅰ双酶切进行鉴定: 用磷酸钙贴壁细胞转化法将重组质粒pcDNA—CSP导入HeLa细胞, 用G418 筛选出稳定分泌CSP抗原的阳性细胞克隆; 将阳性细胞克隆系扩大培养并用G418 加压, 以表达重组CSP, 分离细胞培养上清和培养细胞, 进行SDS PAGE分析。结果 (1) 从FCC1/HN株基因组DNA中特异扩增出CSP基因Ⅰ区, 中央重复区和Ⅱ区编码序列;(2) 将扩增的目的片段正向插入pcDNA3HindⅢ和BamHⅠ位点; (3) 在人宫颈癌细胞系HeLa 细胞中表达重组CSP抗原, 其分子量为38-3kDa, 蛋白扫描分析表达量占细胞培养上清液中蛋白总含量的15-77% 。结论 成功构建真核表达系统pcDNA3  相似文献   

8.
目的 构建基因工程菌株、获得重组蛋白Sj-FABPc(日本血吸虫脂肪酸结合蛋白)。方法 用PCR法从日本血吸虫cDNA文库中扩增Sj-FABPc基因片段,再将该片段重组于pGEM-T中并进行DNA测序鉴定,经酶切后将目的片段构建成重组质粒pGEX-6P-1/Sj-FABPc,转化于大肠杆菌BL21,IPTG诱导表达。用Glutathione Sepharose^TM 4B亲和层析柱对表达产物进行纯  相似文献   

9.
根据已发表的弓形虫主要表面抗原( P30)的基因序列,设计合成了一对引物,通过聚合酶链反应,扩增出 P30 基因,将 P30 基因克隆入表达质粒p G E M E X1 中,经酶切鉴定后,阳性重组质粒转化宿主菌 J M 109( D E3 ),宿主菌经 I P T G 诱导表达后,产物进行 S D S P A G E和 W esternblot分析。结果显示, P30 基因以融合蛋白的形式表达,表达产物具有特异的免疫反应性。  相似文献   

10.
弓形虫侵入相关分子ROP1在HepG—2细胞中的表达   总被引:2,自引:0,他引:2  
弓形虫棒状体蛋白1(ROP1)是与早体侵入相关的重要分子。将含编码POP1蛋白基因的真核表达重组质粒pcDNA3转梁HepG-2细胞,为进一步研究做准备,用脂质体介导的真核细胞转梁法,G418筛选阳性克隆,SDS-PAGE及Western-blot分析鉴定表达产物。结果显示,在所选的克隆化生长的细胞裂解样品电泳图谱中,有一大小约35~40kDa的特异电泳条带,该条带可被弓形虫免疫血清识别,本研究建  相似文献   

11.
弓形虫棒状体蛋白2和膜表面蛋白1融合基因的克隆与表达   总被引:2,自引:1,他引:2  
目的 进行弓形虫棒状体蛋白2(ROP2)和膜表面蛋白1(P30)融合基因的克隆与表达,为弓形虫ROP2?鄄P30基因工程复合抗原的制备做准备。 方法 半套式PCR扩增编码弓形虫P30的基因片段,克隆至已构建成功的重组质粒pUC119/ROP2中,经PCR和酶切鉴定正确的重组质粒pUC119/ROP2-P30再以SacⅠ/HindⅢ双酶切克隆至表达载体pET28b上,鉴定正确的重组质粒pET28b/ROP2-P30转化大肠埃希菌表达菌株BL21-Codon Plus(DE3)-RIL,经异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达。 结果 从弓形虫RH株基因组DNA中扩增出700 bp P30基因片段,成功构建重组质粒pET28b/ROP2-P30,该质粒经PCR和酶切鉴定,与预期结果一致,并在大肠埃希菌中高效表达,产生相对分子质量(Mr)约为 69 000的重组目的蛋白。 结论 弓形虫ROP2和P301融合基因克隆成功,并表达出预期的复合重组蛋白ROP2-P30。  相似文献   

12.
编码弓形虫表面抗原P30基因的克隆及在E.coli中的表达   总被引:3,自引:0,他引:3  
目的 构建编码弓形虫RH株表面抗原P30基因重组表达质粒 ,初步观察P30基因在E coli表达。方法 将P30基因定向克隆到分支杆菌 -大肠杆菌穿梭表达质粒热休克蛋白 70 (hsp70 )起动基因的下游的多克隆位点 ,构建重组表达质粒pBCG -P30 ;采用亚克隆技术 ,将含P30和hsp70起动基因的复合片段 ,插入表达载体 pBK -CMV质粒 ,转化大肠杆菌DH5α ,在卡那霉素阳性LB培养基平板筛选阳性重组子 ,并经双酶切及PCR扩增鉴定。重组质粒 pBK -P30转化大肠杆菌 ,IPTG诱导表达后进行SDS -PAGE和Westernboltting分析。 结果  1)阳性重组质粒 pBCG -P30、pBK -P30经酶切和PCR鉴定 ,与预期的结果相符合。 2 )序列测定证实克隆的基因为编码P30抗原的基因。 3)P30基因在大肠杆菌诱导表达后获得4 5kDa融合蛋白 ,此抗原未被弓形虫高免兔血清识别。结论 成功构建编码弓形虫表面抗原P30重组表达质粒 ,并在大肠杆菌中获得表达 ,为弓形虫DNA疫苗的研制奠定基础  相似文献   

13.
弓形虫ZS2株抗原基因的扩增及克隆   总被引:2,自引:0,他引:2  
扩增弓形虫ZS2株P30抗原基因,构建PcDNA3—P30真核表达重组质粒。方法本文采用PCR技术,自行设计一对寡核苷酸引物(P1,P2),从弓形虫ZS2基因组DNA中特异扩增出编码P30抗原的基因片段。扩增的目的片段经纯化后用EcoRI和Hind双酶切后,克隆到真核表达质粒pcDNA3中,转化入大肠杆菌TG1,用氨共青霉素和PCR初筛,将PCR扩增阳性的重组子用EcoRI和Kind双酶切鉴定。结果从弓形虫ZS2株DNA中扩增出1025bP的P30基因,构建重组质粒PcDNA3—P30,酶切产物的大小分别与预期相符。结论成功地对弓形虫ZS2株P30基因进行体外扩增及构建真核表达重组质粒PcDNA3—P30,为重组P30抗原及核酸疫苗研究做好准备。  相似文献   

14.
弓形虫RH株致密颗粒蛋白GRA4基因的克隆与表达   总被引:3,自引:0,他引:3  
目的 克隆和表达弓形虫RH株致密颗粒蛋白GRA4基因。方法 根据GRA4基因序列,设计合成一对引物,用聚合酶链式反应(PCR)方法从弓形虫RH株基因组DNA中扩增GRA4基因片段,插入pMD18-T载体,并转化大肠杆菌JM109,经PCR、双酶切、测序验证后,将GRA4基因片段定向亚克隆到载体pGEX-4T-2中构建原核表达重组质粒pGEX-4T-2.GRA4,重组子在E.coli BL21中经IPTG诱导表达,并对表达产物进行SDS-PAGE及Westem blot分析。结果 从弓形虫RH株基因组DNA中扩增出GRA4基因片段并诱导表达出能被兔抗弓形虫血清识别的重组GRA4蛋白。结论 成功构建和表达了弓形虫pGEX-4T-2-GRA4重组质粒,为弓形虫病诊断抗原和疫苗的研究奠定了基础。  相似文献   

15.
目的 构建弓形虫RH株 pcDNA3.1 P30 ROP2 真核表达重组质粒,为进一步表达及 DNA疫苗的研制作准备。 方法 用PCR技术从弓形虫RH分离株的基因组DNA中扩增编码 P30基因片段和棒状体蛋白(ROP2)的基因片段,重组入 pUC18克隆载体,然后将 pUC18 P30 ROP2中的 P30 ROP2 外源基因片段经酶切、连接等反应,亚克隆入pcDNA3.1真核表达载体,再经含氨苄青霉素的LB培养基筛选、酶切及PCR鉴定。 结果 从弓形虫RH株基因组中扩增出特异的 P30、ROP2 片段,克隆成功 pUC18 P30 ROP2 重组质粒;经亚克隆、筛选鉴定获得了 pcDNA3. 1 P30 ROP2重组表达质粒。 结论 成功构建了弓形虫 pUC18 P30 ROP2重组克隆质粒,亚克隆成功 pcDNA3.1 P30 ROP2真核表达重组质粒,为下一步DNA疫苗的研究奠定了基础。  相似文献   

16.
弓形虫昆山分离株P30抗原基因的克隆与表达   总被引:6,自引:0,他引:6  
目的 在大肠杆菌中高效表达P30抗原。方法 采用聚合酶链反应(PCR)从弓形虫昆山分离株cDNA文库中扩增得到编码P30抗原的基因,经DNA序列分析后导入表达载体pGEX-5x-3,然后在大肠杆菌BL21中进行表达,用亲和层析柱纯化表达产物,并以SDS-PAGE和Western blotting进行鉴定。结果 1、在我们比较的783个碱基中,弓形虫昆山分离株与RH株之间只有两个碱基不同;2、得到-分子量为54kDa的融合蛋白,占大肠杆菌总蛋白的38%。结论 1、弓形虫昆山分离株与RH株的P30基因没有大的差异;2、在大肠杆菌中得到了P30融合蛋白的高效表达。  相似文献   

17.
目的 构建编码弓形虫RH株表面抗原P30基因的分枝杆菌 -大肠杆菌穿梭表达重组质粒并进行其序列测定。方法 弓形虫RH株腹腔接种小鼠 ,收集腹水 ,酚 /氯仿法抽提基因组DNA ;根据基因库P30基因序列设计合成一对引物 ,采用PCR法扩增编码P30的基因片段 ,经低熔点琼脂糖法回收并纯化 ;将P30基因定向克隆到分枝杆菌 -大肠杆菌穿梭表达质粒 ,转化大肠杆菌DH5dα,在卡那霉素阳性LB培养基平板筛选阳性重组子 ,并经双酶切及PCR鉴定 ;最后对重组子进行序列测定。结果 PCR所扩增的P30基因片段为 10 37bp ,阳性重组质粒pBCG -P30经XbaI+KpnI双酶切 ,获得包含P30和热休克蛋白 (hsp70 )启动子的复合基因片段 ,此片段的大小为 1170bp ,与预期的理论值相符合。序列测定分析进一步表明所克隆的基因为编码P30抗原的基因片段。结论 成功构建编码弓形虫表面抗原P30基因大肠杆菌 -分枝杆菌穿梭质粒pBCG -P30。  相似文献   

18.
目的构建弓形虫致密颗粒蛋白GRA8的真核重组表达质粒。方法设计GRA8的特异引物,采用多聚酶链反应(PCR)技术从弓形虫RH株基因组DNA中扩增编码GRA8的基因片段,经克隆至pMD18-T载体后,亚克隆至真核表达载体pVAC而构建真核重组表达质粒pVAC-GRA8,转化大肠杆菌DH5α;将构建的真核重组表达质粒pVAC-GRA8转染vero细胞,分析转染vero细胞中GRA8的表达状况。结果PCR扩增出GRA8基因的特异片段,所获克隆的序列正确,并被亚克隆到真核表达载体pVAC,构建了真核重组表达质粒pVAC-GRA8;在vero细胞中获得表达。结论成功构建了GRA8的真核重组表达质粒pVAC-GRA8。  相似文献   

19.
弓形虫主要表面抗原P30的克隆、表达与纯化   总被引:2,自引:0,他引:2       下载免费PDF全文
目的通过分子克隆技术获取弓形虫主要表面抗原P30蛋白。方法自行设计引物,通过PCR扩增获得P30基因片段,采用EcoRⅠ、XhoⅠ双酶切,定向克隆到载体pThioHis中,转化大肠杆菌Top10,利用酶切、DNA序列分析鉴定阳性克隆,异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达,融合蛋白通过镍结合树脂(ProBond~(TM)Resin)进行纯化,并用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹(Westernblotting)鉴定。结果PCR、酶切、连接的产物经电泳鉴定,均与预期设计相符合。DNA序列分析结果表明,除一个同义突变,其余均与文献报道相符。IPTG诱导表达后经层析纯化获得46kDa含P30的融合蛋白。结论通过定向克隆、表达与纯化,获得含P30的融合蛋白。  相似文献   

20.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒, 为进一步表达融合蛋白及研制核酸疫苗做准备。 方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组 DNA;用 PCR技术从基因组DNA中扩增编码表面抗原 P30、P22 的基因片段,分别重组入 pMD18 T载体中。将 pMD18 T载体中的P30、P22基因片段分别酶切,定向克隆入 pUC18克隆载体中, pUC18 P30 P22 中的 P30 P22 片段经酶切、纯化后,亚克隆入 pcDNA3.1( )真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。 结果 从弓形虫 RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆 pUC18 P30 P22 重组质粒的酶切片段分别与 P30、P22基因大小一致;经亚克隆、筛选鉴定获得了 pcDNA3.1 P30 P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫 pUC18 P30 P22重组质粒和 pcDNA3.1 P30 P22 重组质粒,为研制弓形虫 DNA疫苗奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号