首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
纳米药物和纳米载体系统   总被引:33,自引:2,他引:33  
阐明了纳米技术在药剂学领域中的现状,综述了国内外纳米药物和纳米载体的发展,介绍了纳米药物与纳米载体的尺寸范围、主要类型及其应用、制备技术、载药方法、表面修饰的意义及其在促进药物溶解、改善吸收、提高靶向性等方面的作用和机制,指出了纳米载体在生物大分子药物传输中的潜在应用前景。  相似文献   

3.
In the search to improve anticancer therapies, several drug carriers, including carbon-based nanomaterials have been studied. Both liposomes and polymeric microspheres have been used in anticancer drugs. However, there remains an on-going need for better therapeutic materials that have good drug solubility, an ability to reduce systemic toxicity through specific-tumor targeting, and rapid clearance. In this regard, carbon allotropes such as graphene oxide (GOs), carbon nanotubes (CNTs), and nanodiamonds (NDs), have been investigated, as they possess sufficient surface-to-volume ratio, thermal conductivity, rigid structural properties capable of post-chemical modification, and excellent biocompatibility. This review is aimed at exploring these carbon-based nanomaterials for use as multifaceted cancer drug carriers and is intended to demonstrate that GOs, CNTs, and NDs are likely to improve chemotherapeutical strategy for cancers in either a sole or combinational manner.  相似文献   

4.
Introduction: The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition.

Areas covered: Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same.

Expert opinion: Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment.  相似文献   

5.
Breast cancer is a leading cause of death for woman in the world. Cancer has the potential to spread to different organs around the body, and form metastases that can even develop after surgical removal of the primary tumour. Nanotechnology offers new promising strategies for the treatment of breast cancer, and has emerged as a powerful tool for fighting cancer. Nanoparticles can be fabricated to perform more than one task simultaneously, and can have a number of roles, such as acting as a therapeutic agent, drug delivery vehicle and/or tumour imaging agent. This review will focus on various forms of nanoparticles serving as potential agents for cancer therapeutics, illustrating their use in breast cancer therapies. This article also highlights the properties, current progress in the design and engineering of nanoparticles.  相似文献   

6.
The skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate into and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve drug topical delivery. Vesicular systems such as liposomes, niosomes, ethosomes and elastic, deformable vesicles provide an alternative for improved skin drug delivery. The function of vesicles as topical delivery systems is controversial with variable effects being reported in relation to the type of vesicles and their composition. In fact, vesicles can act as drug carriers controlling active release; they can provide a localized depot in the skin for dermally active compounds and enhance transdermal drug delivery. A wide variety of lipids and surfactants can be used to prepare vesicles, which are commonly composed of phospholipids (liposomes) or non-ionic surfactants (niosomes). Vesicle composition and preparation method influence their physicochemical properties (size, charge, lamellarity, thermodynamic state, deformability) and therefore their efficacy as drug delivery systems. A review of vesicle value in localizing drugs within the skin at the site of action will be provided with emphasis on their potential mechanism of action.  相似文献   

7.
To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.  相似文献   

8.
9.
Pectin-based hydrogel carriers have been studied and shown to have promising applications for drug delivery to the lower GI tract, especially to the colonic region. However, making sure these hydrogel carriers can pass through the upper GI tract and reach the targeted regions, after oral administration, still remains a challenge to overcome. A solution to this problem is to promote stronger cross-linking interactions within the pectin-based hydrogel network. The combined usage of a divalent cation (Ca2+) and the cationic biopolymer oligochitosan has shown to improve the stability of pectin-based hydrogel systems – suggesting that these two cross-linkers may be used to eventually help improve pectin-based hydrogel systems for colonic drug delivery methods.  相似文献   

10.
The core objective of nanoparticles is to control and manipulate biomacromolecular constructs and supramolecular assemblies that are critical to living cells in order to improve the quality of human health. By definition, these constructs and assemblies are nanoscale and include entities such as drugs, proteins, DNA/RNA, viruses, cellular lipid bilayers, cellular receptor sites and antibody variable regions critical for immunology and are involved in events of nanoscale proportions. The emergence of such nanotherapeutics/diagnostics will allow a deeper understanding of human longevity and human ills that include cancer, cardiovascular disease and genetic disorders. A technology platform that provides a wide range of synthetic nanostructures that may be controlled as a function of size, shape and surface chemistry and scale to these nanotechnical dimensions will be a critical first step in developing appropriate tools and a scientific basis for understanding nanoparticles.  相似文献   

11.
The scope of nanotechnology to develop target specific carriers to achieve higher therapeutic efficacy is gaining importance in the pharmaceutical and other industries. Specifically, the emergence of nanohybrid materials is posed to edge over chemotherapy and radiation therapy as cancer therapeutics. This is primarily because nanohybrid materials engage controlled production parameters in the making of engineered particles with specific size, shape, and other essential properties. It is widely expressed that these materials will significantly contribute to the next generation of medical care technology and pharmaceuticals in areas of disease diagnosis, disease prevention and many other treatment procedures. This review focuses on the currently used nanohybrid materials, polymeric nanoparticles and nanotubes, which show great potential as effective drug delivery systems for cancer therapy, as they can be grafted with cell-specific receptors and intracellular targeting molecules for the targeted delivery of therapeutics. Specifically, this article focuses on the current status, recent advancements, potentials and limitations of polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers.  相似文献   

12.
沈银忠  张永信 《上海医药》2011,32(11):527-530
艾滋病在全球范围内的传播给该病的防治工作带来了巨大挑战。抗病毒治疗是治疗艾滋病的最主要、也是最有效的治疗措施。近年来,人们在艾滋病抗病毒治疗时机与方案、艾滋病合并结核病患者的抗病毒治疗、抗病毒治疗随访与耐药检测等方面有很多新的认识。抗病毒治疗不仅能改善艾滋病患者的预后,而且可减少艾滋病毒在人群中的传播。  相似文献   

13.
Context: Nanostructured lipid carriers (NLC) are potentially good colloidal drug carriers for gene delivery. They are advised to be the second lifetime of lipid nanocarriers.

Objective: The aim of this study is to develop novel modified NLC as nanomedicine for delivery of plasmid-containing enhanced green fluorescence protein (pEGFP). This system could target the lung cancer cells through receptor-mediated pathways to increase the nuclear uptake of genetic materials.

Methods: In the present study, pEGFP-loaded NLC (NLC/pEGFP) were prepared. Transferrin (Tf) containing ligands were used for the surface coating of the vectors. In vitro transfection efficiency of the modified vectors was evaluated in human alveolar adenocarcinoma cell line (A549 cells) and in vivo transfection efficiency of the modified vectors was evaluated on mice bearing A549 cells model.

Results: Tf-modified NLC/pEGFP (Tf-NLC/pEGFP) has a particle size of 157?nm, and ~82% of gene loading quantity. Tf-NLC/pEGFP displayed remarkably higher transfection efficiency than non-modified NLC/pEGFP both in vitro and in vivo.

Conclusion: The results demonstrate that the novel NLC gene delivery system offers an effective strategy for lung cancer gene therapy.  相似文献   

14.
Due to their low bioavailability, many naturally occurring proteins can not be used in their native form in diseases caused by insufficient amounts or inactive variants of those proteins. The strategy of delivering proteins to biological compartments using carriers represents the most promising approach to improve protein bioavailability. A large variety of systems have been developed to protect and deliver proteins, based on lipids, polymers or conjugates. Here we present the current progress of the carriers design criteria with the help of recent specific examples in the literature ranging from conventional liposomes to polymeric nanoreactors, with sizes from micrometer to nanometer scale, and having various morphologies. The design and optimisation of carriers in the dual way of addressing questions of a particular application and of keeping them very flexible and reliable for general applications represent an important step in protein delivery approaches, which influence considerably the therapeutic efficacy. We examine several options currently under exploration for creating suitable protein carriers, discuss their advantages and limitations that induced the need to develop alternative ways to deliver proteins to biological compartments. We consider that only tailored systems can serve to improve proteins bioavailability, and thus solve specific pathological situations. This can be accomplished by developing nanocarriers and nanoreactors based on biocompatible, biodegradable and non-toxic polymer systems, adapted sizes and surface properties, and multifunctionality to cope with the complexity of the in-vivo biological conditions.  相似文献   

15.
美国药物滥用人群中HIV/AIDS的预防措施   总被引:1,自引:0,他引:1  
<正> 艾滋病(AIDS)是由人类免疫缺陷病毒(HIV)引起的一种恶性传染病,对人类的健康造成极大危害。我国自1985年发现首例AIDS患者后,经传入期、扩散期,1995年已进入快速增长期。据估计到2001  相似文献   

16.
The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed.  相似文献   

17.
Polymer carriers for drug delivery in tissue engineering   总被引:3,自引:0,他引:3  
Growing demand for tissues and organs for transplantation and the inability to meet this need using by autogeneic (from the host) or allogeneic (from the same species) sources has led to the rapid development of tissue engineering as an alternative. Tissue engineering aims to replace or facilitate the regrowth of damaged or diseased tissue by applying a combination of biomaterials, cells and bioactive molecules. This review focuses on synthetic polymers that have been used for tissue growth scaffold fabrication and their applications in both cell and extracellular matrix support and controlling the release of cell growth and differentiation supporting drugs.  相似文献   

18.
The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery.  相似文献   

19.
20.
The blood–brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide Kyotorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood–brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号