首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genomic hybridization (CGH) allows detection of chromosomal imbalances in whole genomes in a comprehensive manner. With this approach, ten cases of prostate cancer (seven primary tumors and three metastases) were analyzed. Frequent chromosomal gains detected by CGH involved chromosome arms 7q, 8q, 9q, and 16p, and chromosomes 20 and 22, as well as frequent losses of chromosome arms 16q and 18q, in at least three of the ten cases. Overrepresentation of chromosome arm 9q has not been described in published reports. The CGH data were compared with results of a loss of heterozygosity (LOH) study, in which complete allelotyping was performed in the same prostate tumors with 74 different polymorphic markers. In general, a high concordance between the CGH and LOH results was observed (92%). Tumors revealing discrepancies by CGH and LOH analysis were investigated further by interphase cytogenetics, and the resulting picture regarding the genomic alterations is discussed in detail.  相似文献   

2.
Comparative genomic hybridization (CGH) is a technique for detection of chromosomal imbalances in a genomic DNA sample. We here report the application of the recently developed method of high-resolution CGH on DNA samples from 66 children having various degrees of delayed psychomotor development with or without clear dysmorphic features and congenital malformations. In 5 of 50 patients with apparently normal karyotypes, a deletion or duplication was revealed by CGH. Only one of these cases had a subtelomeric rearrangement. In one of seven cases with a de novo apparently balanced translocation, deletions were found. In all nine cases where the origin of a marker chromosome or additional chromosomal material was difficult to determine, CGH gave a precise identification. The following findings were from cases having a deletion or duplication as the sole chromosomal imbalance; dup(2)(p16p21), del(4)(q21q21), del(6)(q14q15), del(6)(p12p12), dup(6)(q24qter), and dup(15)(q11q13). One case had dup(9)(p11pter) combined with a very small subtelomeric deletion on 6q. In our hands, CGH is highly useful not only for identifying known chromosomal imbalances, but also for finding elusive deletions or duplications in the large group of children with developmental delay with or without congenital abnormalities. In such cases, the diagnostic yield of CGH appears to be higher than what has been reported from subtelomeric FISH screening.  相似文献   

3.
We examined chromosome 3 in 32 childhood acute lymphoblastic leukemia (ALL) bone marrow samples. Using interphase multipoint FISH (mp-FISH), which was developed by our group, with 42 chromosome 3-specific probes, we detected clonal chromosome 3 aberrations in 4 T-cell ALL (T-ALL) cases. Four out of seven T-ALL cases carried 3q trisomies. One T-ALL case carried either trisomy 3 (in 15% of the cells) or a 23-megabase (Mb) 3p13 approximately p12 deletion in a different subpopulation of cells of 32%. Another T-ALL case had either 3q trisomy in 11% or a 12-Mb 3p12 approximately p13 deletion in 19% of the cells. The deletions were overlapping. In both cases, the majority of the bone marrow cells (47 and 70%, respectively) were normal chromosome 3 disomics. The interstitial deletions detected harbor a known homozygous deletion region between 72.6 and 78.8 Mb, which has been described in lung and breast tumors and contains the DUTT1/ROBO1 tumor suppressor gene. These deletions detected by mp-FISH would have remained unnoticed by conventional cytogenetics and multiplex FISH, as well as by current methods based on total tumor DNA analysis such as comparative genomic hybridization (CGH), array CGH, and loss of heterozygosity (LOH).  相似文献   

4.
Splenic marginal zone lymphoma (SMZL) is a rare non-Hodgkin's lymphoma that recently has been recognized as an entity. The first goal of this study was to identify potential chromosomal aberrations in this entity by cytogenetic analysis and comparative genomic hybridization (CGH). The second goal was to assess the frequency of 7q31-32 allelic imbalances in SMZL with primary involvement of the spleen and the typical immunophenotype (IgM+; IgD(dim); and CD5-, CD10-, and CD23-). We applied CGH and cytogenetics to 13 cases of SMZL with primary splenic involvement. By CGH, we found DNA copy number changes in 11 of 13 cases. Overall chromosomal gains were more frequent than chromosomal losses. Gains were most frequently detected for chromosome X, chromosome 3, and chromosome 18. Losses commonly involved chromosome 7 and chromosome 6.CGH and cytogenetic analysis showed a deletion in chromosome 7q31 in 4 cases. Loss of heterozygosity (LOH) analysis using three microsatellite markers located at 7q31 revealed LOH in 9 cases. Remarkably, 2 of the 4 cases that lacked a 7q31 deletion had an atypical immunophenotype because they were partially CD23 positive. The other 2 cases were not informative. The findings indicate that SMZL with primary splenic presentation and the typical IgM+, IgDdim, CD5-, CD10-, CD23- immunophenotype is characterized by the presence of deletions in chromosome 7q31-32.  相似文献   

5.
Recent advances in molecular cytogenetics enable identification of small chromosomal aberrations that are undetectable by routine chromosome banding in 5-20% of patients with mental retardation/developmental delay (MR/DD) and dysmorphism. The aim of this study was to compare the clinical usefulness of two molecular cytogenetic techniques, metaphase high-resolution comparative genomic hybridization (HR-CGH) and targeted array CGH, also known as Chromosomal Microarray Analysis (CMA). A total of 116 patients with unexplained mild to severe MR and other features suggestive of a chromosomal abnormality with apparently normal or balanced karyotypes were analyzed using HR-CGH (43 patients) and/or CMA (91 patients). Metaphase HR-CGH detected seven interstitial deletions (16.3%). Rare deletions of chromosomes 16 (16p11.2p12.1) and 8 (8q21.11q21.2) were identified. Targeted CMA revealed copy-number changes in 19 of 91 patients (20.8%), among which 11 (11.8%) were clinically relevant, 6 (6.5%) were interpreted as polymorphic variants and 2 (2.1%) were of uncertain significance. The changes varied in size from 0.5 to 12.9 Mb. In summary, our results show that metaphase HR-CGH and array CGH techniques have become important components in cytogenetic diagnostics, particularly for detecting cryptic constitutional chromosome imbalances in patients with MR, in whom the underlying genetic defect is unknown. Additionally, application of both methods together increased the detection rates of genomic imbalances in the tested groups.  相似文献   

6.
Only limited data are available on comparative genomic hybridization (CGH) in hepatocellular carcinoma (HCC). They concern mainly B virus related HCC. Therefore, we used CGH to detect chromosomal imbalances in 16 non-B virus related HCC in alcoholic cirrhosis in 7 cases (HA1 to HA7), in C virus cirrhosis in 7 cases (HC1 to HC7), in non-cirrhotic liver in 2 cases (NC1, NC2), and in 9 non-malignant cirrhotic tissues. The most frequent imbalances in HCC were gains of whole chromosomes or chromosomal regions 7 or 7q (10/16, 62%), 1q (9/16, 56%), 5 or 5q (9/16, 56%), 8q (8/16, 50%), 6p (6/16, 37%), 15q (5/16, 31%), 20 or 20q (5/16, 31%), and losses of 17p (6/16, 37%), and 8p (5/16, 31%). High-level gains were identified in HCC on 1q (2/16), 3q (1/16), 7q (1/16), and 8q (3/16). No chromosomal imbalances were detected in any of the cirrhotic tissues. Most of the gains, losses, and amplifications detected in this CGH study corresponded well to those identified in previous studies, except for gains of whole chromosome 5 or 7 and/or of chromosome arms 5q or 7q and losses on 4q. Our results suggest that other chromosomal regions are involved in hepatocarcinogenesis.  相似文献   

7.
We screened 26 ependymomas in 22 patients (7 WHO grade I, myxopapillary, myE; 6 WHO grade II, E; 13 WHO grade III, anaplastic, aE) using comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). 25 out of 26 tumors showed chromosomal imbalances on CGH analysis. The chromosomal region most frequently affected by losses of genomic material clustered on 13q (9/26). 6/7 myE showed a loss on 13q14-q31. Other chromosomes affected by genomic losses were 6q (5/26), 4q (5/26), 10 (5/26), and 2q (4/26). The most consistent chromosomal abnormality in ependymomas so far reported, is monosomy 22 or structural abnormality 22q, identified in approximately one third of Giemsa-banded cases with abnormal karyotypes. Using FISH, loss or monosomy 22q was detected in small subpopulations of tumor cells in 36% of cases. The most frequent gains involved chromosome arms 17 (8/26), 9q (7/26), 20q (7/26), and 22q (6/26). Gains on 1q were found exclusively in pediatric ependymomas (5/10). Using FISH, MYCN proto-oncogene DNA amplifications mapped to 2p23-p24 were found in 2 spinal ependymomas of adults. On average, myE demonstrated 9.14, E 5.33, and aE 1.77 gains and/or losses on different chromosomes per tumor using CGH. Thus, and quite paradoxically, in ependymomas, a high frequency of imbalanced chromosomal regions as revealed by CGH does not indicate a high WHO grade of the tumor but is more frequent in grade I tumors.  相似文献   

8.
A total of 127 adult de novo acute myelocytic leukemia (AML) patients were analyzed by comparative genomic hybridization (CGH) at diagnosis. Conventional cytogenetic analysis (CCA) showed a normal karyotype in 45 cases and an abnormal karyotype in 56 cases; in the remaining cases, CCA either failed to yield sufficient metaphase cells (19/26) or was not done (7/26). Abnormal CGH profiles were identified in 39 patients (30.7%). DNA copy number losses (61%) were high compared to gains (39%), whereas partial chromosome changes (76%) were more common than whole chromosomes changes (24%). Recurrent losses were detected on chromosomes 7, 5q (comprising bands 5q15 to 5q33), 7q (7q32 approximately q36), 16q (16q13 approximately q21), and 17p, and gains were detected on chromosomes 8, 22, and 3q (comprising bands 3q26.1 approximately q27). Furthermore, distinct amplifications were identified in chromosome regions 21q, 13q12 approximately q13, and 13q21.1. No cryptic recurrent chromosomal imbalances were identified by CGH in cases with normal karyotypes. The concordance between CGH results and CCA was 72.5%. In the remaining cases, CGH gave additional information compared to CCA (20%) and partially failed to identify the alterations previously detected by CCA (7.5%). The majority of discrepancies arose from the limitations of the CGH technique, such as insensitivity to detect unbalanced chromosomal changes when occurring in a low proportion of cells. CGH increased the detection of unbalanced chromosomal alterations and allowed precise defining of partial or uncharacterized cytogenetical abnormalities. Application of the CGH technique is thus a useful complementary diagnostic tool for CCA in de novo AML cases with abnormal karyotypes or with unsuccessful cytogenetics.  相似文献   

9.
We used comparative genomic hybridization (CGH) and conventional cytogenetics (CC) to define chromosomal changes and to evaluate the usefulness of CGH in 65 patients having childhood acute lymphoblastic leukemia (ALL). Subsequently, fluorescence in situ hybridization (FISH) was used to evaluate the CGH and cytogenetic results. Comparative genomic hybridization revealed DNA copy number changes in 49 (75%) patients (including 7 patients with unsuccessful cytogenetics and 2 patients with normal karyotype). A total of 85 losses and 195 gains were detected. The most commonly gained chromosomes were 21 (35%), X (31%), 18 (27%), 10 (26%), 6 (25%), 17 (25%), 4 (23%), and 14 (22%). Losses were most frequently observed on chromosomes 9p (18%) and 12p (11%). Other losses were detected on chromosomes 13q (9%), 6q (9%), 7p (8%), and chromosome X (6%). Conventional cytogenetics revealed chromosomal changes in 53 (82%) patients. The employment of CGH and FISH together with CC analysis revealed chromosomal changes in 62 (95%) of the childhood ALL patients investigated. The CGH completed CC results in 36 patients; in 9 patients, the changes escaped detection without using CGH. The results of our study were compared to 6 other CGH studies previously reported. Our observations underline the benefits of supplementing routine cytogenetic investigation in childhood ALL by FISH and CGH, because small unbalanced changes may escape detection when conventional cytogenetics is the only diagnostic method used.  相似文献   

10.
Flat urothelial hyperplasia, defined as markedly thickened urothelium without cytological atypia, is regarded in the new WHO classification as a urothelial lesion without malignant potential. Frequent deletions of chromosome 9 detected by fluorescence in situ hybridization (FISH) have been previously reported in flat urothelial hyperplasias found in patients with papillary bladder cancer. Using comparative genomic hybridization (CGH) and microsatellite analysis, these hyperplasias and concomitant papillary tumours of the same patients were screened for other genetic alterations to validate and extend the previous findings. Eleven flat hyperplasias detected by 5-ALA-induced fluorescence endoscopy and ten papillary urothelial carcinomas (pTaG1-G2) from ten patients were investigated. After microdissection, the DNA of the lesions was pre-amplified using whole genome amplification (I-PEP-PCR). Loss of heterozygosity (LOH) analyses were performed with five microsatellite markers at chromosomes 9p, 9q, and 17p. CGH was performed using standard protocols. In 6 of 11 hyperplasias and 7 of 10 papillary tumours, deletions at chromosome 9 were simultaneously shown by FISH, LOH, and CGH analyses. There was a good correlation between FISH, LOH, and CGH analyses, with identical results in 6 of 10 patients. In addition to deletions at chromosome 9, further genetic alterations were detected by CGH in 9 of 10 investigated hyperplasias, including changes frequently found in invasive papillary bladder cancer (loss of chromosomes 2q, 4, 8p, and 11p; gain of chromosome 17; and amplification at 11q12q13). There was considerable genetic heterogeneity between hyperplasias and papillary tumours, but a clonal relationship was suggested by LOH and/or CGH analyses in 5 of 10 cases. These data support the hypothesis that flat urothelial hyperplasias can display many genetic alterations commonly found in bladder cancer and could therefore be an early neoplastic lesion in the multistep development of invasive urothelial carcinoma.  相似文献   

11.
We report the use of spectral karyotyping (SKY) and comparative genomic hybridization (CGH) to describe the numerous genomic imbalances characteristic of stage IV clear cell renal cell carcinoma (CCRCC). SKY and CGH were performed on 10 cell lines established from nephrectomy specimens, and CGH on uncultured material from five of the primary renal tumors. The mutational status of VHL (3p25) and MET (7q31), genes implicated in renal carcinogenesis, were determined for each case. Each case showed marked aneuploidy, with an average number of copy alterations of 14.6 (+/-2.7) in the primary tumors and 19.3 (+/-4.6) in the cell lines. Both whole-chromosome and chromosome-segment imbalances were noted by CGH: consistent losses or gains included +5q23-->ter (100%), -3p14-->ter (80%), and +7 (70%). All VHL mutations and 83% of the genomic imbalances found in the primary tumors were also found in the cell lines derived from them. SKY showed many complex structural rearrangements that were undetected by conventional banding analysis in these solid tumors. All cases with VHL inactivation had 3p loss and 5q gain related primarily to unbalanced translocations between 3p and 5q. In contrast, gains of chromosome 7 resulted primarily from whole-chromosome gains and were not associated with mutations of MET. SKY and CGH demonstrated that genomic imbalances in advanced RCC were the result of either segregation errors [i.e., whole chromosomal gains and losses (7.8/case)] or chromosomal rearrangements (10.7/case), of which the majority were unbalanced translocations.  相似文献   

12.
Comparative genomic hybridization (CGH) analysis was performed on 36 neuroblastomas of both low and high stage of disease. This study significantly increases the number of neuroblastoma tumors studied by CGH. Analysis of larger series of tumors is particularly important in view of the different clinical subgroups that are recognized for this tumor. The present data and a comparison with all published CGH data on neuroblastoma provide further insights into the genetic heterogeneity of neuroblastoma. Stage 1, 2, and 4S tumors showed predominantly whole chromosome gains and losses. A similar pattern of whole chromosome imbalances, although less frequent, was observed in stage 3 and 4 tumors, in addition to partial chromosome gains and losses. An increase in chromosome 17 or 17q copy number was observed in 81% of tumors. The most frequent losses, either through partial or whole chromosome underrepresentation, were observed for 1p (25%), 3p (25%), 4p (14%), 9p (19%), 11q (28%), and 14q (31%). The presence of 3p, 11q or 14q deletions defines a genetic subset of neuroblastomas and contributes to the further genetic characterization of stage 3 and 4 tumors without MYCN amplification (MNA) and 1p deletion. The present study also provides additional evidence for a possible role of genes at 11q13 in neuroblastoma. In a few cases, 1p deletion or MNA detected by FISH or Southern blotting was not found by CGH, indicating that the use of a second, independent technique for evaluation of these genetic parameters is recommended. Genes Chromosomes Cancer 23:141–152, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Chordomas are malignant bone tumors most often located in the axial skeleton. The estimated 5-year patient survival rate is between 50 and 80%. The cytogenetic and molecular genetic features of chordomas are largely unknown but, from what can be seen, appear to be complex. Near-diploid karyotypes have been detected by G-banding analysis, and comparative genomic hybridization (CGH) has revealed losses of or from chromosome arms 1p and 3p, as well as partial or whole copy number gains of chromosomes 7 and 20. We provide additional molecular cytogenetic information about six sacral chordomas examined by CGH and interphase fluorescence in situ hybridization (IP-FISH). By CGH, gains of chromosomal areas 1q23 approximately q24 (three tumors), 7p21 approximately p22 (three tumors), 7q (four tumors), and 19p13 (three tumors), as well as loss of chromosomal segment 9p22 approximately p23 (three tumors), were the most frequently observed imbalances. These results are concordant with earlier CGH data, although loss of or from chromosome arms 1p and 3p was not found as frequently in this series; both were detected in only one tumor. IP-FISH confirmed the CGH findings and showed that chromosome 7 was polysomic in four of the tumors. All these samples had trisomic and tetrasomic clones for chromosome 7, and two of them had pentasomic clones as well.  相似文献   

14.
Chromosomal imbalances were studied by comparative genomic hybridization (CGH) on 27 specimens from 24 patients with plasmacytoma. All the specimens exhibited DNA copy number changes (mean, 7.7 aberrations/tumor; range, 2-15). The most recurrent change involved losses at 13q, found in 19 out of 24 patients. Other frequent losses were at 1p (42%), 14q (33%), X (33%), 8p (25%), and 6q (25%). Gains were frequent at 19p (58%), 9q (58%), 1q (58%), 7p (42%), 11q (38%), 15 (33%), 6p (25%), 8q (25%), and 5p (21%). High-level copy number increases were found at 1q, 5, 7, 8q, 9q, 11q, 15, and 19. The findings of highly recurrent chromosomal imbalances in plasmacytomas confirm the analytical power of CGH to detect chromosomal abnormalities in malignancies characterized by low mitotic activity. Our most striking finding, the losses in chromosome 13, provides a basis to investigate the role of the 13q loss in the tumorigenesis and progression of plasmacytoma and to evaluate the prognostic significance of this loss.  相似文献   

15.
Primary orbital non-Hodgkin lymphoma is a mucosa-associated lymphoid tissue (MALT)-type extranodal marginal zone lymphoma. Little information is available on its genome as conventional cytogenetics is limited by scarce biopsy material, while fluorescence in situ hybridization (FISH) explores only selected regions. Comparative genomic hybridization (CGH) performs full genomic analysis and is applicable to different sources of DNA, such as fresh and frozen cells, as well as paraffin-embedded tissues. In this study, CGH was used to analyse primary MALT lymphoma of the orbit. Aneuploidy was identified in six of the ten cases studied. Gains (19) were more frequent than losses (5). The most frequent duplications involved chromosome 3 (common region at 3q24-qter), as expected in marginal zone lymphoma, and chromosome 6 (common region at 6p21.1-21.3), which is typical of an orbital location. Other chromosome gains were found at 1p, 7, 8q, 9q, 12, 13, 17, 18, 19, 22, and X. Losses were located at 1q, 6q, 9q, 11q, and 13q. Two cases showed isolated duplications of chromosome 6p or 9q. Isolated imbalances were found only in tumours affecting the conjunctiva. Complex aneuploidies were observed in lymphoma of the retro-orbital tissue. In summary, CGH in orbital MALT lymphoma provided new insights into typical genomic imbalances and underlying pathogenetic mechanisms.  相似文献   

16.
Genomic copy number changes are detectable in many malignancies, including neuroblastoma, using techniques such as comparative genomic hybridization (CGH), microsatellite analysis, conventional karyotyping, and fluorescence in situ hybridization (FISH). We report the use of 10K single nucleotide polymorphism (SNP) microarrays to detect copy number changes and allelic imbalance in six neuroblastoma cell lines (IMR32, SHEP, NBL-S, SJNB-1, LS, and SKNBE2c). SNP data were generated using the GeneChip DNA Analysis and GeneChip chromosome copy number software (Affymetrix). SNP arrays confirmed the presence of all previously reported cytogenetic abnormalities in the cell lines, including chromosome 1p deletion, MYCN amplification, gain of 17q and 11q, and 14q deletions. In addition, the SNP arrays revealed several chromosome gains and losses not detected by CGH or karyotyping; these included gain of 8q21.1 approximately 24.3 and gain of chromosome 12 in IMR-32 cells; loss at 4p15.3 approximately 16.1 and loss at 16p12.3 approximately 13.2, 11q loss with loss of heterozygosity (LOH) at 11q14.3 approximately 23.3 in SJNB-1 cells; and loss at 8p21.2 approximately 23.3 and 9p21.3 approximately 22.1 with corresponding LOH in SHEP cells. The SNP arrays refined the mapping of the 2p amplicons in LS, BE2c, and IMR-32 cell lines, the 12q amplicon in LS cells, and also identified an 11q13 amplicon in LS cells. There was good concordance among SNP arrays, CGH, and karyotyping. SNP array analysis is a powerful tool for the detection of allelic imbalance in neuroblastoma and also allows identification of LOH without changes in copy number (uniparental disomy).  相似文献   

17.
Common chromosomal abnormalities in mycosis fungoides transformation   总被引:1,自引:0,他引:1  
To identify cytogenetic features of large cell transformation in mycosis fungoides (T-MF), we selected in 11 patients, 16 samples either from skin tumors (13), lymph node (1), or peripheral blood cells (2) collected at the time of the transformation. Comparative genomic hybridization (CGH), G-banding, fluorescence in situ hybridisation (FISH), multicolour FISH (mFISH), and DNA content analysis were used. Fifteen samples displayed unbalanced CGH profiles, with gains more frequently observed than losses. Recurrent chromosomal alterations were observed for chromosomes 1, 2, 7, 9, 17, and 19. The most common imbalances were gain of chromosome regions 1p36, 7, 9q34, 17q24-qter, 19, and loss of 2q36-qter, 9p21, and 17p. In six samples 1p36-pter gain was associated with 9q34-qter gain and whole chromosome 19 gain. In five of these samples whole or partial gain of chromosome 17 was also observed. No specific pattern was seen with regard to the expression of the CD30 antigen by tumor cells. Cytogenetics and/or DNA content analysis of skin tumor cells revealed an abnormal chromosome number in all tested cases (n = 7) with DNA ploidy ranging from hyperdiploid (2.78) to hypotetraploid (3.69) (mean 3.14+/-0.38). Thus, T-MF displayed frequent chromosomal imbalances associated with hypotetraploidy.  相似文献   

18.
Conventional cytogenetic and comparative genomic hybridization (CGH) studies have shown that osteosarcomas (OSs) are characterized by complex structural and numerical chromosomal alterations and gene amplification. In this study, we used high-resolution CGH to investigate recurrent patterns of genomic imbalance by use of DNA derived from nine OS tumors hybridized to a 19,200-clone cDNA microarray. In six OSs, there was copy number gain or amplification of 6p, with a minimal region of gain centering on segment 6p12.1. In seven OSs, the pattern of amplification affecting chromosome arm 8q showed high-level gains of 8q12-21.3 and 8q22-q23, with amplification of the MYC oncogene at 8q24.2. Seven OSs showed copy number gain or amplification of 17p between the loci bounded by GAS7 and PMI (17p11.2-17p12), and three of these tumors also showed small losses at 17p13, including the region containing TP53. An in silico analysis of the distribution of segmental duplications (duplicons) in this region identified a large number of tracts consisting of paralogous sequences mapping to the 17p region, encompassing the region of deletions and amplifications in OS. Interestingly, within this same region there were clusters of duplicons and several genes that are expressed during bone morphogenesis and in OS. In summary, microarray CGH analysis of the chromosomal imbalances of OS confirm the overall pattern observed by use of metaphase CGH and provides a more precise refinement of the boundaries of genomic gains and losses that characterize this tumor.  相似文献   

19.
DNA copy number losses at chromosome arm 14q are the most frequently occurring aberrations in gastrointestinal stromal tumors (GISTs). To characterize the deletion at 14q, we performed comparative genomic hybridization (CGH) and high-resolution deletion mapping using a panel of 32 polymorphic microsatellite markers in 30 GISTs. The GISTs were classified according to their metastatic potential and mitotic counts into 15 low-risk and 15 high-risk tumors. Losses with a minimal common overlapping region at 14q12-q24 were detected by CGH in 16 tumors (53) (nine low-risk and seven high-risk). Investigation with microsatellite markers was informative in 690 analyses (72%). Loss of heterozygosity (LOH) with at least one marker was detected in 279 analyses in 24 tumors (80%). Deletions were equally frequent in low-risk and high-risk GISTs. Two common deletion regions were identified at 14q11.1-q12 and 14q23-q24.3. The highest frequencies of deletions were seen in regions corresponding to markers D14S283 (20/28, 71%) at 14q11.1-q12 and D14S258 (17/27, 63%) at 14q23-q24, suggesting that these are two tumor suppressor loci.  相似文献   

20.
Chromosomal imbalances were examined by comparative genomic hybridization in 30 cases of B-cell chronic lymphocytic leukemia (CLL) at diagnosis, in sequential samples from 17 of these patients, and in 6 large B-cell lymphomas transformed from CLL [Richter's syndrome (RS)] with no available previous sample. The most common imbalances in CLL at diagnosis were gains in chromosome 12 (30%), and losses in chromosomes 13 (17%), 17p (17%), 8p (7%), 11q (7%), and 14q (7%). The analysis of sequential samples showed an increased number of chromosomal imbalances in 6 of 10 (60%) patients with clinical progression and in 2 patients with stable stage C disease. No karyotypic evolution was observed in four cases with stable stage A disease and in one RS clonally unrelated to the previous CLL. Gains of 2pter, and 7pter, and losses of 8p, 11q, and 17p were recurrent alterations associated with karyotype progression. RS showed a higher number of gains, losses, total alterations, and losses of 8p and chromosome 9 than CLL at diagnosis. 17p losses were associated with p53 gene mutations and with a significantly higher number of chromosomal imbalances than tumors with normal chromosome 17 profile. However, no relationship was observed between 9p deletions and p16(INK4a) gene alterations. Losses of 17p and an increased number of losses at diagnosis were significantly associated with a shorter survival. These findings indicate that CLL has frequent chromosomal imbalances, which may increase during the progression of the disease and transformation into large cell lymphoma. Genetic alterations detected by comparative genomic hybridization may also be of prognostic significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号