首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN-gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN-beta competed only weakly. Monoclonal antibodies against IFN-gamma either inhibited or enhanced MAF activity by blocking or increasing IFN-gamma binding to macrophages, respectively. These results indicate that IFN-gamma reacts with a receptor on macrophage in a specific and saturable manner and this interaction initiates macrophage activation.  相似文献   

2.
Human blood mononuclear leukocytes stimulated with toxoplasma antigen, concanavalin A, mezerein plus lentil lectin, or staphylococcal enterotoxin A secreted a factor (macrophage-activating factor, or MAF) that enhanced the capacity of human macrophages to release H2O2 and to kill toxoplasmas. The same lymphoid supernatants contained IFN gamma but not IFN alpha or IFN beta. The MAF activity of six of seven unfractionated supernatants was completely eliminated by a monoclonal antibody that neutralizes IFN gamma, and MAF in the remaining supernatant was almost completely neutralized. Native IFN gamma partially purified by two independent protocols to specific activities of 1 X 10(6) and 10(7) U/mg protein was enriched in MAF activity at least as much as in antiviral activity. The capacity of macrophages to secrete H2O2 after incubation in partially purified native IFN gamma (mean peak stimulation, 8.8-fold) was greater than with unpurified lymphokines (3.8-fold) and sometimes equaled or exceeded the capacity of freshly harvested monocytes. The MAF activity of the partially purified native IFN gamma preparations was abolished by monoclonal anti- IFN gamma. Finally, IFN gamma of greater than 99% estimated purity was isolated (at Genentech, Inc.) from bacteria transformed with the cloned human gene for this lymphokine. Recombinant IFN gamma had potent MAF activity, stimulating the peroxide-releasing capacity of macrophages an average of 19.8-fold at peak response and enhancing their ability to kill toxoplasmas from 2.6 +/- 1.3% for untreated cells to 54 +/- 0.4% for treated cells. Attainment of 50% of the maximal elevation in peroxide-releasing capacity required a geometric mean concentration of 0.1 antiviral U/ml of recombinant IFN gamma, which is estimated to be approximately 6 picomolar for this preparation. Peroxide secretory capacity and toxoplasmacidal activity of macrophages peaked 2-4 d after exposure to IFN gamma. Peroxide-secretory capacity remained elevated during at least 6 d of continuous exposure, but the effect of IFN gamma was reversed within about 3 d of its removal. Activation was usually but not invariably accompanied by characteristic changes in cell morphology. Thus, IFN gamma activates human macrophage oxidative metabolism and antimicrobial activity, and appeared to be the only factor consistently capable of doing so in the diverse LK preparations tested.  相似文献   

3.
A culture supernatant of concanavalin A-activated spleen cells (Con A supernatant) induced murine macrophages to express Ia antigens in vitro. Biochemical characterization of the Con A supernatant indicated that the macrophage Ia antigen regulatory activity shares molecular weight, pI, and hydrophobic and affinity characteristics with immune interferon (IFN-gamma). Antiserum to mouse IFN-gamma neutralized both the macrophage Ia antigen regulatory and IFN-gamma bioactivities of the Con A supernatant. Furthermore, both partially purified murine IFN- gamma (10(7) U/mg protein sp act) and IFN-containing culture supernatants of the murine BFS T cell line-induced macrophage Ia antigen expression in vitro. Culture supernatants containing colony- stimulating factor, interleukin 1, interleukin 2, macrophage migration inhibitory factor, and a macrophage-activating activity that were distinct from IFN-gamma did not induce macrophage Ia antigen expression. Taken together, the data indicate that the in vitro expression of Ia antigens on macrophages is regulated by an activity that has the characteristics of interferon.  相似文献   

4.
Granulocyte/macrophage CSF (GM-CSF) has recently been identified in rheumatoid arthritis (RA) synovial effusions. To study a potential role for GM-CSF and other cytokines on the induction of HLA-DR expression on monocytes and synovial macrophages, we analyzed the relative ability of recombinant human cytokines to induce the surface expression of class II MHC antigens on normal peripheral blood monocytes by FACS analysis. GM-CSF (800 U/ml) (mean fluorescence channel 2.54 +/- 0.33 times the control, p less than 0.001) and IFN-gamma (100 U/ml) (5.14 +/- 0.60, p less than 0.001) were the most potent inducers of HLA-DR. TNF-alpha and IL-4 also increased HLA-DR expression, although to a lesser degree [1.31 +/- 0.06 (p less than 0.02) and 1.20 +/- 0.03 (p less than 0.01), respectively]. IL-1 (40 U/ml), IL-2 (10 ng/ml), IL-3 (50 U/ml), IL-6 (100 U/ml), and CSF-1 (1,000 U/ml) did not affect surface HLA-DR density. GM-CSF also increased HLA-DR mRNA expression and surface HLA-DQ expression, but decreased CD14 (a monocyte/macrophage antigen) expression. The effect of GM-CSF on HLA-DR was not mediated by the generation of IFN-gamma in vitro because it was not blocked by anti-IFN-gamma mAb. GM-CSF was additive with IL-4 and low amounts (less than 3 U/ml) of IFN-gamma and synergistic with TNF-alpha. Because we have recently reported that supernatants of cultured RA synovial cells produce a non-IFN-gamma factor that induces HLA-DR on monocytes, we then attempted to neutralize this factor with specific anti-GM-CSF mAb. Four separate synovial tissue supernatants were studied, and the antibody neutralized the HLA-DR-inducing factor in each (p less than 0.01).  相似文献   

5.
Human T cell hybridomas were constructed by somatic cell fusion in order to dissect molecular heterogeneity of human macrophage activating-factors (MAF). Two stable human hybridoma supernatants contained MAF activity capable of inducing human monocytes tumoricidal without the help of bacterial lipopolysaccharide (LPS). These supernatants in the presence of LPS could also render mouse macrophages tumoricidal. In contrast, recombinant and natural human interferon-gamma (Hu-IFN-gamma) activated human monocytes, but not mouse peritoneal macrophages. The supernatants from the two clones could neither support the growth of human-granulocyte-macrophage colony stimulating factor/human-interleukin-4-dependent (Hu-GM-CSF/Hu-IL-4) cell lines, such as AML 193 and TALL-101, nor stimulate the proliferation of human-interleukin-2-dependent human cell line and lectin-stimulated lymphoblast, which are responsive to human-interleukin-2 and human-interleukin-4. Rabbit or murine antibodies against human-interferon-gamma (Hu-IFN), human-granulocyte-macrophage colony stimulating factor, human interleukin-1 alpha, human-interleukin-1 beta, human-interleukin-6, human-tumour necrosis factor (Hu-TNF), human-lymphotoxin and human-macrophage migration inhibitory factor (Hu-MIF) could not absorb MAF activity. MAF activity in the hybridoma supernatants is associated with the two polypeptides of molecular weights of 70,000-80,000 and 20,000-30,000 daltons, as determined by gel filtration. These results indicate decisively that novel MAF molecule(s) is secreted by human T cell hybridomas.  相似文献   

6.
Fusion of rat immune spleen cells with mouse myeloma cells resulted in the formation of a stable hybridoma that secretes monoclonal antibody (MAb) directed against murine gamma interferon ( MuIFN -gamma). This MAb specifically neutralized the antiviral activity of a variety of MuIFN -gamma preparations, including a sample produced by recombinant DNA technologies. In contrast, the antiviral activities of a mixture of MuIFN -alpha plus MuIFN -beta, as well as those of rat or human IFN-gamma, were not neutralized by this antibody. The ability of the MAb to inhibit lymphokine-induced macrophage activation was also tested. It was found that in relation to the quantity of antibody needed to completely neutralize antiviral activity, much higher concentrations of MAb were required to abolish the capacity of lymphokine preparations to induce macrophage tumoricidal activity in vitro. The MAb was also coupled to cyanogen bromide-activated Sepharose beads and used as an immunoadsorbent. By reacting lymphokines with MAb coupled to an insoluble matrix, it was possible to show that this immobilized antibody completely and specifically removed from the lymphokine preparations the ability both to invoke macrophage tumoricidal activity and to mediate antiviral activity.  相似文献   

7.
We have found that the crude lymphokines, which prime the human monocyte-derived macrophage to generate H2O2 and exert microbicidal activity against intracellular Leishmania donovani, are rich in interferon (IFN)-gamma (600-3,000 U/ml). To determine the role of this specific lymphocyte product in macrophage activation, lymphokines were pretreated with a monoclonal antibody that neutralizes human IFN-gamma. Antibody exposure completely abolished the capacity of both mitogen- and antigen-stimulated lymphokines to either enhance macrophage H2O2 release or induce leishmanicidal activity. In addition, partially purified and pure recombinant human IFN-gamma were as effective as crude lymphokines in activating macrophages, and 3 d of treatment with 300 U/ml resulted in a seven- to eightfold increase in H2O2 generation and the intracellular killing of both L. donovani promastigotes and amastigotes. The ability of crude lymphokines to induce monocytes and macrophages from a patient with chronic granulomatous disease to kill L. donovani promastigotes was similarly abrogated by anti-IFN-gamma antibody, and could also be achieved by IFN-gamma alone. These results suggest that IFN-gamma is the key macrophage-activating molecule present within human lymphokines, and indicate that IFN-gamma can enhance both the oxygen-dependent and -independent antiprotozoal mechanisms of human mononuclear phagocytes.  相似文献   

8.
Activation of mouse peritoneal exudate macrophages, as evidenced by destruction of the intracellular protozoan parasite Leishmania enriettii, was obtained by incubation with supernates from concanavalin A (Con A)-stimulated syngeneic spleen cells. Parasites were not destroyed in macrophages exposed to control media. Supernate-induced activation was independent of the presence of Con A. The activating principle (macrophage activating factor, or MAF) was produced by Con A-stimulated lymphocytes in presence or absence of serum. In absence of serum, MAF synthesis was highest at Con A concentrations far below those required in serum-containing media. MAF production was reduced at Con A concentrations of 10 microgram/ml or above, probably a result of toxicity of the lectin for lymphocytes. MAF was detectable after 24 h of lymphocyte stimulation and increased up to 72 h; production appeared to be independent of DNA synthesis. Serum-free MAF was inactive when tested as such on macrophages. Full activity could be restored by addition of nanogram amounts of endotoxin or of FCS before assay. Endotoxin also considerably potentiated MAF activity in serum-containing supernates. Full intracellular parasite destruction was observed after contact of macrophages with MAF for 20 h. The continuous presence of MAF was not necessary for activation; a 10-h pulse was sufficient to induce macrophages to destroy all intracellular microorganisms within the next 38 h.  相似文献   

9.
The interferon (IFN) gamma production of splenocytes from closely related C57BL/10ScSn (Sn) and C57BL/10ScCr (Cr) mice was compared. Concanavalin A and CD3 monoclonal antibodies induced high levels of IFN- gamma in both Sn and Cr splenocytes. By contrast, treatment with gram- negative bacteria induced IFN-gamma only in Sn splenocytes; in Cr splenocytes, the IFN-gamma response was heavily impaired. The IFN-gamma induction by bacteria requires the cooperation of IFN-gamma-producing cells with macrophages. Depletion of macrophages from Sn splenocytes resulted in the loss of ability to produce IFN-gamma after bacterial stimulation. Reconstitution with new Sn macrophages restored the IFN- gamma responsiveness, whereas reconstitution with Cr macrophages failed to do so. Normal function of IFN-gamma-producing cells and a defective function of macrophages of Cr mice was demonstrated by evidence showing that whole or macrophage-depleted Cr splenocytes, when supplemented with Sn macrophages, acquire the ability to produce IFN-gamma in response to bacteria. A similar effect was achieved by supplementing Cr splenocytes with supernatants of bacteria-stimulated Sn macrophages or with recombinant murine IFN-beta or IFN-alpha. Preincubation of active macrophage supernatants with antibodies to IFN-beta suppressed the helper activity for Cr splenocytes. Moreover, the bacteria-induced production of IFN-gamma by Sn splenocytes could be inhibited by antibodies to murine IFN-beta. The results provide evidence that IFN- beta is an important cofactor of IFN-gamma induction, which is not induced in Cr mice by gram-negative bacteria.  相似文献   

10.
Experimental studies in vitro suggest that cytokines are important mediators in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). However, there is little evidence for the role of cytokines in vivo, either in humans or in the spontaneous animal models of IDDM such as the NOD mouse or BB rat. To address this question, we used the model of cyclophosphamide (CYP)-induced autoimmune diabetes in the NOD/Wehi mouse to examine for (a) the production of IFN-gamma and IL-6 from isolated islets, and (b) the effect of anti IFN-gamma or anti IL-6 monoclonal antibodies on the development of diabetes. After cyclophosphamide, the majority of these mice develop of mononuclear cell infiltrate (insulitis) which by 10-14 d is associated with beta cell destruction. IFN-gamma activity at low levels (2.7 +/- 0.3 U/ml) could be detected only in culture supernatants from islets isolated at day 7 post-cyclophosphamide. In contrast, IL-6 activity progressively increased from 457 +/- 44 U/ml at day 0 to 6,020 +/- 777 U/ml at day 10. Culture of islets with anti-CD3 monoclonal antibody resulted in a significant increase in IFN-gamma activity from 41 +/- 7 U/ml at day 0 to 812 +/- 156 U/ml at day 10. Mice given either anti-IFN-gamma or anti-IL-6 antibody had a significantly reduced (P less than 0.001) incidence of diabetes and especially with IFN-gamma, decreased severity of insulitis. We conclude that IFN-gamma and IL-6 have essential roles in the pathogenesis of pancreatic islet beta cell destruction in this model.  相似文献   

11.
To determine the effects of immunomodulatory agents upon HIV replication in macrophages, cultured monocyte-derived macrophages were treated with various substances and then infected with a macrophage-tropic strain of HIV-1. Pretreatment with rIFN-alpha, IFN-beta, and IFN-gamma, or bacterial LPS prevented viral replication in macrophages. In treated cultures, little or no infectious HIV or p24 core antigen was released into the supernatant, no virions were seen by electron microscopy, no viral RNA or DNA was detectable in the cell lysates, and no cytopathology (as determined by multinucleated giant cell formation) occurred. In contrast, pretreatment with a wide dose range of recombinant IL-1 beta, IL-2, IL-4, IL-6, M-CSF, TNF, or lymphotoxin failed to protect macrophages from productive infection by HIV. A consistent effect of granulocyte/macrophage-CSF on HIV replication in macrophages was not observed. In dose response studies, pretreatment with approximately 100 U/ml of IFN-alpha, approximately 10 U/ml of IFN-beta, or approximately 100 U/ml of IFN-gamma was sufficient to prevent virion release maximally and to prevent cytopathology completely. In kinetic studies, IFN-alpha, IFN-gamma, or LPS were added to the macrophage cultures either before or after infection with HIV. Even when added 3 d after infection with a multiplicity of 1 50% tissue-culture infectious dose per cell, all three treatments markedly reduced virion release, suggesting that these agents act at a point in the viral life cycle beyond the early events of virus binding, penetration, and uncoating. These data indicate that HIV replication in previously uninfected macrophages may be regulated by an inducible host cell mechanism. These findings may explain the restricted replication of HIV in macrophages in vivo and suggest an antiviral role for interferons in the therapy of HIV infection.  相似文献   

12.
Macrophages play a crucial role in the defense against tumors and parasites. Activation of tumoricidal and microbicidal effector mechanisms requires stimulation of macrophages with macrophage-activating factors (MAF). One such MAF is interferon γ (IFN-γ). In some assays, substantial activity of IFN-γ on murine macrophages, however, is only observed in synergy with lipopolysaccharide (LPS) or other cytokines (1). In addition, certain cytokines have been shown to induce monocyte or macrophage activation in the absence of IFN-γ (2-5). We previously described lymphokines in the supernatant of a murine T cell clone that synergized with IFN-γ in the induction of tumoricidal and schistosomulicidal murine macrophages (1). We called this lymphokine(s) macrophage cytotoxicityinducing factor 2 (MCIF2)(1). A candidate for MCIF2 was lymphotoxin (LT), because the T cell clone supernatant contained high amounts of LT. LT is functionally homologous and structurally related to the macrophage product tumor necrosis factor (TNF). Therefore, we tested whether recombinant (r) LT or rTNF can function as MAF. We report here that rLT or rTNF synergize with rIFN-γ in the induction of tumoricidal and schistosomulicidal murine macrophages.  相似文献   

13.
We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-gamma (200 U/ml) plus TNF (200 U/ml) or IL-1 beta (5 U/ml) increased NOS activity in HUVEC lysates, measured as conversion of [14C]L-arginine to [14C]L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. Histamine-induced nitric oxide release, measured by chemiluminescence, was greater in cytokine-treated cells than in control cells. Paradoxically, steady-state mRNA levels of endothelial NOS fell by 94 +/- 2.0% after cytokine treatment. Supplementation of HUVEC lysates with exogenous tetrahydrobiopterin (3 microM) greatly increased total NOS activity, and under these assay conditions, cytokine treatment decreased maximal NOS activity. IFN-gamma plus TNF or IL-1 beta increased endogenous tetrahydrobiopterin levels and GTP cyclohydrolase I activity, the rate-limiting enzyme of tetrahydrobiopterin synthesis. Intracellular tetrahydrobiopterin levels were higher in freshly isolated HUVEC than in cultured cells, but were still limiting. We conclude that inflammatory cytokines increase NOS activity in cultured human endothelial cells by increasing tetrahydrobiopterin levels in the face of falling total enzyme; similar regulation appears possible in vivo.  相似文献   

14.
Macrophage colony-stimulating factor (M-CSF) is known to stimulate proliferation of monocyte/macrophage progenitors and enhance in vitro antitumor cytotoxicity by murine macrophages. In this paper we have shown that recombinant human M-CSF causes human peripheral blood monocytes to differentiate in culture into metabolically active macrophage-like cells. These cells mediate very efficient antibody-dependent cellular cytotoxicity (ADCC) against human melanoma and neuroblastoma cell lines in the presence of two murine IgG3 mAbs (3F8 and R24). They also mediate antibody-independent cytotoxicity (or cytostasis) to a lesser extent. Human serum had an inconsistent effect on ADCC, but often induced similar high levels of ADCC. Cytotoxicity was measured using a novel ELISA to detect surviving tumor cells after ADCC. Two conventional isotope-release assays (51Cr and [3H]TdR) underestimated or entirely failed to detect ADCC by M-CSF-activated monocytes. Optimal activation occurred with 100-300 U/ml of M-CSF, and required 9-11 d for completion. Most of the M-CSF cultured monocytes expressed the low-affinity Fc receptor (CD16). ADCC by cells of the monocyte/macrophage lineage using murine IgG3 mAbs may have significance for the immunotherapy of human malignancies.  相似文献   

15.
A murine T cell hybridoma, constructed by fusion of alloantigen- activated T cells with the BW5147 T cell lymphoma, which produces a lymphokine capable of inducing tumoricidal activity in macrophages, has been identified. Lymphokine release could be detected only after mitogen stimulation of the T cell hybridoma culture. Upon cloning of the parental hybridoma, 24 out of 27 clones produced tumoricidal- inducing activity. Seven clones produced more cytocidal-inducing activity than did conventional supernatants, generated by concanavalin A stimulation of normal murine spleen cell cultures, which contained macrophage-activating factor (MAF). The supernatant of hybridoma clone 24/G1 was 25 times more active than conventional MAF preparations. Using supernatants from a variety of clones, the levels of macrophage- activating activity and interleukin 2 were found to vary independently of one another. The lymphokine produced by hybridoma clone 24/G1 appeared to be identical to conventional MAF by a variety of criteria including: (a) a requirement for a second signal for induction of tumoricidal activity in macrophages, (b) inactivation after incubation for 1 h at 65 degrees C, and (c) loss of activity after treatment at pH 4.0 but not at pH 5.0. Like conventional MAF, the hybridoma MAF eluted as a single peak after molecular sieve chromatography on Sephadex G100 and exhibited an apparent molecular weight of 55,000. Although somewhat heterogeneous, the majority of hybridoma 24/G1 MAF displayed an isoelectric point of 5.4 as determined using the chromatofocusing technique. These results thus illustrate the usefulness of T cell hybridomas in distinguishing between various lymphokine activities and indicate that the T cell hybridoma clone 24/G1 will be of particular usefulness in achieving the biochemical purification of substantial quantities of murine MAF.  相似文献   

16.
To test the hypothesis that deficient interleukin 2 (IL-2) secretion may underlie the impaired capacity of T cells from patients with Acquired Immunodeficiency Syndrome (AIDS) and the AIDS-related complex (ARC) to generate the macrophage-activating lymphokine, gamma interferon (IFN-gamma), we used five specific microbial antigens to examine IL-2 production. Mononuclear cells from only one of 32 (3%) AIDS patients secreted normal levels of IL-2, and 21 (66%) failed to produce any detectable IL-2. For 36 ARC patients, IL-2 generation was normal in nine (25%) and absent in 11 (31%). Given these results, recombinant (r) IL-2 was tested for its capacity to stimulate or enhance IFN-gamma production. rIL-2 (10 U/ml) alone stimulated cells from controls, ARC, and AIDS patients to secrete 93 +/- 25, 99 +/- 33, and 7 +/- 3 U/ml of IFN-gamma, respectively. rIL 2 (10 U/ml) plus antigen induced no change in mean IFN-gamma levels for controls, a 4.4-fold increase for 17 AIDS patients (16 +/- 16 vs. 71 +/- 21 U/ml), and a 7.2-fold increase (18 +/- 5 vs. 130 +/- 27 U/ml) for 19 ARC patients with abnormal IFN-gamma generation to antigen alone. Individual responses indicated that six of the 17 (35%) AIDS patients with opportunistic infections and 12 of the 19 (63%) with ARC were apparent responders to 10-100 U/ml of rIL-2. These results (a) document profound impairment in antigen-induced IL-2 secretion by AIDS and ARC T cells, (b) indicate that, in vitro, mononuclear cells from certain patients can respond to rIL-2 with enhanced IFN-gamma production, and thus (c) suggest that in selected patients rIL-2 might have a potentially beneficial therapeutic (AIDS) or prophylactic (ARC) effect against opportunistic infections.  相似文献   

17.
Interferon-gamma (IFN-gamma) is a lymphokine that activates mononuclear phagocytes. To test the hypothesis that IFN-gamma might have important effects upon the ability of human mononuclear phagocytes to degrade extracellular matrix, we have studied the action of this cytokine on the production of metalloproteinases and the counterregulatory tissue inhibitor of metalloproteinases (TIMP) by the human alveolar macrophage. We have found that IFN-gamma potently and selectively suppresses the lipopolysaccharide-induced production of two metalloproteinases--interstitial collagenase and stromelysin--by 50-90% at doses greater than or equal to 10 U/ml. The synthesis of TIMP and 92-kD type IV collagenase was also diminished by IFN-gamma, but these responses required 50- to 100-fold higher concentrations of the cytokine. All doses of IFN-gamma increased total and secreted protein synthesis slightly, indicating a highly specific effect on metalloenzyme biosynthesis. Inhibition of metalloproteinase expression occurred at a pretranslational level, as evidenced by parallel reductions in enzyme biosynthesis and collagenase-specific steady-state mRNA levels. Interestingly, the effect of IFN-gamma on metalloenzyme production was not readily reversible. Therefore, while IFN-gamma activates the macrophage and renders it tumoricidal, this enhanced function appears to be attained at the expense of the cell's capacity to degrade extracellular matrix.  相似文献   

18.
Expression of the macrophage mannose receptor is inhibited by interferon gamma (IFN-gamma), a T helper type 1 (Th-1)-derived lymphokine. Interleukin 4 (IL-4), a Th-2 lymphocyte product, upregulates major histocompatibility class II antigen expression but inhibits inflammatory cytokine production by macrophages. We have studied the effect of IL-4 on expression of the macrophage mannose receptor (MMR) by elicited peritoneal macrophages. We found that recombinant murine IL-4 enhances MMR surface expression (10-fold) and activity (15-fold), as measured by the respective binding and degradation of 125I-mannose-bovine serum albumin. Polymerase chain reaction analysis of cDNAs from purified primary macrophage populations revealed that MMR, but not lysozyme or tumor necrosis factor alpha, mRNA levels were markedly increased by IL-4. The above effects were associated with morphologic changes. These data establish IL-4 as a potent and selective enhancer of murine MMR activity in vitro. IL-4 induces inflammatory macrophages to adopt an alternative activation phenotype, distinct from that induced by IFN-gamma, characterized by a high capacity for endocytic clearance of mannosylated ligands, enhanced (albeit restricted) MHC class II antigen expression, and reduced proinflammatory cytokine secretion.  相似文献   

19.
20.
Human peripheral blood mononuclear cells from normal donors obtained by separation on a Percoll gradient were incubated with free or liposome-entrapped lymphokines produced from concanavalin A-stimulated lymphocytes and then were tested for cytotoxic activity against tumor cells. The treated monocytes lysed tumorigenic melanoma and glioblastoma target cells, but had no effect on three types of nontumorigenic target cells. The activation of monocytes to become tumoricidal was caused by macrophage-activating factor (MAF) and not by contamination with endotoxins, concanavalin A, or interferon. The endocytosis of liposomes containing MAF, but not of those containing control supernatants, led to the activation of cytotoxic properties in the monocytes. Activation by liposome-encapsulated MAF was very efficient and required less than 1/800th of the amount of free MAF necessary to achieve the same levels of cytotoxicity. Thus, the encapsulation of mitogen-induced MAF in liposomes could provide an effective approach for the activation of blood monocytes in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号