首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells' behavior to create a permissive microenvironment for neuronal stem cells.  相似文献   

3.
CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.  相似文献   

4.
In the developing CNS, the manifestation of the macroglial phenotypes is delayed behind the formation of neurons. The “neurons first – glia second” principle seems to be valid for neural tissue differentiation throughout the neuraxis, but the reasons behind are far from clear. In the presented study, the mechanisms of this timing were investigated in vitro, in the course of the neural differentiation of one cell derived NE-4C neuroectodermal stem and P19 embryonic carcinoma cells. The data demonstrated that astrocyte formation coincided in time with the maturation of postmitotic neurons, but the close vicinity of neurons did not initate astrocyte formation before schedule. All-trans retinoic acid, a well-known inducer of neuronal differentiation, on the other hand, blocked effectively the astroglia production if present in defined stages of the in vitro neuroectodermal cell differentiation. According to the data, retinoic acid plays at least a dual role in astrogliogenesis: while it is needed for committing neural progenitors for a future production of astrocytes, it prevents premature astrogliogenesis by inhibiting the differentiation of primed glial progenitors.  相似文献   

5.
Fate-specific differentiation of neural progenitors attracts keen interest in modern medicine due to its application in cell replacement therapy. Though various signaling pathways are involved in maintenance and differentiation of neural progenitors, the mechanism of development of lineage-restricted progenitors from embryonic stem (ES) cells is not clearly understood. Here, we have demonstrated that neuronal vs. glial differentiation potential of ES cell-derived neural progenitors (ES-NPs) are governed by the growth factors, exposed during their proliferation/expansion phase and cannot be significantly altered during differentiation phase. Exposure of ES-NPs to fibroblast growth factor-2 (FGF2) during proliferation triggered the expression of pro-neural genes that are required for neuronal lineage commitment, and upon differentiation, predominantly generated neurons. On the other hand, epidermal growth factor (EGF)-exposed ES-NPs are not committed to neuronal fate due to decreased expression of pro-neural genes. These ES-NPs further generate more glial cells due to expression of glial-restricted factors. Exposure of ES-NPs to the same growth factors during proliferation/expansion and differentiation phase augments the robust differentiation of neurons or glial subtypes. We also demonstrate that, during differentiation, exposure to growth factors other than that in which the ES-NPs were expanded does not significantly alter the fate of ES-NPs. Thus, we conclude that FGF2 and EGF determine the neural vs. glial fate of ES-NPs during proliferation and augment it during differentiation. Further modification of these protocols would help in generating fate-specified neurons for various regenerative therapies.  相似文献   

6.
We have demonstrated that overcoming matrix metalloproteinase (MMP)-mediated suppression of glial proliferation stimulates axonal regeneration in the peripheral nervous system. The regenerative capacity of the adult CNS in response to injury and demyelination depends on the ability of multipotent glial NG2+ progenitor cells to proliferate and mature, mainly into oligodendrocytes. Herein, we have established the important role of MMPs, specifically MMP-9, in regulation of NG2+ cell proliferation in injured spinal cord. Targeting transiently induced MMP-9 using acute MMP-9/2 inhibitor (SB-3CT) therapy for two days after T9-10 spinal cord dorsal hemisection produced a significant increase in mitosis (assessed by bromodeoxyuridine incorporation) of NG2+ cells but not GFAP + astrocytes and Iba-1+ microglia and/or macrophages. Acute MMP-9/2 blockade reduced the shedding of the NG2 proteoglycan and of the NR1 subunit of the N-methyl D-aspartate (NMDA) receptor, whose decline is believed to accompany NG2+ cell maturation into OLs. Increase in post-mitotic oligodendrocytes during remyelination and improved myelin neuropathology in the hemisected spinal cord were accompanied by locomotion and somatosensory recovery after acute MMP-9/2 inhibition. Collectively, these data establish a novel role for MMPs in regulation of NG2+ cell proliferation in the damaged CNS, and a long-term benefit of acute MMP-9 block after SCI.  相似文献   

7.
8.
Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100β+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100β+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.  相似文献   

9.
QKI proteins are expressed by differentiated glia and have been implicated as regulators of myelination, but are also thought to function during early neural development. This study shows that QKI proteins are expressed in neural progenitors of the ventricular zone (vz) during murine CNS development, but that their expression is down-regulated during neuronal differentiation. By contrast, neural progenitors located in specific subdomains of the vz maintain expression of QKI proteins as they differentiate and migrate away into the emerging nervous system. These QKI+ cells have characteristics consistent with the acquisition of a glial rather than neuronal fate; they express nestin, incorporate BrdU, fail to express neuronal markers, and similar QKI+ cells are found in the postnatal subventricular zone, a known area of gliogenesis. In vitro, neural progenitor cells also down-regulate QKI expression as they differentiate into neurons, but not if they differentiate into glia. Furthermore, neural progenitors in strictly delineated subdomains of the vz dramatically up-regulate expression of the QKI-5 isoform prior to the emergence of QKI+ cells from these regions. Taken together, these data indicate that (1) glia are generated from subsets of neural progenitors found in specific, identifiable subdomains of the vz (2) QKI expression is regulated as neural progenitors undergo the neuron-glial cell fate decision and (3) QKI expression is a characteristic of glial progenitors. J. Neurosci. Res. 54:46–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Glia as neural progenitor cells   总被引:13,自引:0,他引:13  
Recent studies have substantially expanded our conception of the roles for glia in function and maintenance of the adult nervous system. Of these reports, several have re-examined the lineage relationships among neural stem cells, their early radial glial derivatives and their mitotically competent neurogenic daughters. These studies have highlighted the role of radial cells in development, and of their glial progeny postnatally, as both progenitors and regulators of neuronal production and phenotype. In the adult mammalian brain, radial cell populations are scant, but their glial derivatives participate in a gliovascular network that organizes not only the structural and functional architecture of the brain but also its generative niches for resident progenitors - glial as well as neuronal. As in other organs, these progenitors can reside as transit-amplifying pools, by which lineage-biased progenitors expand to replenish discrete mature phenotypes. This review will consider the types of transit-amplifying progenitor cells persistent in the adult mammalian CNS, and the extent to which these derive from glial phenotypes. It will also discuss the interactions of progenitor cells with their brethren that could specify their phenotype and fate, while defining the permissive niches for cell genesis in the adult CNS.  相似文献   

11.
CNS microvascular pericytes exhibit multipotential stem cell activity.   总被引:2,自引:0,他引:2  
It has been suggested that a vascular-like cell has multipotent regenerative and mesenchymal lineage relationships. The identity of this stem/progenitor cell has remained elusive. We report here that adult central nervous system (CNS) capillaries contain a distinct population of microvascular cells, the pericyte that are nestin/NG2 positive and in response to basic fibroblast growth factor (bFGF) differentiate into cells of neural lineage. In their microvascular location, pericytes express nestin and NG2 proteoglycan. In serum containing media primary (0 to 7 day old) CNS pericytes are nestin positive, NG2 positive, alpha smooth muscle actin (alphaSMA) positive, and do not bind the endothelial cell specific griffonia symplicifolia agglutinin (GSA). In serum containing media, pericytes do not undergo neurogenesis but are induced to express alphaSMA. In bFGF containing media without serum, CNS pericytes form small clusters and multicellular spheres. Differentiated spheres expressed neuronal and glial cell markers. After disruption and serial dilution, differentiated spheres were capable of self-renewal. When differentiated spheres were disrupted and cultured in the presence of serum, multiple adherent cell populations were identified by dual and triple immunocytochemistry. Cells expressing markers characteristic of pericytes, neurons, and glial cells were generated. Many of the cells exhibited dual expression of differentiation markers. With prolonged culture fully differentiated cells of neural lineage were present. Results indicate that adult CNS microvascular pericytes have neural stem cell capability.  相似文献   

12.
The mammalian central nervous system (CNS) has little capacity for self-repair after injury, and neurons are not capable of proliferating. Therefore, neural tissue engineering that combines neural stem and progenitor cells and biologically derived polymer scaffolds may revolutionize the medical approach to the treatment of damaged CNS tissues. Neural stem and progenitor cells isolated from embryonic rat cortical or subcortical neuroepithelium were dispersed within type I collagen, and the cell-collagen constructs were cultured in serum-free medium containing basic fibroblast growth factor. The collagen-entrapped stem and progenitors actively expanded and efficiently generated neurons, which developed neuronal polarity, neurotransmitters, ion channels/receptors, and excitability. Ca2+ imaging showed that differentiation from BrdU+/TuJ1- to BrdU-/TuJ1+ cells was accompanied by a shift in expression of functional receptors for neurotransmitters from cholinergic and purinergic to predominantly GABAergic and glutamatergic. Spontaneous postsynaptic currents were recorded by patch-clamping from precursor cell-derived neurons and these currents were partially blocked by 10-microM bicuculline, and completely blocked by additional 10 microM of the kainate receptor antagonist CNQX, indicating an appearance of both GABAergic and glutamatergic synaptic activities. Staining with endocytotic marker FM1-43 demonstrated active synaptic vesicle recycling occurring among collagen-entrapped neurons. These results show that neural stem and progenitor cells cultured in 3D collagen gels recapitulate CNS stem cell development; this is the first demonstration of CNS stem and progenitor cell-derived functional synapse and neuronal network formation in a 3D matrix. The proliferative capacity and neuronal differentiating potential of neural progenitors in 3D collagen gels suggest their potential use in attempts to promote neuronal regeneration in vivo.  相似文献   

13.
Cell proliferation and replacement following contusive spinal cord injury   总被引:5,自引:0,他引:5  
Zai LJ  Wrathall JR 《Glia》2005,50(3):247-257
After spinal cord injury (SCI), about 50% of the oligodendrocytes and astrocytes in the residual white matter at the injury site are lost by 24 h. However, chronically after SCI, the density of oligodendrocytes is normal. Previous studies have shown that the adult rat spinal cord contains a pool of proliferating glial progenitors whose progeny could help restore cell density after injury. To study proliferation in response to injury, we performed SCI on adult female rats at the T8 level, using a standardized contusion model. Animals received bromodeoxyuridine (BrdU) injections during the first week after SCI, and were perfused within 2 h for acute studies, and at 6 weeks for chronic studies. The tissue was analyzed using immunohistochemical detection of BrdU and cell marker antigens. We demonstrate that cell proliferation in the residual white matter is increased at 1-7 days after SCI, peaking on day 3. Dividing cells include oligodendrocytes, astrocytes, microglia/macrophages, and a high proportion of NG2(+) glial precursors. By 6 weeks, some cells that had been labeled 2-4 days after SCI were still present. Double immunohistochemistry showed that while very few of these cells expressed NG2 or the microglia/macrophage marker OX42, about 50% expressed CC1 or glial fibrillary acidic protein (GFAP), markers of mature oligodendrocytes and astrocytes, respectively. The post-injury environment represented by residual white matter is thus permissive to the differentiation of glial precursors. Cells that are stimulated to divide during the first week after SCI develop chronically into mature phenotypes that replace macroglia lost after injury.  相似文献   

14.
We describe a major glial cell population in the central nervous system (CNS) that can be identified by the expression of 2 cell surface molecules, the NG2 proteoglycan and the alpha receptor for platelet-derived growth factor (PDGF alphaR). In vitro and in the developing brain in vivo, NG2 and PDGF alphaR are expressed on oligodendrocyte progenitor cells but are down-regulated as the progenitor cells differentiate into mature oligodendrocytes. In the mature CNS, numerous NG2+/PDGF alphaR+ cells with extensive arborization of their cell processes are found ubiquitously long after oligodendrocytes are generated. NG2+ cells in the mature CNS do not express antigens specific to mature oligodendrocytes, astrocytes, microglia, or neurons, suggesting that they are a novel population of glial cells. Recently NG2+ cells in the adult CNS have been shown to undergo proliferation and morphological changes in response to a variety of stimuli, such as demyelination and inflammation, suggesting that they are dynamic cells capable of responding to changes in the environment. Furthermore, high levels of NG2+ and PDGF alphaR are expressed on oligodendroglioma cells, raising the possibility that the NG2+/PDGF alphaR+ cells in the mature CNS contribute to glial neoplasm.  相似文献   

15.
Proliferating single cells were isolated from various CNS regions (telencephalon, diencephalon, midbrain, cerebellum, pons and medulla, and spinal cord) of human fetal cadavers at 13 weeks of gestation and grown as neurospheres in long-term cultures. We investigated whether neural stem cells (NSCs) or progenitors within spheres have specific regional or temporal characteristics with regard to growth, differentiation, and region-specific gene expression, and whether these molecular specifications are reversible. Regardless of regional origin, all of the neurospheres were found to contain cells of different subtypes, which suggests that multipotent NSCs, progenitors or radial glial cells co-exist with restricted neuronal or glial progenitors within the neurospheres. Neurospheres from the forebrain grew faster and gave rise to significantly more neurons than did those from either the midbrain or hindbrain, and regional differences in neuronal differentiation appeared to be sustained during long-term passage of neurospheres in culture. There was also a trend towards a reduction in neuronal emergence from the respective neurospheres over time in culture, although the percentages of neurons generated from cerebellum-derived neurospheres increased dramatically. These results suggest that differences in neuronal differentiation for the various neurospheres are spatially and temporally determined. In addition, the properties of glial fibrillary acidic protein (GFAP)-, glutamate-, and gamma-aminobutyric acid (GABA)-expressing cells derived from neurospheres of the respective CNS regions appear to be regionally and temporally different. Isolated human neurospheres from different CNS compartments expressed distinctive molecular markers of regional identity and maintained these patterns of region-specific gene expression during long-term passage in vitro. To determine the potential of human neurospheres for regional fate plasticity, single spheres from the respective regions were co-cultured with embryonic day 16.5 (E16.5 d) mouse brain slices. Specific cues from the developing mouse brain tissues induced the human neurospheres to express different marker genes of regional identity and to suppress the expression of their original marker genes. Thus, even the early regional identities of human neurospheres may not be irreversible and may be altered by local inductive cues. These findings have important implications for understanding the characteristics of growth, differentiation, and molecular specification of human neurospheres derived from the developing CNS, as well as the therapeutic potential for neural repair.  相似文献   

16.
Meyer JS  Katz ML  Maruniak JA  Kirk MD 《Brain research》2004,1014(1-2):131-144
Embryonic stem (ES) cells can differentiate into many specialized cell types, including those of the nervous system. We evaluated the differentiation of enhanced green fluorescent protein (EGFP)-expressing B5 mouse ES cells in vitro and in vivo after transplantation into the eyes of mice with hereditary retinal degeneration. After neural induction with retinoic acid, the majority of cells in embryoid bodies expressed markers for neural progenitors as well as for immature and mature neurons and glial cells. When induced ES cells were plated in vitro, further differentiation was observed and the majority of cells expressed beta-III Tubulin, a marker for immature neurons. In addition, many plated cells expressed markers for mature neurons or glial cells. Four days after intravitreal transplantation into the eyes of rd1 mice (a model of rapid retinal degeneration), donor cells appeared attached to the vitreal surface of the retina. After 6 weeks in vivo, most transplanted cells remained adherent to the inner retinal surface, and some donor cells had integrated into the retina. Transplanted cells exhibited some properties typical of neurons, including extensive process outgrowth with numerous varicosities and expression of neuronal and synaptic markers. Therefore, after induction B5 ES cells can acquire the morphologies of neural cells and display markers for neuronal and glial cells in vitro and in vivo. Furthermore, when placed in the proper microenvironment ES-derived neural precursors can associate closely with or migrate into nervous tissue where differentiation appears to be determined by cues provided by the local environment, in this case the degenerating neural retina.  相似文献   

17.
《中国神经再生研究》2016,(7):1043-1045
A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with speciifc inhibition of the RhoGTPase ac-tivity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that adminis-tration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a signiifcant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neu-rospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI.  相似文献   

18.
The inhibition of glycogen synthase kinase-3 (GSK-3) can induce neurogenesis, and the associated activation of Wnt/β-catenin signaling via GSK-3 inhibition may represent a means to promote motor function recovery following spinal cord injury (SCI) via increased astrocyte migration, reduced astrocyte apoptosis, and enhanced axonal growth. Herein, we assessed the effects of GSK-3 inhibition in vitro on the neurogenesis of ependymal stem/progenitor cells (epSPCs) resident in the mouse spinal cord and of human embryonic stem cell–derived neural progenitors (hESC-NPs) and human-induced pluripotent stem cell–derived neural progenitors (hiPSC-NPs) and in vivo on spinal cord tissue regeneration and motor activity after SCI. We report that the treatment of epSPCs and human pluripotent stem cell–derived neural progenitors (hPSC-NPs) with the GSK-3 inhibitor Ro3303544 activates β-catenin signaling and increases the expression of the bIII-tubulin neuronal marker; furthermore, the differentiation of Ro3303544-treated cells prompted an increase in the number of terminally differentiated neurons. Administration of a water-soluble, bioavailable form of this GSK-3 inhibitor (Ro3303544-Cl) in a severe SCI mouse model revealed the increased expression of bIII-tubulin in the injury epicenter. Treatment with Ro3303544-Cl increased survival of mature neuron types from the propriospinal tract (vGlut1, Parv) and raphe tract (5-HT), protein kinase C gamma–positive neurons, and GABAergic interneurons (GAD65/67) above the injury epicenter. Moreover, we observed higher numbers of newly born BrdU/DCX-positive neurons in Ro3303544-Cl–treated animal tissues, a reduced area delimited by astrocyte scar borders, and improved motor function. Based on this study, we believe that treating animals with epSPCs or hPSC-NPs in combination with Ro3303544-Cl deserves further investigation towards the development of a possible therapeutic strategy for SCI.Electronic supplementary materialThe online version of this article (10.1007/s13311-020-00928-0) contains supplementary material, which is available to authorized users.Key Words: Spinal cord injury, stem cells, neurogenesis, axonal growth, GSK3 inhibition  相似文献   

19.
Astroglial cells support or restrict the migration and differentiation of neural stem cells depending on the developmental stage of the progenitors and the physiological state of the astrocytes. In the present study, we show that astroglial cells instruct noncommitted, immortalized neuroectodermal stem cells to adopt a neuronal fate, while they fail to induce neuronal differentiation of embryonic stem cells under similar culture conditions. Astrocytes induce neuron formation by neuroectodermal progenitors both through direct cell-to-cell contacts and via short-range acting humoral factors. Neuron formation takes place inside compact stem cell assemblies formed 30- 60 h after the onset of glial induction. Statistical analyses of time-lapse microscopic recordings show that direct contacts with astrocytes hinder the migration of neuroectodermal progenitors, while astroglia-derived humoral factors increase their motility. In non-contact co-cultures with astrocytes, altered adhesiveness prevents the separation of frequently colliding neural stem cells. By contrast, in contact co-cultures with astrocytes, the restricted migration on glial surfaces keeps the cell progenies together, resulting in the formation of clonally proliferating stem cell aggregates. The data indicate that in vitro maintained parenchymal astrocytes (1) secrete factors, which initiate neuronal differentiation of neuroectodermal stem cells; and (2) provide a cellular microenvironment where stem cell/stem cell interactions can develop and the sorting out of the future neurons can proceed. In contrast to noncommitted progenitors, postmitotic neuronal precursors leave the stem cell clusters, indicating that astroglial cells selectively support the migration of maturing neurons as well as the elongation of neurites.  相似文献   

20.
Protein kinase C (PKC) is expressed as many isoforms and in high quantities in the central nervous system (CNS), which suggests an important role for this enzyme in neuronal development and function. We used specific antibodies to investigate the expression of the known PKC isoforms in extracts from chick major CNS areas during embryogenesis, from day 3 (E3) of incubation to day 1 post-hatching (P1). PKC-ε was the predominant isoform and was expressed from E6 onward in all brain regions, except retina (E12 and on). PKC-α/β and -ζ isoforms were expressed at lower levels prior to PKC-ε expression and throughout embryogenesis. No other isoforms were detected in neural tissue preparations. We then used neural culture systems derived from the chick CNS to study the expression of PKC isoforms in neuroblasts, cortical neurons, and cortical glial cells. Western blotting and immunostaining of neuroblastenriched cultures, derived from E3 CNS, showed only the Ca2+-dependent PKC-α/β to be present. Studies on neuronal cultures derived from E6 cerebral hemispheres revealed only the Ca2+-independent PKC-ε to be expressed in neurons, as predicted by the developmental studies on tissue homogenates. PKC-ε immunoreactivity was seen intracellularly in differentiating neurons, regardless of their neurotransmitter phenotypes, and it correlated well with the level of neuronal activity. Furthermore, PKC-α/β immunoreactivity was verified on glia cells, as the glial lineage emerges in E15 cortical cultures. These data suggest that PKC-ε expression is associated with the final neuroblast division in neurons, and the correlation of PKC isoform expression and neural cell lineage is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号