首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
The lower urinary tract has two main functions, storage and periodic expulsion of urine, that are regulated by a complex neural control system in the brain and lumbosacral spinal cord. This neural system coordinates the activity of two functional units in the lower urinary tract: (1) a reservoir (the urinary bladder) and (2) an outlet (consisting of bladder neck, urethra and striated muscles of the external urethra sphincter). During urine storage the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure. During micturition the outlet relaxes and the bladder contracts to promote efficient release of urine. This reciprocal relationship between bladder and outlet is generated by reflex circuits some of which are under voluntary control. Experimental studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through a coordination center (the pontine micturition center) located in the rostral brainstem. This reflex pathway is in turn modulated by higher centers in the cerebral cortex that are involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However the bladder does not empty efficiently because coordination between the bladder and urethral outlet is lost. Studies in animals indicate that dysfunction of the lower urinary tract after spinal cord injury is dependent in part on plasticity of bladder afferent pathways as well as reorganization of synaptic connections in the spinal cord. Reflex plasticity is associated with changes in the properties of ion channels and electrical excitability of afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and/or the peripheral target organs.  相似文献   

4.
These studies were performed to determine the developmental expression pattern of neurotrophic factor (NTF: nerve growth factor (betaNGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3) and NT-4 mRNA and NGF, NT-3 and NT-4 protein in the urinary bladder of the postnatal Wistar rat. It was hypothesized that NTFs may contribute to the development of the spinobulbospinal micturition reflex that represents the adult micturition pattern. Changes in NTF mRNA or protein expression in the urinary bladder at the time of development of the mature micturition reflex (postnatal days (P) 16-18) may suggest an involvement of target-derived NTFs in this maturation process. Developmental ages, prior to (P5, P10, P15) or following (P20, P30, adult P90) the development of the spinobulbospinal micturition reflex were selected and the urinary bladder was analyzed for levels of neurotrophic factor mRNA or protein. Results from ribonuclease protection assays demonstrated a similar developmental pattern among each neurotrophic factor examined. Neurotrophic factor mRNA levels increased by P10 and reach a maximum by P15. Subsequently, NTF mRNA levels declined to adult levels that were less than the earliest postnatal time examined (P5). NTF mRNA expression was significantly (p相似文献   

5.
Park CK  Xu ZZ  Liu T  Lü N  Serhan CN  Ji RR 《The Journal of neuroscience》2011,31(50):18433-18438
Inflammatory pain such as arthritic pain is typically treated with opioids and cyclo-oxygenase-2 inhibitors with well known side effects. Transient receptor potential subtype vanilloid 1 (TRPV1) and TRP ankyryn 1 (TRPA1) contribute importantly to the genesis of inflammatory pain via both peripheral mechanisms (peripheral sensitization) and spinal cord mechanisms (central sensitization). Although these TRP channels have been intensively studied, little is known about their endogenous inhibitors. Recent studies have demonstrated that the endogenous lipid mediators resolvins (RvE1 and RvD1), derived from ω-3 unsaturated fatty acids, are potent inhibitors for inflammatory pain, without noticeable side effects. However, the molecular mechanisms underlying resolvins' distinct analgesic actions in mice are unclear. RvD2 is a novel family member of resolvins. Here we report that RvD2 is a remarkably potent inhibitor of TRPV1 (IC(50) = 0.1 nm) and TRPA1 (IC(50) = 2 nm) in primary sensory neurons, whereas RvE1 and RvD1 selectively inhibited TRPV1 (IC(50) = 1 nm) and TRPA1 (IC(50) = 9 nm), respectively. Accordingly, RvD2, RvE1, and RvD1 differentially regulated TRPV1 and TRPA1 agonist-elicited acute pain and spinal cord synaptic plasticity [spontaneous EPSC (sEPSC) frequency increase]. RvD2 also abolished inflammation-induced sEPSC increases (frequency and amplitude), without affecting basal synaptic transmission. Intrathecal administration of RvD2 at very low doses (0.01-1 ng) prevented formalin-induced spontaneous pain. Intrathecal RvD2 also reversed adjuvant-induced inflammatory pain without altering baseline pain and motor function. Finally, intrathecal RvD2 reversed C-fiber stimulation-evoked long-term potentiation in the spinal cord. Our findings suggest distinct roles of resolvins in regulating TRP channels and identify RvD2 as a potent endogenous inhibitor for TRPV1/TRPA1 and inflammatory pain.  相似文献   

6.
7.
The transient receptor potential (TRP) superfamily of cation channels contains four temperature-sensitive channels, named TRPV1-4, that are activated by heat stimuli from warm to that in the noxious range. Recently, two other members of this superfamily, TRPA1 and TRPM8, have been cloned and characterized as possible candidates for cold transducers in primary afferent neurons. Using in situ hybridization histochemistry and immunohistochemistry, we characterized the precise distribution of TRPA1, TRPM8, and TRPV1 mRNAs in the rat dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons. In the DRG, TRPM8 mRNA was not expressed in the TRPV1-expressing neuronal population, whereas TRPA1 mRNA was only seen in some neurons in this population. Both A-fiber and C-fiber neurons expressed TRPM8, whereas TRPV1 was almost exclusively seen in C-fiber neurons. All TRPM8-expressing neurons also expressed TrkA, whereas the expression of TRPV1 and TRPA1 was independent of TrkA expression. None of these three TRP channels were coexpressed with TrkB or TrkC. The TRPM8-expressing neurons were more abundant in the TG compared with the DRG, especially in the mandibular nerve region innervating the tongue. Our data suggest heterogeneity of TRPM8 and TRPA1 expression by subpopulations of primary afferent neurons, which may result in the difference of cold-sensitive primary afferent neurons in sensitivity to chemicals such as menthol and capsaicin and nerve growth factor.  相似文献   

8.
9.
10.
Spinal cord injury and cyclophosphamide-induced cystitis dramatically alter lower urinary tract function and produce neurochemical, electrophysiological, and anatomical changes that may contribute to reorganization of the micturition reflex. Mechanisms underlying this neural plasticity may involve alterations in neurotrophic factors in the urinary bladder. These studies have determined neurotrophic factors in the urinary bladder that may contribute to reorganization of the micturition reflex following cystitis or spinal cord injury. A ribonuclease protection assay was used to measure changes in urinary bladder neurotrophic factor mRNA (betaNGF, BDNF, GDNF, CNTF, NT-3, and NT-4) following spinal cord injury (acute/chronic) or cyclophosphamide-induced cystitis (acute/chronic). The correlation between urinary bladder nerve growth factor mRNA and nerve growth factor protein expression was also determined. Each experimental paradigm resulted in significant (P 相似文献   

11.
12.
The transient receptor potential (TRP)A1 channel is involved in the transduction of inflammation-induced noxious stimuli from the periphery. Previous studies have characterized the properties of TRPA1 in heterologous expression systems. However, there is little information on the properties of TRPA1-mediated currents in sensory neurons. A capsaicin-sensitive subset of rat and mouse trigeminal ganglion sensory neurons was activated with TRPA1-specific agonists, mustard oil and the cannabinoid WIN55,212. Mustard oil- and WIN55,212-gated currents exhibited marked variability in their kinetics of activation and acute desensitization. TRPA1-mediated responses in neurons also possess a characteristic voltage dependency with profound outward rectification that is influenced by extracellular Ca2+ and the type and concentration of TRPA1-specific agonists. Examination of TRPA1-mediated responses in TRPA1-containing cells indicated that the features of neuronal TRPA1 are not duplicated in cells expressing only TRPA1 and, instead, can be restored only when TRPA1 and TRPV1 channels are coexpressed. In summary, our results suggest that TRPA1-mediated responses in sensory neurons have distinct characteristics that can be accounted for by the coexpression of the TRPV1 and TRPA1 channels.  相似文献   

13.
We describe a case of a 57-year-old man who, immediately after a right parietal ischemic stroke, showed urodynamically determined bladder sensory decrement during filling and an underactive detrusor during voiding, both of which were ameliorated during the course of his treatment. The lower urinary tract symptom (LUTS) occurs in stroke in up to 60% of patients, when it involves the frontal and insular cortices. In addition, LUTS does occur in parietal stroke as seen in our patient, presumably by sensory deafferentiation within the brain that is relevant to the central regulation of the micturition reflex.  相似文献   

14.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are expressed in the neural pathways regulating the lower urinary tract. VIP-immunoreactivity (IR) is present in afferent and autonomic efferent neurons innervating the bladder and urethra, whereas PACAP-IR is present primarily in afferent neurons. Exogenously applied VIP relaxes bladder and urethral smooth muscle and excites parasympathetic neurons in bladder ganglia. PACAP relaxes bladder and urethral smooth muscle in some species (pig) but excites the smooth muscle in other species (mouse). Intrathecal administration of VIP in cats with an intact spinal cord suppresses reflex bladder activity, but intrathecal administration of VIP or PACAP in rats enhances bladder activity and suppresses urethral sphincter activity. PACAP has presynaptic facilitatory effects and direct excitatory effects on lumbosacral parasympathetic preganglionic neurons. Chronic spinal cord transection produces an expansion of VIP-IR (cats) and PACAP-IR (rats) in primary afferent axons in the lumbosacral spinal cord and unmasks spinal excitatory effects of VIP on bladder reflexes in cats. Intrathecal administration of PACAP6-38, a PAC1 receptor antagonist, reduces bladder hyperactivity in chronic spinal-cord-injured rats. These observations raise the possibility that VIP or PACAP have a role in the control of normal or abnormal voiding.  相似文献   

15.
Sanshools are major active ingredients of Zanthoxylum piperitum and are used as food additives in East Asia. Sanshools cause irritant, tingling and sometimes paresthetic sensations on the tongue. However, the molecular mechanism underlying the pungent or tingling sensation induced by sanshools is not known. Because many transient receptor potential (TRP) channels are responsible for the sensations induced by various spices and food additives, we expressed 17 TRP channels in human embryonic kidney (HEK) cells and investigated their activation by hydroxy-alpha-sanshool (HalphaSS) or hydroxy-beta-sanshool (HbetaSS) isolated from Zanthoxylum piperitum. It was found that HalphaSS, but not HbetaSS, depolarized sensory neurons with concomitant firing of action potentials and evoked inward currents. Among 17 TRP channels expressed in HEK cells, HalphaSS caused Ca(2+) influx in cells transfected with TRPV1 or TRPA1, and evoked robust inward currents in cells transfected with TRPV1 or TRPA1. In primary cultured sensory neurons, HalphaSS induced inward currents and Ca(2+) influx in a capsazepine-dependent manner. Moreover, HalphaSS-induced currents and Ca(2+) influx were greatly diminished in TRPV1(-/-) mice. HalphaSS evoked licking behavior when injected into a single hind paw of wild-type mice, but this was much reduced in TRPV1-deficient mice. These results indicate that TRPV1 and TRPA1 are molecular targets of HalphaSS in sensory neurons. We conclude that the activations of TRPV1 and TRPA1 by HalphaSS explain its unique pungent, tingling sensation.  相似文献   

16.
Transient receptor potential (TRP) ion channels, such as TRP vanilloid 1 and ankyrin repeat domain 1 (TRPV1 and TRPA1), are expressed on primary sensory neurons. Lutein, a natural tetraterpene carotenoid, can be incorporated into membranes and might modulate TRP channels. Therefore, the effects of the water-soluble randomly methylated-β-cyclodextrin (RAMEB) complex of lutein were investigated on TRPV1 and TRPA1 activation. RAMEB–lutein (100 μM) significantly diminished Ca2+ influx to cultured rat trigeminal neurons induced by TRPA1 activation with mustard oil, but not by TRPV1 stimulation with capsaicin, as determined with microfluorimetry. Calcitonin gene-related peptide release from afferents of isolated tracheae evoked by mustard oil, but not by capsaicin, was inhibited by RAMEB–lutein. Mustard oil-induced neurogenic mouse ear swelling was also significantly decreased by 100 μg/ml s.c. RAMEB–lutein pretreatment, while capsaicin-evoked edema was not altered. Myeloperoxidase activity indicating non-neurogenic granulocyte accumulation in the ear was not influenced by RAMEB–lutein in either case. It is concluded that lutein inhibits TRPA1, but not TRPV1 stimulation-induced responses on cell bodies and peripheral terminals of sensory neurons in vitro and in vivo. Based on these distinct actions and the carotenoid structure, the ability of lutein to modulate lipid rafts in the membrane around TRP channels can be suggested.  相似文献   

17.
Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene‐related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo‐ and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts. We found that the lipophilic capsaicin, mustard oil and menthol effectively get access to the nerve endings below the multilayered squamous epithelium, while cigarette smoke and its gaseous phase were weakly effective releasing CGRP. The hydrophilic nicotine was ineffective unless applied unprotonated in alkaline (pH9) solution, activating TRPA1 and TRPV1. Also, mustard oil activated both these irritant receptors in millimolar but only TRPA1 in micromolar concentrations; in combination (1 mm ) with heat (45 °C), it showed supraadditive, that is heat sensitizing, effects in TRPV1 and TRPA1 knockouts, suggesting action on an unknown heat‐activated channel and mustard oil receptor. Menthol caused little CGRP release by itself, but in subliminal concentration (2 mm ), it enabled a robust cold response that was absent in TRPM8?/? but retained in TRPA1?/? and strongly reduced by TRPM8 inhibitors. In conclusion, all three relevant irritant receptors are functionally expressed in the oral mucosa and play their specific roles in inducing neurogenic inflammation and sensitization to heat and cold.  相似文献   

18.
19.
Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide widely distributed in neural pathways that regulate micturition. VIP is also an endogenous anti-inflammatory agent that has been suggested for the development of therapies for inflammatory disorders. In the present study, we examined urinary bladder function and hindpaw and pelvic sensitivity in VIP(-/-) and littermate wildtype (WT) controls. We demonstrated increased bladder mass and fewer but larger urine spots on filter paper in VIP(-/-) mice. Using cystometry in conscious, unrestrained mice, VIP(-/-) mice exhibited increased void volumes and shorter intercontraction intervals with continuous intravesical infusion of saline. No differences in transepithelial resistance or water permeability were demonstrated between VIP(-/-) and WT mice; however, an increase in urea permeability was demonstrated in VIP(-/-) mice. With the induction of bladder inflammation by acute administration of cyclophosphamide, an exaggerated or prolonged bladder hyperreflexia and hindpaw and pelvic sensitivity were demonstrated in VIP(-/-) mice. The changes in bladder hyperreflexia and somatic sensitivity in VIP(-/-) mice may reflect increased expression of neurotrophins and/or proinflammatory cytokines in the urinary bladder. Thus, these changes may further regulate the neural control of micturition.  相似文献   

20.
The periaqueductal gray (PAG) is critically involved in the micturition reflex, but little is known about the neuronal mechanisms involved. The present study elucidated dynamic changes in dopamine (DA), glutamate and gamma-aminobutyric acid (GABA) in the rat PAG during the micturition reflex, with a focus on dopaminergic modulation using in vivo microdialysis combined with cystometrography. Extracellular levels of DA and glutamate increased, whereas levels of GABA decreased, in parallel with the micturition reflex. Application of a D(1) receptor antagonist into the PAG produced increases in maximal voiding pressure (MVP) and decreases in intercontraction interval (ICI), suggesting that the micturition reflex was facilitated by D(1) receptor blockade. The D(1) receptor antagonist prevented micturition-induced decreases in GABA efflux but had no effect on DA or glutamate. Neither a D(2) receptor antagonist nor a D(1)/D(2) receptor agonist affected these neurochemical and physiological parameters. Micturition-induced inhibition of GABA was not observed in 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of Parkinson's disease. 6-OHDA-lesioned rats exhibited bladder hyperactivity evaluated by increases in MVP and decreases in ICI, mimicking facilitation of the micturition reflex induced by D(1) receptor blockade. These findings suggest that the micturition reflex is under tonic dopaminergic regulation through D(1) receptors, in which a GABAergic mechanism is involved. Bladder hyperactivity observed in 6-OHDA-lesioned rats may be caused by dysfunction of GABAergic regulation underlying the micturition reflex. The present findings contribute to our understanding not only of the neurophysiology of the micturition reflex but also of the pathophysiology of lower urinary tract dysfunction in patients with Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号