首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biochemical basis for the functional interaction between bronchoconstricting and bronchodilating pathways was investigated. Contracting canine trachealis strips with increasing concentrations of methacholine resulted in a progressive shift to the right of isoproterenol concentration-response curves. Thus, the EC50 for the relaxant response to isoproterenol was nearly 500-fold higher in preparations exposed to 3.0 microM methacholine than in tissues exposed to 0.03 microM methacholine. The maximum relaxation produced by isoproterenol was also dependent upon the initial muscarinic cholinergic tone. For example, isoproterenol reversed completely the contraction induced by 0.03 microM methacholine but did not relax trachealis strips contracted with 30 microM methacholine. To identify the molecular mechanism responsible for this functional antagonism, experiments were conducted to determine the effect of methacholine on isoproterenol-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation. Methacholine did not alter basal cyclic AMP content but did reduce cyclic AMP accumulation in response to isoproterenol. Furthermore, the ability of isoproterenol to activate cyclic AMP-dependent protein kinase was inhibited by methacholine in a concentration-dependent manner. This inhibition paralleled the decrease in mechanical responsiveness to isoproterenol. These results suggest that muscarinic cholinergic stimulation of canine tracheal smooth muscle functionally antagonizes the relaxant responses to beta adrenergic agonists and that a portion of this antagonism may be due to a suppression of catecholamine-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation.  相似文献   

2.
Functional antagonism between bronchoconstricting and bronchodilating pathways was examined in canine tracheal smooth muscle. Trachealis strips were contracted with either 0.3 microM (EC55) or 3.0 microM (EC80) methacholine before being relaxed by the cumulative addition of isoproterenol, prostaglandin E2, or forskolin. The EC50 for all three relaxants was increased 10-fold in tissues contracted with 3.0 microM methacholine vs. those contracted with 0.3 microM methacholine. Moreover, contracting tissues with the higher concentration of methacholine reduced the maximum relaxation induced by prostaglandin E2 and isoproterenol. Forskolin produced total relaxation regardless of the concentration of methacholine used and thus was a much more effective bronchodilator than either isoproterenol or prostaglandin E2. The inhibitory effect of methacholine on the relaxant response to these agents was paralleled by a reduction in drug-stimulated cyclic AMP-dependent protein kinase activity. Methacholine reduced the maximum activation of cyclic AMP-dependent protein kinase elicited by isoproterenol, prostaglandin E2 and submaximal concentrations of forskolin, which was a much more powerful enzyme activator than the other two agents. The ability of a maximum concentration of forskolin (30 microM) to activate cyclic AMP-dependent protein kinase was not inhibited by methacholine. Although methacholine also appeared to suppress drug-stimulated cyclic AMP accumulation, the inhibitory effect was only statistically significant in forskolin-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanical and biochemical responses of the canine trachealis to SK&F 94836 [2-cyano-1-methyl-3-[4-(4-methyl-6-oxo- 1,4,5,6-tetrahydropyridazine-3-yl)phenyl]guanidine], a selective inhibitor (ki = 1-3 microM) of the low km cyclic AMP (cAMP) phosphodiesterase, were assessed. Time course studies indicated that SK&F 94836-induced relaxation of trachealis strips contracted with 0.1 microM methacholine was accompanied by an activation of cAMP-dependent protein kinase (cAMP-PK). In subsequent experiments, trachealis strips were contracted with three concentrations of methacholine (0.1, 1.0 or 3.0 microM) or two concentrations of histamine (10 or 300 microM) before being relaxed by the cumulative addition of SK&F 94836. The relaxant response to SK&F 94836 (EC50 = 1-10 microM) decreased progressively as tissues were contracted with higher concentrations of methacholine. In parallel with its inhibitory effect on SK&F 94836-induced relaxation, methacholine suppressed the ability of SK&F 94836 to activate cAMP-PK. Interestingly, the inhibition of cAMP-PK activity was not accompanied by a significant inhibition of SK&F 94836-stimulated cAMP accumulation. Unlike the results with methacholine, the concentration of histamine used to contract tissues had no effect on SK&F 94836-induced relaxation or cAMP-PK activation. To determine the effect of SK&F 94836 on the mechanical and biochemical responses to the beta adrenoceptor agonist isoproterenol, tissues were first contracted with 3.0 microM methacholine and then incubated with 0, 0.3, 3.0 or 30 microM SK&F 94836 before being relaxed by the cumulative addition of isoproterenol. In these experiments, SK&F 94836 potentiated isoproterenol-induced relaxation, cAMP accumulation and cAMP-PK activation in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In mouse right ventricular strips, field-stimulated to contract isometrically in an oxygenated bicarbonate-buffered physiological salt solution at 22--24 degrees C, the EC50 for the inotropic action of isoproterenol decreased from 37 nM in muscles stimulated at 0.2 Hz to 5 nM in muscles stimulated at 3.3 Hz. At higher rates of contraction, there was also an increased sensitivity to the inotropic actions of norepinephrine and epinephrine but not to those of Ca++ and N6,O2'-dibutyryl cyclic AMP. Increasing the Ca++ concentration further decreased the EC50 for isoproterenol at 3.3 Hz but had no effect on the EC50 at 0.2 Hz. The leftward shift of the contractile response curve at 3.3 Hz was inhibited by verapamil (0.6 microM) and Mn++ (0.25 mM). The stimulation of cyclic AMP accumulation was approximately 6-fold more sensitive to isoproterenol at 3.3 than at 0.2 Hz, but isoproterenol increased contractile force at concentrations two orders of magnitude lower than those that significantly increased cyclic AMP accumulation. Inhibition of cyclic AMP phosphodiesterase activity further increased the sensitivity to the inotropic actions of isoproterenol but did not attenuate the frequency difference. The results indicate that isoproterenol-stimulated Ca++ influx through the slow channel plays an important role in the mechanism of the increased sensitivity to the inotropic action of isoproterenol found at higher frequencies of contraction. Although cyclic AMP accumulation was also frequency dependent, its role in the inotropic action of isoproterenol in mouse heart is not clear.  相似文献   

5.
In noncontracting mouse hemidiaphragms incubated in modified Krebs-Ringer--bicarbonate buffer with 10 mM Ca++, isoproterenol-stimulated phosphorylase a formation, conversion of phosphorylase kinase to the activated form, elevation of cyclic AMP-dependent protein kinase activity ratios and increase in cyclic AMP concentrations were reduced 35 to 50% over the responses in buffer with 2.5 mM Ca++. In buffer with 10 mM Ca++, the initial rate of isoproterenol-stimulated cyclic AMP accumulation was 59% of that in buffer with 2.5 mM Ca++. The inhibitory action of Ca++ on cyclic AMP accumulation was antagonized by verapamil, but not by inhibitors of cyclic nucleotide phosphodiesterase activity. In buffer with 2.5 mM Ca++, isoproterenol-stimulated cyclic AMP accumulation was inhibited by A23187 and caffeine, agents that can increase intracellular Ca++ concentrations. In addition to Ca++, high concentrations of Co++, Ni++, Mn++ and, to a lesser extent, Sr++ inhibited the isoproterenol response. The results of these studies indicate that high buffer Ca++ concentrations inhibit the response of the glycogenolytic pathway to isoproterenol by an action on cyclic AMP formation. We propose that the site of the inhibitory action of Ca++ is the divalent metal activator site associated with hormone-stimulated adenylate cyclase activity.  相似文献   

6.
The regulation of guinea pig tracheal muscle tone by cyclic AMP-dependent and cyclic GMP-dependent relaxant mechanisms was investigated by studying the tracheal relaxant activities of forskolin, nitroprusside, N6-2'-O-dibutyryl-cyclic AMP and 8-bromoguanosine-cyclic GMP. In carbachol (3 X 10(-6) M)-contracted isolated tracheal rings, N6-2'-O-dibutyryl-cyclic AMP and 8-bromoguanosine-cyclic GMP each caused biphasic relaxation responses, which consisted of an acute relaxation followed by a sustained but lesser degree of relaxation. The biphasic nature of this response is suggested to result from a functional counter-balancing of cyclic nucleotide-dependent relaxant mechanisms and the contractile mechanisms stimulated by carbachol. The sensitivity of carbachol-contracted tracheal rings to forskolin and nitroprusside (activators of adenylate and guanylate cyclase, respectively) was generally not influenced by N6-2'-O-dibutyryl-cyclic AMP or 8-bromoguanosine-cyclic GMP in concentrations that induced up to 50% relaxation of the trachea. Furthermore, the partial relaxation of tracheal tension with one cyclic nucleotide analog did not alter the sensitivity of the tracheal rings to the other. These results demonstrate that cyclic AMP- and cyclic GMP-dependent mechanisms induce relaxations of the trachea that are functionally additive, each neither potentiating nor depressing the effects of the other. In the presence of 3 X 10(-6) M carbachol, the effectiveness of cyclic AMP- and cyclic GMP-dependent relaxant mechanisms appears to be fixed, and independent of the amount of active tension being maintained by the tracheal muscle itself.  相似文献   

7.
In contrast to its established myotropic effect on guinea-pig lung parenchyma, the myotropic action of leukotriene B4 on the trachea is uncertain. Our characterization of its effects on the latter organ indicates that leukotriene B4 contracts guinea-pig trachea zig-zag strips in a concentration-dependent manner from 5 X 10(-9) to 5 X 10(-7) M. Leukotriene B4 was at least 10 times more potent than histamine, but 10 times less potent than leukotriene C4. Similar effects were evident with 20-hydroxyleukotriene B4; however, this metabolite contracted the trachea less forcefully. Tracheas developed tachyphylaxis after cumulative administration of leukotriene B4, but not 20-hydroxyleukotriene B4. The myotropic effect of leukotriene B4 was attributable to an indirect mechanism involving formation of cyclooxygenase metabolites of arachidonic acid. For example, the levels of prostaglandin E2 and prostaglandin F2 alpha released into the incubation medium correlated with the contractile response, and suppression of their biosynthesis with cyclooxygenase inhibitors eliminated that response. We conclude that myotropic effects of leukotriene B4 occur in central airways in addition to peripheral airways. The contribution of leukotriene B4 to tracheal bronchospasm is not necessarily negligible.  相似文献   

8.
The present study examines the relationship between tissue cyclic nucleotide levels and relaxation of bovine intrapulmonary arterial and venous smooth muscle in response to nitroglycerin, nitroprusside, S-nitroso-N-acetylpenicillamine and isoproterenol. Recent studies have suggested that cyclic GMP may be involved in the relaxation of vascular smooth muscle produced by nitrogen oxide-containing vasodilators and that S-nitrosothiols may act as intermediates of the latter agents. In the present study, nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine were more potent as relaxants of venous than arterial segments. Each of these agents elevated tissue cyclic GMP levels, but not cyclic AMP levels, before relaxation. These nitrogen oxide-containing agents were more potent as elevators of cyclic GMP levels in venous than arterial tissue and this correlated generally with their effects on vascular smooth muscle tone. Methylene blue antagonized both relaxation and increased cyclic GMP levels elicited by nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine. In contrast to the nitrogen oxide vasodilators, 8-bromo-cyclic GMP was equally effective in reducing induced tone in arterial or venous segments. Similarly, isoproterenol relaxed arterial and venous segments with equivalent sensitivities. Relaxation by isoproterenol was preceded by or occurred concomitantly with increased levels of cyclic AMP but not cyclic GMP and both effects were antagonized by propranolol. These findings are consistent with the hypothesis that vascular smooth muscle relaxation in response to nitrogen oxide-containing vasodilators or isoproterenol may be mediated or modulated by the intracellular accumulation of cyclic GMP or cyclic AMP, respectively.  相似文献   

9.
Studies were performed in healthy volunteers to determine the effects of catecholamines and adrenergic-blocking agents on plasma and urinary levels of adenosine 3',5'-monophosphate (cyclic AMP) and guanosine 3',5'-monophosphate (cyclic GMP).Plasma cyclic AMP rose in response to infusions of the beta-adrenergic agent, isoproterenol, or in response to infusions of either epinephrine or norepinephrine alone or in combination with the alpha-adrenergic-blocking agent, phentolamine. Although urinary cyclic AMP also rose, the percentage increase was less than that observed in the plasma. These treatments caused no increase in plasma cyclic GMP.Plasma cyclic GMP rose in response to infusions of alpha-adrenergic agents, viz., epinephrine or norepinephrine infused together with the beta-blocking agent, propranolol. These treatments caused no increase in plasma cyclic AMP.These observations are consistent with the current concept that the actions of beta-adrenergic agents are mediated by increases in cyclic AMP formation in target tissues. Such a mediating role has not been established for cyclic GMP, but the data suggest the possibility that cyclic GMP metabolism is responsive either to alpha-adrenergic stimulation or to parasympathetic stimulation which occurs as a reflexive consequence of the pressor effect of alpha-adrenergic agents.  相似文献   

10.
Exogenous arachidonic acid (10(-8) to 10(-4) M) contracted epithelium-free guinea pig tracheal strips. Intact tracheal strips were contracted slightly by low concentrations of arachidonic acid (10(-8) to 10(-5) M), but higher concentrations relaxed them. In contrast, when tracheal strips were precontracted with histamine or carbachol, exogenous arachidonic acid had no effect on epithelium-free preparations but induced concentration-dependent (10(-8) to 10(-4) M) relaxation of intact tracheal strips. The effects of arachidonic acid both in epithelium-free and epithelium-containing trachea were blocked by either indomethacin (10(-6) M) or aspirin (10(-4) M). Studies on the effects of exogenous arachidonic acid, performed with a "sandwich protocol," demonstrated that the postulated airway epithelium-dependent relaxant factor released by an intact tracheal strip relaxes an adjacent epithelium-free strip in the same organ bath. This relaxation is antagonized by indomethacin suggesting the involvement of a cyclooxygenase product in this phenomenon. Comparison of concentration-response curves for contractile agonists in epithelium-free preparations and in one containing epithelium suggests the mobilization of airway epithelium-dependent relaxant factor by histamine but not by carbachol. The effects of cyclooxygenase and lipoxygenase inhibitors indicated that both relaxant and contractile arachidonic acid metabolites are generated by epithelial and nonepithelial cells alike in response to contractile agonists.  相似文献   

11.
Norepinephrine stimulates the synthesis of melatonin in the pineal gland. The action of norepinephrine is believed to be mediated primarily by beta adrenergic receptors, and involves activation of adenylate cyclase. Ethanol, 25 to 50 mM, added to cultured pineal glands in vitro, enhanced isoproterenol-induced stimulation of cyclic AMP and melatonin production. The action of ethanol was observed only at doses of isoproterenol that produced a submaximal effect, and ethanol alone had no effect on cyclic AMP or melatonin release. Butanol, at a concentration of 2 mM, was as effective as 50 mM ethanol in increasing isoproterenol-stimulated cyclic AMP and melatonin release, indicating that the response to alcohols was not due simply to changes in osmolarity, and may reflect a hydrophobic interaction of the alcohols with the cell membrane. The effects of ethanol on pineal cyclic AMP and melatonin release were reversible after a 15-min preincubation, but not after a 2-hr preincubation, suggesting that, over a long incubation period, ethanol may sensitize the pineal beta adrenergic receptor-coupled adenylate cyclase system to isoproterenol. The findings in this study are consistent with earlier work showing that ethanol increases cerebral cortical beta adrenergic receptor-coupled adenylate cyclase activity, and demonstrate that the effect of ethanol on the receptor-effector system can result in an endocrinological response.  相似文献   

12.
A characteristic feature of airway smooth muscle is its relative sensitivity to relaxant effects of beta adrenergic agonists when contracted by inflammatory mediators, such as histamine, vs. resistance to these relaxant effects when contracted by muscarinic agonists. Because contractions presumably depend upon the hydrolysis of membrane phosphoinositides (PI) and the generation of inositol phosphates (IP), our goal was to test for the effects of forskolin, isoproterenol, and dibutyryl cAMP on histamine- vs. methacholine-induced IP accumulation in canine tracheal smooth muscle. Methacholine (10(-3) M) was a more effective stimulant of IP accumulation (9.6 +/- 2.1-fold increase) than equimolar histamine (3.6 +/- 0.5-fold increase) in this tissue. When responses to equieffective methacholine (4 x 10(-6) M) and histamine (10(-3) M) were compared, neither forskolin, isoproterenol, nor dibutyryl cAMP significantly decreased IP accumulation in response to methacholine. In contrast, each of these three agents significantly decreased responses to histamine (by 56 +/- 9, 52 +/- 2, and 61 +/- 2%, respectively). We concluded that, in canine tracheal smooth muscle, increased cAMP is associated with inhibition of PI hydrolysis in response to histamine but not methacholine. The findings suggest a novel mechanism for selective modulation by cAMP of receptor-mediated cellular activation.  相似文献   

13.
We characterized the thoracic aorta from the C57BL/6J mouse, a strain used commonly in the generation of genetically altered mice, in response to vasoactive substances. Strips of aorta were mounted in tissue baths for measurement of isometric contractile force. Cumulative concentration-response curves to agonists were generated to observe contraction, or relaxation in tissues contracted with phenylephrine or prostaglandin F(2alpha) (PGF(2alpha)). In endothelium-denuded strips, the order of agonist contractile potency (-log EC(50) [M]) was norepinephrine > phenylephrine = 5-hydroxytryptamine > dopamine > PGF(2alpha) > isoproterenol > KCl. Angiotensin II and endothelin-1 were weakly efficacious (15% of maximum phenylephrine contraction), as were UK14,304, clonidine, histamine, and adenosine. In endothelium-intact strips, agonists still caused contraction and both angiotensin II and endothelin-1 remained ineffective. In experiments focusing on angiotensin II, angiotensin II-induced contraction was abolished by the AT(1) receptor antagonist losartan (1 microM) but was not enhanced in the presence of the AT(2) receptor antagonist PD123319 (0.1 microM), tyrosine phosphatase inhibitor orthovanadate (1 microM) or when angiotensin II was given noncumulatively. Prazosin abolished isoproterenol-induced contraction and did not unmask isoproterenol-induced relaxation. Angiotensin II and endothelin-1 did not cause endothelium-dependent or -independent relaxation in phenylephrine- or PGF(2alpha)-contracted tissues. Acetylcholine but not histamine, dopamine, or adenosine caused an endothelium-dependent vascular relaxation. These experiments provide information as to the vascular reactivity of the normal mouse thoracic aorta and demonstrate that the mouse aorta differs substantially from rat aorta in response to isoproterenol, angiotensin II, endothelin-1, histamine, and adenosine.  相似文献   

14.
Electrical field stimulation (EFS) of isolated strips of opossum lower esophageal sphincter (LES) produced a relaxation that was accompanied by an elevation of intracellular cyclic GMP content. In order to compare the time dependence of the EFS-induced relaxation with that of the elevation of cyclic GMP, the ability of EFS to produce relaxation and increase cyclic GMP was measured. The results of these experiments showed that cyclic GMP content increased before the onset of relaxation. Cumulative addition of atriopeptin II, an activator of particulate guanylate cyclase, produced a concentration-dependent relaxation of this tissue and increased cyclic GMP content. In other experiments, zaprinast, an inhibitor of a cyclic GMP selective-phosphodiesterase, produced a concentration-related relaxation of opossum LES and increased cyclic GMP content. However, pretreatment with zaprinast (3 microM) did not potentiate the EFS-induced relaxation or the increase in cyclic GMP content. At this concentration, however, zaprinast increased the basal content of cyclic GMP. Finally, 8-Br-cyclic GMP, a membrane-permeable analog of cyclic GMP, produced a concentration-dependent relaxation of isolated strips of opossum LES. In conclusion, these data extend the initial findings that an elevation in cyclic GMP content is associated with relaxation and suggest that cyclic GMP is a potential intracellular messenger of neurally- and drug-induced relaxation of opossum LES.  相似文献   

15.
The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from [14C]arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2. The failure of endothelium-intact vein to relax to acetylcholine may be related to the lack of a relaxant effect by arachidonic acid, perhaps attributed to the absence of generation of an endothelium-derived relaxing factor.  相似文献   

16.
Beta adrenergic receptors of rat atria and uteri were examined with the use of enantiomers of isoproterenol as agonists and mechanical responses and adenosine 3',5'-monophosphate (cyclic AMP) levels as measured effects. Assuming that stereoselectivity reflects the unique asymmetry of receptors, potency differences between the enantiomers are expected to provide a sensitive indication of ligand binding. All effects in each tissue were investigated under similar experimental conditions. Both isomers produced the same maximum effect on all measured responses. Enantiomeric potency differences (in log units) for positive chronotropic and inotropic responses and increases in cyclic AMP levels in atria were 3.31, 3.51 and 3.48, respectively. In uteri, the values for reduction of spontaneous contractile amplitude and increases in cyclic AMP were 2.90 and 2.79 log units, respectively. Even though these absolute values varied slightly with the experimental conditions, they were consistently smaller in uteri than in atria. In both tissues, dose-response curves for production of mechanical effects were greater than 2 log units to the left of those for increases in cyclic AMP levels. Regardless of the interpretation of this phenomenon, the results show the following. 1) The stereoselectivity for isoproterenol-induced effects is different between the two tissues at both levels of response. Therefore, it is suggested that this reflects dissimilar beta adrenergic receptor types in rat atrium vs. rat uterus. 2) The stereochemical selectivity for isoproterenol-induced mechanical effects and increases in cyclic AMP is the same in rat atrium and in rat uterus. Therefore, the data support the postulate that cyclic AMP is formed from interaction of isoproterenol with a receptor that is similar to the one activated to produce a mechanical effect.  相似文献   

17.
There is some evidence in the literature that catecholamines relax uterine and other types of smooth muscle by increasing tissue levels of cyclic adenosine monophosphate (cyclic AMP). In the present study, isoproterenol completely relaxed uterine strips obtained from estrogen-primed rats and also increased tissue levels of cyclic AMP and phosphorylase a. In uterine strips depolarized and put into contracture for 15 minutes by 127 mM K+, isoproterenol did not increase phosphorylase a or cyclic AMP but was still capable of producing relaxation. When uterine strips were exposed to the methoxy derivative of verapamil, D-600, a compound known to prevent the influx of calcium, the uterus relaxed completely without an increase in cyclic AMP. The addition of isoproterenol at this stage resulted in an increase in cyclic AMP similar to that noted in nondepolarized uterine strips. The addition of 127 mM K+ also resulted in time-dependent biochemical changes as well as contracture. Cyclic AMP was increased 3-fold after 2 minutes of K+ depolarization and phosphorylase a was increased as well. The increase in cyclic AMP was prevented by propranolol but propranolol did not affect the contracture response to K+. D-600 prevented contracture but did not affect the K+-induced increase in cyclic AMP. The data suggest that an increase in whole tissue levels of cyclic AMP are not necessary in order for isoproterenol to relax depolarized rat uterine strips. The data also suggest that intracellular calcium levels can affect the level of cyclic AMP in the rat uterus.  相似文献   

18.
Cyclic AMP affects microvascular smooth muscle contraction and growth. Therefore, it is important to elucidate mechanisms regulating cyclic AMP production in microvascular smooth muscle. In this study, we determined whether several signal transduction pathways regulate receptor-induced cyclic AMP in isolated preglomerular microvessels and microvascular smooth muscle cells. Preglomerular microvessels were incubated with isoproterenol (beta-adrenoceptor agonist) and with and without U73122 (phospholipase C inhibitor), GF109203X (protein kinase C inhibitor), 1-butanol (phospholipase D inhibitor), CGP77675 (c-src inhibitor), HA1077 (Rho kinase inhibitor), Y27632 (Rho kinase inhibitor), LY294002 (phosphatidylinositol-3-kinase inhibitor), dipenyleneiodonium (NADPH oxidase inhibitor), or Tempol (superoxide dismutase mimetic). Cultured preglomerular microvascular smooth muscle cells were incubated with isoproterenol or forskolin (direct activator of adenylyl cyclase) and with or without U73122, C(2)-ceramide (phospholipase D inhibitor), or PP1 [src family inhibitor, 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine]. All studies were conducted with 3-isobutyl-1-methylxanthine (broad-spectrum phosphodiesterase inhibitor) to eliminate changes in cyclic AMP degradation. In microvessels isoproterenol-induced cyclic AMP was not affected by Y27632, HA1007, LY294002, dipenylene-iodonium, or Tempol; was increased by U73122 and GF109203X; and was decreased by 1-butanol and CGP77675. In cells, U73122 increased and C(2)-ceramide and PP1 decreased isoproterenol-induced cyclic AMP. Forskolin-induced cyclic AMP was not altered. These results indicate that receptor-mediated activation of adenylyl cyclase is 1) not modulated by Rho kinase, phosphatidylinositol-3-kinase, NADPH oxidase, or superoxide; 2) is attenuated by phospholipase C and protein kinase C; and 3) is augmented by phospholipase D and src. Phospholipase C, phospholipase D, and src modulate receptor-induced cyclic AMP by affecting beta-adrenoreceptor/G protein/adenylyl cyclase coupling rather than by directly affecting adenylyl cyclase activity.  相似文献   

19.
We investigated the relationships between relaxation, cyclic AMP (cAMP) accumulation and cAMP-dependent protein kinase (cAMP-PK) activity in canine tracheal smooth muscle. In time course and concentration-response studies, forskolin and isoproterenol elicited relaxation of isolated trachealis strips that was accompanied by an increase in cAMP content and an activation of cAMP-PK. Although these results were consistent with the proposal that cAMP is a second messenger mediating relaxation of airway smooth muscle, close inspection of the data revealed a discrepancy in the relationship between cAMP accumulation and relaxation. To induce equivalent degrees of tracheal relaxation, forskolin generated greater increments in cAMP accumulation than did isoproterenol. On the other hand, the activation state of cAMP-PK correlated reasonably well with relaxation regardless of which agonist was used. Further analysis of the data revealed that the apparent disparity between cAMP accumulation and relaxation could largely be explained at the level of the relationship between cAMP content and cAMP-PK activity: compared to isoproterenol, forskolin induced greater increases in cAMP accumulation to achieve the same activation state of cAMP-PK. These observations lend support to the proposal that in canine trachealis, various components of the cAMP/cAMP-PK cascade exist in distinct subcellular compartments such that not all of the cAMP generated in response to forskolin has access to its target enzyme, cAMP-PK.  相似文献   

20.
The effects of somatostatin on the contractile response of guinea pig cardiac preparations were investigated and compared with those of carbachol and adenosine. Somatostatin produced a concentration-dependent negative inotropic effect in the left atria, which was accompanied by a decrease in action potential duration. The maximum decrease in contractility which was obtained at 3 x 10(-6) M was around 40% of the predrug control values and far less than those produced by carbachol and adenosine. Somatostatin failed to produce inotropic effect on the papillary muscle and did not influence the spontaneously beating rate of the right atria. In the papillary muscles, however, somatostatin inhibited the positive inotropic effect of isoproterenol in a concentration-dependent manner as did carbachol and adenosine. In addition, somatostatin caused a significant inhibition of the isoproterenol-induced increase in cyclic AMP levels without affecting the basal level of cyclic AMP. In the papillary muscle, the inhibitory effect of somatostatin on the positive inotropic response to isoproterenol was significantly attenuated by pretreatment with islet-activating protein, and was significantly antagonized by the somatostatin antagonist cyclo[7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)]. These results suggest that somatostatin receptors in guinea pig ventricular muscles are coupled with adenylate cyclase via islet-activating protein-sensitive GTP-binding protein, whereas the negative inotropic effect of somatostatin in the left atria might be mediated by a subtype of somatostatin receptors which is different from that in the ventricle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号