首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paracellular ion flux across epithelia occurs through selective and regulated pores in tight junctions; this process is poorly understood. Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a disease featuring hypertension and hyperkalemia. Whereas WNK4 is known to regulate several transcellular transporters and channels involved in NaCl and K+ homeostasis, its localization to tight junctions suggests it might also regulate paracellular flux. We performed electrophysiology on mammalian kidney epithelia with inducible expression of various WNK4 constructs. Induction of wild-type WNK4 reduced transepithelial resistance by increasing absolute chloride permeability. PHAII-mutant WNK4 produced markedly larger effects, whereas kinase-mutant WNK4 had no effect. The electrochemical and pharmacologic properties of these effects indicate they are attributable to the paracellular pathway. The effects of WNK4 persist when induction is delayed until after tight-junction formation, demonstrating a dynamic effect. WNK4 did not alter the flux of uncharged solutes, or the expression or localization of selected tight-junction proteins. Transmission and freeze-fracture electron microscopy showed no effect of WNK4 on tight-junction structure. These findings implicate WNK signaling in the coordination of transcellular and paracellular flux to achieve NaCl and K+ homeostasis, explain PHAII pathophysiology, and suggest that modifiers of WNK signaling may be potent antihypertensive agents.  相似文献   

2.
Mutations in the serine-threonine kinases WNK1 and WNK4 [with no lysine (K) at a key catalytic residue] cause pseudohypoaldosteronism type II (PHAII), a Mendelian disease featuring hypertension, hyperkalemia, hyperchloremia, and metabolic acidosis. Both kinases are expressed in the distal nephron, although the regulators and targets of WNK signaling cascades are unknown. The Cl(-) dependence of PHAII phenotypes, their sensitivity to thiazide diuretics, and the observation that they constitute a "mirror image" of the phenotypes resulting from loss of function mutations in the thiazide-sensitive Na-Cl cotransporter (NCCT) suggest that PHAII may result from increased NCCT activity due to altered WNK signaling. To address this possibility, we measured NCCT-mediated Na(+) influx and membrane expression in the presence of wild-type and mutant WNK4 by heterologous expression in Xenopus oocytes. Wild-type WNK4 inhibits NCCT-mediated Na-influx by reducing membrane expression of the cotransporter ((22)Na-influx reduced 50%, P < 1 x 10(-9), surface expression reduced 75%, P < 1 x 10(-14) in the presence of WNK4). This inhibition depends on WNK4 kinase activity, because missense mutations that abrogate kinase function prevent this effect. PHAII-causing missense mutations, which are remote from the kinase domain, also prevent inhibition of NCCT activity, providing insight into the pathophysiology of the disorder. The specificity of this effect is indicated by the finding that WNK4 and the carboxyl terminus of NCCT coimmunoprecipitate when expressed in HEK 293T cells. Together, these findings demonstrate that WNK4 negatively regulates surface expression of NCCT and implicate loss of this regulation in the molecular pathogenesis of an inherited form of hypertension.  相似文献   

3.
Homeostasis of intravascular volume, Na(+), Cl(-), and K(+) is interdependent and determined by the coordinated activities of structurally diverse mediators in the distal nephron and the distal colon. The behavior of these flux pathways is regulated by the renin-angiotensin-aldosterone system; however, the mechanisms that allow independent modulation of individual elements have been obscure. Previous work has shown that mutations in WNK4 cause pseudohypoaldosteronism type II (PHAII), a disease featuring hypertension with hyperkalemia, due to altered activity of specific Na-Cl cotransporters, K(+) channels, and paracellular Cl(-) flux mediators of the distal nephron. By coexpression studies in Xenopus oocytes, we now demonstrate that WNK4 also inhibits the epithelial Na(+) channel (ENaC), the major mediator of aldosterone-sensitive Na(+) (re)absorption, via a mechanism that is independent of WNK4's kinase activity. This inhibition requires intact C termini in ENaC beta- and gamma-subunits, which contain PY motifs used to target ENaC for clearance from the plasma membrane. Importantly, PHAII-causing mutations eliminate WNK4's inhibition of ENaC, thereby paralleling other effects of PHAII to increase sodium balance. The relevance of these findings in vivo was studied in mice harboring PHAII-mutant WNK4. The colonic epithelium of these mice demonstrates markedly increased amiloride-sensitive Na(+) flux compared with wild-type littermates. These studies identify ENaC as a previously unrecognized downstream target of WNK4 and demonstrate a functional role for WNK4 in the regulation of colonic Na(+) absorption. These findings support a key role for WNK4 in coordinating the activities of diverse flux pathways to achieve integrated fluid and electrolyte homeostasis.  相似文献   

4.
The steroid hormone aldosterone is secreted both in the setting of intravascular volume depletion and hyperkalemia, raising the question of how the kidney maximizes NaCl reabsorption in the former state while maximizing K(+) secretion in the latter. Mutations in WNK4 cause pseudohypoaldosteronism type II (PHAII), a disease featuring increased renal NaCl reabsorption and impaired K(+) secretion. PHAII-mutant WNK4 achieves these effects by increasing activity of the Na-Cl cotransporter (NCC) and the Na(+) channel ENaC while concurrently inhibiting the renal outer medullary K(+) channel (ROMK). We now describe a functional state for WNK4 that promotes increased, rather than decreased, K(+) secretion. We show that WNK4 is phosphorylated by SGK1, a mediator of aldosterone signaling. Whereas wild-type WNK4 inhibits the activity of both ENaC and ROMK, a WNK4 mutation that mimics phosphorylation at the SGK1 site (WNK4(S1169D)) alleviates inhibition of both channels. The net result of these effects in the kidney would be increased K(+) secretion, because of both increased electrogenic Na(+) reabsorption and increased apical membrane K(+) permeability. Thus, modification at the PHAII and SGK1 sites in WNK4 impart opposite effects on K(+) secretion, decreasing or increasing ROMK activity and net K(+) secretion, respectively. This functional state for WNK4 would thus promote the desired physiologic response to hyperkalemia, and the fact that it is induced downstream of aldosterone signaling implicates WNK4 in the physiologic response to aldosterone with hyperkalemia. Together, the different states of WNK4 allow the kidney to provide distinct and appropriate integrated responses to intravascular volume depletion and hyperkalemia.  相似文献   

5.
The Na(+):K(+):2Cl(-) cotransporter (NKCC2) is the target of loop diuretics and is mutated in Bartter's syndrome, a heterogeneous autosomal recessive disease that impairs salt reabsorption in the kidney's thick ascending limb (TAL). Despite the importance of this cation/chloride cotransporter (CCC), the mechanisms that underlie its regulation are largely unknown. Here, we show that intracellular chloride depletion in Xenopus laevis oocytes, achieved by either coexpression of the K-Cl cotransporter KCC2 or low-chloride hypotonic stress, activates NKCC2 by promoting the phosphorylation of three highly conserved threonines (96, 101, and 111) in the amino terminus. Elimination of these residues renders NKCC2 unresponsive to reductions of [Cl(-)](i). The chloride-sensitive activation of NKCC2 requires the interaction of two serine-threonine kinases, WNK3 (related to WNK1 and WNK4, genes mutated in a Mendelian form of hypertension) and SPAK (a Ste20-type kinase known to interact with and phosphorylate other CCCs). WNK3 is positioned upstream of SPAK and appears to be the chloride-sensitive kinase. Elimination of WNK3's unique SPAK-binding motif prevents its activation of NKCC2, as does the mutation of threonines 96, 101, and 111. A catalytically inactive WNK3 mutant also completely prevents NKCC2 activation by intracellular chloride depletion. Together these data reveal a chloride-sensing mechanism that regulates NKCC2 and provide insight into how increases in the level of intracellular chloride in TAL cells, as seen in certain pathological states, could drastically impair renal salt reabsorption.  相似文献   

6.
Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and high serum K+ levels (hyperkalemia). WNK4 has distinct functional states that regulate the balance between renal salt reabsorption and K+ secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter NCC and the K+ channel ROMK. WNK4's functions could enable differential responses to intravascular volume depletion (hypovolemia) and hyperkalemia. Because hypovolemia is uniquely associated with high angiotensin II (AngII) levels, AngII signaling might modulate WNK4 activity. We show that AngII signaling in Xenopus oocytes increases NCC activity by abrogating WNK4's inhibition of NCC but does not alter WNK4's inhibition of ROMK. This effect requires AngII, its receptor AT1R, and WNK4, and is prevented by the AT1R inhibitor losartan. NCC activity is also increased by WNK4 harboring mutations found in PHAII, and this activity cannot be further augmented by AngII signaling, consistent with PHAII mutations providing constitutive activation of the signaling pathway between AT1R and NCC. AngII's effect on NCC is also dependent on the kinase SPAK because dominant-negative SPAK or elimination of the SPAK binding motif in NCC prevent activation of NCC by AngII signaling. These effects extend to mammalian cells. AngII increases phosphorylation of specific sites on SPAK and NCC that are necessary for activation of each in mpkDCT cells. These findings place WNK4 in the signaling pathway between AngII and NCC, and provide a mechanism by which hypovolemia maximizes renal salt reabsoprtion without concomitantly increasing K+ secretion.  相似文献   

7.
Mutations in WNK1 and WNK4, genes encoding members of a novel family of serine-threonine kinases, have recently been shown to cause pseudohypoaldosteronism type II (PHAII), an autosomal dominant disorder featuring hypertension, hyperkalemia, and renal tubular acidosis. The localization of these kinases in the distal nephron and the Cl(-) dependence of these phenotypes suggest that these mutations increase renal Cl(-) reabsorption. Although WNK4 expression is limited to the kidney, WNK1 is expressed in many tissues. We have examined the distribution of WNK1 in these extrarenal tissues. Immunostaining using WNK1-specific antibodies demonstrated that WNK1 is not present in all cell types; rather, it is predominantly localized in polarized epithelia, including those lining the lumen of the hepatic biliary ducts, pancreatic ducts, epididymis, sweat ducts, colonic crypts, and gallbladder. WNK1 is also found in the basal layers of epidermis and throughout the esophageal epithelium. The subcellular localization of WNK1 varies among these epithelia. WNK1 is cytoplasmic in kidney, colon, gallbladder, sweat duct, skin, and esophagus; in contrast, it localizes to the lateral membrane in bile ducts, pancreatic ducts, and epididymis. These epithelia are all notable for their prominent role in Cl(-) flux. Moreover, these sites largely coincide with those involved in the pathology of cystic fibrosis, a disease characterized by deranged epithelial Cl(-) flux. Together with the known pathophysiology of PHAII, these findings suggest that WNK1 plays a general role in the regulation of epithelial Cl(-) flux, a finding that suggests the potential of new approaches to the selective modulation of these processes.  相似文献   

8.
Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport.  相似文献   

9.
We identified a new kindred with the familial syndrome of hypertension and hyperkalemia (pseudohypoaldosteronism type II or Gordon's syndrome) containing an affected father and son. Mutation analysis confirmed a single heterozygous G to C substitution within exon 7 (1690G>C) that causes a missense mutation within the acidic motif of WNK4 (564D>H). We confirmed the function of this novel mutation by coexpressing it in Xenopus oocytes with either the NaCl cotransporter (NCCT) or the inwardly rectifying K-channel (ROMK). Wild-type WNK4 inhibits 22Na+ flux in Xenopus oocytes expressing NCCT by approximately 90% (P<0.001), whereas the 564D>H mutant had no significantly inhibitory effect on flux through NCCT. In oocytes expressing ROMK, wild-type WNK4 produced >50% inhibition of steady-state current through ROMK at a +20-mV holding potential (P<0.001). The 564D>H mutant produced further inhibition with steady-state currents to some 60% to 70% of those seen with the wild-type WNK4. Using fluorescent-tagged NCCT (enhanced cyan fluorescent protein-NCCT) and ROMK (enhanced green fluorescent protein-ROMK) to quantify the expression of the proteins in the oocyte membrane, it appears that the functional effects of the 564D>H mutation can be explained by alteration in the surface expression of NCCT and ROMK. Compared with wild-type WNK4, WNK4 564D>H causes increased cell surface expression of NCCT but reduced expression of ROMK. This work confirms that the novel missense mutation in WNK4, 564D>H, is functionally active and highlights further how switching charge on a single residue in the acid motif of WNK4 affects its interaction with the thiazide-sensitive target NCCT and the potassium channel ROMK.  相似文献   

10.
WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia   总被引:1,自引:0,他引:1  
Mutations in the serine-threonine kinase WNK4 [with no lysine (K) 4] cause pseudohypoaldosteronism type II, a Mendelian disease featuring hypertension with hyperkalemia. In the kidney, WNK4 regulates the balance between NaCl reabsorption and K(+) secretion via variable inhibition of the thiazide-sensistive NaCl cotransporter and the K(+) channel ROMK. We now demonstrate expression of WNK4 mRNA and protein outside the kidney. In extrarenal tissues, WNK4 is found almost exclusively in polarized epithelia, variably associating with tight junctions, lateral membranes, and cytoplasm. Epithelia expressing WNK4 include sweat ducts, colonic crypts, pancreatic ducts, bile ducts, and epididymis. WNK4 is also expressed in the specialized endothelium of the blood-brain barrier. These epithelia and endothelium all play important roles in Cl(-) transport. Because WNK4 is known to regulate renal Cl(-) handling, we tested WNK4's effect on the activity of mediators of epithelial Cl(-) flux whose extrarenal expression overlaps with WNK4. WNK4 proved to be a potent inhibitor of the activity of both the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the Cl(-)/base exchanger SLC26A6 (CFEX) (>95% inhibition of NKCC1-mediated (86)Rb influx, P < 0.001; >80% inhibition of CFEX-mediated [(14)C] formate uptake, P < 0.001), mediators of Cl(-) flux across basolateral and apical membranes, respectively. In contrast, WNK4 showed no inhibition of pendrin, a related Cl(-)/base exchanger. These findings indicate a general role for WNK4 in the regulation of electrolyte flux in diverse epithelia. Moreover, they reveal that WNK4 regulates the activities of a diverse group of structurally unrelated ion channels, cotransporters, and exchangers.  相似文献   

11.
The regulation of Cl(-) transport into and out of cells plays a critical role in the maintenance of intracellular volume and the excitability of GABA responsive neurons. The molecular determinants of these seemingly diverse processes are related ion cotransporters: Cl(-) influx is mediated by the Na-K-2Cl cotransporter NKCC1 and Cl(-) efflux via K-Cl cotransporters, KCC1 or KCC2. A Cl(-)/volume-sensitive kinase has been proposed to coordinately regulate these activities via altered phosphorylation of the transporters; phosphorylation activates NKCC1 while inhibiting KCCs, and dephosphorylation has the opposite effects. We show that WNK3, a member of the WNK family of serine-threonine kinases, colocalizes with NKCC1 and KCC1/2 in diverse Cl(-)-transporting epithelia and in neurons expressing ionotropic GABA(A) receptors in the hippocampus, cerebellum, cerebral cortex, and reticular activating system. By expression studies in Xenopus oocytes, we show that kinase-active WNK3 increases Cl(-) influx via NKCC1, and that it inhibits Cl(-) exit through KCC1 and KCC2; kinase-inactive WNK3 has the opposite effects. WNK3's effects are imparted via altered phosphorylation and surface expression of its downstream targets and bypass the normal requirement of altered tonicity for activation of these transporters. Together, these data indicate that WNK3 can modulate the level of intracellular Cl(-) via opposing actions on entry and exit pathways. They suggest that WNK3 is part of the Cl(-)/volume-sensing mechanism necessary for the maintenance of cell volume during osmotic stress and the dynamic modulation of GABA neurotransmission.  相似文献   

12.
Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. The paracellular pathway in the collecting duct of the kidney is a predominant route for transepithelial chloride reabsorption that determines the extracellular NaCl content and the blood pressure. However, the molecular mechanisms underlying the paracellular chloride reabsorption in the collecting duct are not understood. Here we showed that in mouse kidney collecting duct cells, claudin-4 functioned as a Cl(-) channel. A positively charged lysine residue at position 65 of claudin-4 was critical for its anion selectivity. Claudin-4 was observed to interact with claudin-8 using several criteria. In the collecting duct cells, the assembly of claudin-4 into TJ strands required its interaction with claudin-8. Depletion of claudin-8 resulted in the loss of paracellular chloride conductance, through a mechanism involving its recruitment of claudin-4 during TJ assembly. Together, our data show that claudin-4 interacts with claudin-8 and that their association is required for the anion-selective paracellular pathway in the collecting duct, suggesting a mechanism for coupling chloride reabsorption with sodium reabsorption in the collecting duct.  相似文献   

13.
Mutations in the serine-threonine kinase with-no-lysine 4 (WNK4) cause pseudohypoaldosteronism type 2 (PHAII), a Mendelian form of human hypertension. WNK4 regulates diverse ion transporters in the kidney, and dysregulation of renal transporters is considered the main cause of the WNK4 mutation-associated hypertension. Another determinant of hypertension is vascular tone that is regulated by Ca(2+)-dependent blood vessel constriction. However, the role of WNK4 in vasoconstriction as part of its function to regulate blood pressure is not known. Here, we report that WNK4 is a unique modulator of blood pressure by restricting Ca(2+) influx via the transient receptor potential canonical 3 (TRPC3) channel in the vasculature. Loss of WNK4 markedly augmented TRPC3-mediated Ca(2+) influx in vascular smooth muscle cells (VSMCs) in response to α-adrenoreceptor stimulation, which is the pathological hallmark of hypertension in resistance arteries. Notably, WNK4 depletion induced hypertrophic cell growth in VSMCs and increased vasoconstriction in small mesenteric arteries via TRPC3-mediated Ca(2+) influx. In addition, WNK4 mutants harboring the Q562E PHAII-causing or the D318A kinase-inactive mutation failed to mediate TRPC3 inhibition. These results define a previously undescribed function of WNK4 and reveal a unique therapeutic target to control blood pressure in WNK4-related hypertension.  相似文献   

14.
Key components of complex physiological regulatory pathways can be uncovered through the molecular-genetic study of rare, inherited diseases. WNK kinases are a recently discovered class of serine-threonine kinases that are distinctive because of the substitution of cysteine for lysine in subdomain II of the catalytic domain. Mutations in PRKWNK1 and PRKWNK4, which encode WNK1 and WNK4, result in an inherited syndrome of hypertension and hyperkalemia. Recent physiological work has revealed that WNK4 alters the balance of NaCl reabsorption and K(+) secretion in the distal nephron by actions on both transcellular and paracellular ion-flux pathways. Additionally, WNK4 is expressed in extra-renal epithelia with prominent roles in Cl(-) handling, and it regulates transporters that are responsible for Cl(-) flux across apical and basolateral membranes. WNK kinases are components of a novel signaling pathway that is important for the control of blood pressure and electrolyte homeostasis.  相似文献   

15.
The effects of 3,5',3'-triiodo-L-thyronine (T3; 10 or 100 ng ml(-1)), alone or combined with cortisol (500 ng ml(-1)), on the physiological properties of cultured pavement cell epithelia from freshwater rainbow trout gills were assessed. T3 had dose-dependent effects on electrophysiological, biochemical, and ion transporting properties of cultured epithelia in both the absence and the presence of cortisol. These included reduced transepithelial resistance (TER), increased net Na(+) and Cl(-) movement (basolateral to apical) under asymmetrical culture conditions (freshwater apical/L15 media basolateral), and elevated Na(+)-K(+)-ATPase activity. However, paracellular permeability was elevated only in high-dose T3-treated preparations. In T3 + cortisol-treated epithelia, similar T3-induced alterations in TER, net Na(+) and Cl(-) movement, and paracellular permeability were observed, whereas the activity of Na(+)-K(+)-ATPase was further elevated. Under symmetrical culture conditions (L15 medium apical/L15 medium basolateral), T3 had no effect on transepithelial Na(+) and Cl(-) transport, which was passive. However, T3 + cortisol treatment resulted in active Na(+) extrusion (basolateral to apical). Under asymmetrical conditions, hormone treatment did not change the pattern of ion movement (active Na(+) extrusion, active Cl(-) uptake). These experiments demonstrate that cultured pavement cell epithelia from freshwater rainbow trout are T3-responsive and provide evidence for the direct action of T3 and the interaction of T3 and cortisol on the physiology of this preparation.  相似文献   

16.
The physiological effects of ovine prolactin (oPRL) and recombinant rainbow trout prolactin (rbtPRL) on cultured gill epithelia derived from freshwater rainbow trout were assessed. Epithelia composed of either pavement cells only (single seeded inserts, SSI) or both pavement and mitochondria-rich cells (double seeded inserts, DSI) were cultured in media, supplemented with doses of oPRL ranging from 10 to 100 ng/ml. Under symmetrical culture conditions (L15 media apical/L15 media basolateral), oPRL had no effect on transepithelial resistance, paracellular permeability (assessed with PEG-4000), or Na(+) and Cl(-) transport across both preparations of cultured gill epithelia. Under asymmetrical conditions (freshwater apical/L15 media basolateral), SSI epithelia treated with oPRL (10 and 50 ng/ml), in comparison to comparably treated epithelia receiving no oPRL, exhibited a greater increase in the transepithelial resistance, particularly during the first 12h of freshwater exposure, no difference in paracellular permeability and Na(+)-K(+)-ATPase activity, and lowered net Na(+) flux rates (i.e., reduced basolateral to apical loss rates). These reflected reduced unidirectional efflux rates. The PRL effect appeared to be mainly a reduction in transcellular permeability. SSI epithelia treated with rbtPRL (10 ng/ml) exhibited similar patterns of response to those treated with oPRL. Na(+)-K(+)-ATPase activity increased in DSI epithelia treated with oPRL; however, oPRL did not stimulate ion uptake across either SSI or DSI epithelial preparations. The data demonstrated that, as the sole hormone supplement for cultured gill epithelia, PRL did not promote active ion uptake. However, the observed PRL-induced alterations in cultured gill epithelial physiology were consistent with the in vivo actions of PRL on the gills of freshwater teleost fish.  相似文献   

17.
18.
In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henle's loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10-deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis.  相似文献   

19.
Pseudohypoaldosteronism type II is a salt-sensitive form of hypertension with hyperkalemia in humans caused by mutations in the with-no-lysine kinase 4 (WNK4). Several studies have shown that WNK4 modulates the activity of the renal Na(+)Cl(-) cotransporter, NCC. Because the renal consequences of WNK4 carrying pseudoaldosteronism type II mutations resemble the response to intravascular volume depletion (promotion of salt reabsorption without K(+) secretion), a condition that is associated with high angiotensin II (AngII) levels, it has been proposed that AngII signaling might affect WNK4 modulation of the NCC. In Xenopus laevis oocytes, WNK4 is required for modulation of NCC activity by AngII. To demonstrate that WNK4 is required in the AngII-mediated regulation of NCC in vivo, we used a total WNK4-knockout mouse strain (WNK4(-/-)). WNK4 mRNA and protein expression were absent in WNK4(-/-) mice, which exhibited a mild Gitelman-like syndrome, with normal blood pressure, increased plasma renin activity, and reduced NCC expression and phosphorylation at T-58. Immunohistochemistry revealed normal morphology of the distal convoluted tubule with reduced NCC expression. Low-salt diet or infusion of AngII for 4 d induced phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and of NCC at S-383 and T-58, respectively, in WNK4(+/+) but not WNK4(-/-) mice. Thus, the absence of WNK4 in vivo precludes NCC and SPAK phosphorylation promoted by a low-salt diet or AngII infusion, suggesting that AngII action on the NCC occurs via a WNK4-SPAK-dependent signaling pathway. Additionally, stimulation of aldosterone secretion by AngII, but not by a high-K(+) diet, was impaired in WNK4(-/-) mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号