首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin basic protein (MBP) is a candidate autoantigen in multiple sclerosis (MS). The immunodominant epitope for T-cell responses is assigned to the amino acid sequence MBP84-102, which binds to human leukocyte antigen (HLA)-DR2a (DRB5*0101) and HLA-DR2b (DRB1*1501) of the HLA-DR2 haplotype carrying the strongest genetic association with MS. In contrast with HLA-DR and -DQ molecules, HLA-DP molecules are poorly characterized with respect to the binding of self-peptides. We show here that HLA-DP2 binds MBP85-99 with high affinity, and that the amino acid residues in position MBP91, MBP92 and MBP93 are influencing the binding, as shown by alanine scans. We further used a series of truncated peptides to identify the core of the binding. Moving the frame along the peptide from residues 87-97 to 89-99 progressively decreased the binding affinity for HLA-DP2, while moving further towards the C-terminal completely abrogated the binding of peptides to HLA-DP2. The data suggest that the docking of the MBP85-99 peptide into the HLA-DP2 groove is dependent on MBP88V and MBP89V and may use either of them as primary anchor for the p1 position. HLA-DP2 might thus present the MBP85-99 peptide in the same register as the HLA-DRB1*1501, where the MBP89V is preferred as the p1 anchor. Notably, full-length MBP was able to compete for peptide binding with an affinity similar to that seen for the high-affinity binding peptides, DRα170-83 and IIP53-65. In summary, the HLA-DP2 molecule binds the immunodominant epitope in MS, MBP85-99, possibly in more than one register.  相似文献   

2.
Analysis of the structural requirements for the interaction of antigenic peptides with HLA-A24 molecules are very important for studies of T cell recognition of various antigens, because HLA-A24 (A*2402) is most common HLA-A allele in the world, especially in Oriental population. In order to precisely investigate the interaction of peptides with HLA-A24 molecules beyond previous analysis of self-peptides eluted from HLA-A24 molecules, we examined the A*2402 interaction of 172 chemically synthesized 8-mer to 11-mer peptides carrying two residues (Try and Phe) at P2 and four residues (Phe, Trp, Leu and Ile) at their C-terminus by the use of stabilization assay. The results were statistically analyzed to assess the influence of anchor residues on peptide binding. The length of peptides (9- to 11-mer) did not affect A*2402 binding except 8-mer peptides. Peptides possessing the aromatic residues at their C-terminus bound to A*2402 molecules stronger than those bearing the aliphatic hydrophobic residues. These results indicate that two aromatic hydrophobic anchor residues permit the binding of longer peptides to A*2402 molecules. Compared to our recent studies of B*3501 and B*5101 binding peptides, the present study suggested that both B and F pockets of A*2402 molecules might be large and deep because these pockets favored bulky aromatic residues.  相似文献   

3.
Abstract: The binding of 136 8- to 12-mer peptides carrying anchor residues at position 2 (P2) and the C-terminus to HLA-A*1101 molecules was analyzed by a stabilization assay using RMA-S transfectants expressing HLA-A*1101 and human β2-microglobulin. 72.1% of these peptides bound to HLA-A*1101 molecules. Two known HLA-All-restricted cytotoxic T-lymphocyte epitope peptides showed high affinity to HLA-A*1101. The results confirmed a previous pool sequencing study of HLA-A*1101 binding self-peptides, which showed that Lys at the C-terminus and Val, Ile, Phe, Tyr, and Thr at P2 are anchor residues for HLA-A*1101. Thr and aliphatic hydrophobic residues Val, Ile, and Leu at P2 are stronger anchor residues than the aromatic hydro-phobic residues Phe and Tyr. In addition, hydrophobic residues Leu, Phe, Tyr, Ile, and Ala at position 3 (P3) are secondary anchors but are weaker than those at P2. The affinities of the 8- and 12-mer peptides were significantly lower than those of 9- to 11-mer peptides. There was however no difference in affinity between 9-, 10- and 11-mer peptides. Furthermore, the analysis using peptides mutated at the C-terminus showed that HLA-A*1101 molecules can bind peptides carrying another positively charged residue, Arg. The present study clarified the role of the anchor residues at P2, P3 and the C-terminus in the binding of HLA-A*1101 molecules.  相似文献   

4.
A previous pool sequence analysis showed that HLA-A*3101 and HLA-A*3303 binding peptides have the same anchor residues at P2 and the C-terminus, the only difference being that HLA-A*3303 binding peptides have two additional P2 anchor residues. Using a stabilization assay with RMA-S transfectants expressing HLA-A*3101 and human beta2-microglobulin, we tested the binding of 232 8- to 11-mer peptides carrying HLA-A*3303 anchor residues to HLA-A*3101. One hundred of these peptides (43.1%) bound to HLA-A*3101, confirming that these residues are also anchors for HLA-A*3101. Although aromatic hydrophobic P2 residues were previously shown to be stronger anchors than aliphatic hydrophobic P2 residues in HLA-A*3303 binding peptides, we detected no significant difference in HLA-A*3101 binding affinity between peptides carrying aromatic or aliphatic hydrophobic P2 residues. Statistical analysis previously showed a positive effect of negatively charged P1 residues and a negative effect of positively charged P1 residues for peptide binding to HLA-A*3303. In contrast such analysis demonstrated a positive effect of positively charged P1 residues and a negative effect of negatively charged P1 residues for peptide binding to HLA-A*3101. Analysis using mutated peptides confirmed these results. The present study therefore demonstrates that peptide binding specificity between HLA-A*3101 and HLA-A*3303 is determined by the polarity of the P1 anchor residue.  相似文献   

5.
CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.  相似文献   

6.
Li X  Li R  Li Z 《Tissue antigens》2006,67(1):45-52
Collagen (CII) 263-272 peptide, an autoantigen in rheumatoid arthritis, is a specific human leukocyte antigen (HLA)-DR1/4-binding peptide recognized by T-cell receptors (TCR). The affinity of influenza virus haemagglutinin (HA) 306-318 peptide for the antigen-binding groove of HLA-DR1/4 molecules is higher than that of CII263-272. The HLA-DR1/4-binding residues of HA306-318 are located in the region 308-317. Altered HA308-317 peptides with substitutions of TCR-contact residues may inhibit HLA-DR1/4-specific T-cell activation by blocking the antigen-binding site of HLA-DR1/4 molecules. To evaluate the role of altered HA308-317 peptides in HLA-DR1-restricted T-cell activation, we synthesized three altered HA308-317 peptides. The specific binding of altered HA308-317 peptides to HLA-DR1 molecules was examined using flow cytometry. Effects of altered HA308-317 peptides on HLA-DR1-specific T-cell hybridoma were studied by measuring T-cell proliferation and surface expression of CD69 or CD25. The results showed that altered HA308-317 peptides were able to bind to HLA-DR1 molecules and competed with CII263-272 or wildtype HA308-317 peptide. Compared with wildtype CII263-272 or HA308-317, altered HA308-317 peptides did not stimulate significant T-cell proliferation and CD69 or CD25 expression. Furthermore, the altered HA308-317 peptides inhibited HLA-DR1-specific T-cell activation induced by CII263-272 or wildtype HA308-317 peptide, which may suggest an effective therapeutic strategy in inhibition of HLA-DR1-specific T-cell responses in autoimmunity.  相似文献   

7.
Specific and major histocompatibility complex (MHC)-restricted T-cell recognition of antigenic peptides is based on interactions of the T-cell receptor (TCR) with the MHC alpha helices and solvent exposed peptide residues termed TCR contacts. In the case of MHC class II-presented peptides, the latter are located in the positions p2/3, p5 and p7/8 between MHC anchor residues. For numerous epitopes, peptide substitution studies have identified the central residue p5 as primary TCR contact characterized by very low permissiveness for peptide substitution, while the more peripheral positions generally represent auxiliary TCR contacts. In structural studies of TCR/peptide/MHC complexes, this has been shown to be due to intimate contact between the TCR complementarity determining region (CDR) three loops and the central peptide residue. We asked whether this model also applied to two HLA-DR presented epitopes derived from an antigen targeted in type 1 diabetes. Large panels of epitope variants with mainly conservative single substitutions were tested for human leukocyte antigen (HLA) class II binding affinity and T cell stimulation. Both epitopes bind with high affinity to the presenting HLA-DR molecules. However, in striking contrast to the standard distribution of TCR contacts, recognition of the central p5 residue displayed high permissiveness even for non-conservative substitutions, while the more peripheral p2 and p8 TCR contacts showed very low permissiveness for substitution. This suggests that intimate TCR interaction with the central peptide residue is not always required for specific antigen recognition and can be compensated by interactions with positions normally acting as auxiliary contacts.  相似文献   

8.
NZB mice spontaneously develop autoimmune haemolytic anaemia (AIHA) due to a T helper-dependent autoantibody response against the erythrocyte anion channel protein, Band 3. Here, we characterize the recognition of the Band 3 sequence 861-874, which carries the dominant, I-E(d)-restricted T cell epitope. The ability of N and C-terminal truncated versions of peptide 861-874 to elicit NZB splenic T-cell proliferation indicated that the core epitope spans residues 862-870. Next, a set of alanine substitution analogues was tested to determine which residues functioned either as MHC anchor or TCR contact residues. A combination of proliferation and MHC:peptide binding assays identified residues 862(L), 864(V), 865(L), and 869(K) as I-E(d) anchor residues, and 868(V) as the only TCR contact residue. The ability of the wild-type sequence 861-874 to compete with a high affinity reference peptide for binding to I-E(d) indicates that the escape of pathogenic NZB T cells from purging of the autoreactive repertoire cannot be attributed to ineffective presentation of peptide 861-874 by its restricting element. It will now be possible to design altered peptide ligands of Band 3 861-874, in order to further dissect the mechanisms responsible for the maintenance and loss of T cell tolerance to RBC autoantigens, and to modulate the immune response in AIHA.  相似文献   

9.
The nature of peptide binding to MHC molecules is intrinsically degenerate, in what, one given MHC molecule can accommodate numerous peptides which are structurally diverse, and one given peptide can bind to different alleles. The structure of the MHC class II molecules allows peptides to extend out of the binding groove at both ends and these residues can potentially influence the stability and persistence of peptide/class II complexes. We have previously shown that both I-E(k) and I-A(k)-restricted T cell hybridomas could be generated against the Hb(64-76) epitope. In this study, we characterized the binding register of the Hb(64-76) epitope to I-A(k), and showed that it was shifted by one residue in comparison to its binding to I-E(k), and did not use a dominant anchor residue at P1. This conclusion was further supported by the modeling of the Hb(64-76) epitope bound to I-A(k), which revealed that all of its putative anchor residues fit into their corresponding pockets. We identified the naturally processed Hb epitopes presented by both I-E(k) and I-A(k), and found that they consisted of different species. Those associated with I-A(k) being 20-22 residues long, whereas, those found to I-E(k) contained 14-16 residues. These findings suggested that the lack of a dominant P1 anchor could be compensated by the selection of longer peptides. Overall, these studies revealed the Hb(64-76) epitope bound to I-E(k) and I-A(k) in distinct registers and lengths, demonstrating the plasticity MHC molecules have in generating distinct TCR ligands from the same amino acid sequence.  相似文献   

10.
Zhou Q  Cheng Y  Lü H  Zhou W  Li Z 《Human immunology》2003,64(9):857-865
It has been reported that collagen II (CII) derived peptide CII263-272 induced T-cell activation via its amino acids responsible for T-cell receptor (TCR) recognition. The impact of substitution of the TCR contacting amino acids of CII263-272 on T-cell activation was evaluated in this study using a panel of altered CII263-272 peptides. Computer modeling revealed that the side chains of 263F and 266E in CII263-272 were coupled with amino acids on alpha1 and beta1 chains of HLA-DR1 or -DR4, mainly via hydrogen bonds, whereas the side chains of 267Q and 270K protrude out of the cleft and might be recognized by TCR. Intracellular delivery of the altered peptides, and their binding to HLA-DR1 and -DR4 molecules on cell surface, were demonstrated by confocal microscopy and flow cytometry. The results also revealed that the substitution of 267Q, 268G, 269P, and 270K individually or consecutively by alanine (A) or glycine (G) led to weak or non-T-cell responses. Furthermore, the altered peptides with 270K substitution (270A) or with consecutive substitution of 268G, 269P, and 270K (sub268-270) dramatically inhibited T-cell activation. It is suggested that the altered peptides derived from CII263-272 with substitution of amino acids responsible for TCR contact might be of inhibitory effect on T-cell responses.  相似文献   

11.
The identification of immunodominant and universal mycobacterial peptides could be applied to vaccine design and have an employment as diagnostic reagents. In this paper we have investigated the fine specificity, clonal composition and HLA class II restriction of CD4+ T cell clones specific for an immunodominant epitope spanning amino acids 91-110 of the 16-kDa protein of Mycobacterium tuberculosis. Twenty-one of the tested 28 clones had a Th1 profile, while seven clones had a Th0 profile. None of the clones had a Th2 profile. While the TCR AV gene usage of the clones was heterogeneous, a dominant TCR BV2 gene family was used by 18 of the 28 clones. The CDR3 regions of BV2+ T cell clones showed variation in lengths, but a putative common motif R-L/V-G/S-Y/W-E/D was detected in 13 of the 18 clones. Moreover, the last two to three residues of the putative CDR3 loops, encoded by conserved BJ sequences, could also play a role in peptide recognition. Antibody blockade and fine restriction analysis using HLA-DR homozygous antigen-presenting cells established that 16 of 18 BV2+ peptide-specific clones were DR restricted and two clones were DR-DQ and DR-DP restricted. Additionally, five of the 18 TCRBV2+ clones recognized peptide 91-110 in association with both parental and diverse HLA-DR molecules, indicating their promiscuous recognition pattern. The ability of peptide 91-110 to bind a wide range of HLA-DR molecules, and to stimulate a Th1-type interferon (IFN)-gamma response more readily, encourage the use of this peptide as a subunit vaccine component.  相似文献   

12.
Hsu SC  Chang CP  Tsai CY  Hsieh SH  Wu-Hsieh BA  Lo YS  Yang JM 《Immunology》2012,136(2):139-152
MHC class I-restricted CD8 T-lymphocyte epitopes comprise anchor motifs, T-cell receptor (TCR) contact residues and the peptide backbone. Serial variant epitopes with substitution of amino acids at either anchor motifs or TCR contact residues have been synthesized for specific interferon-γ responses to clarify the TCR recognition mechanism as well as to assess the epitope prediction capacity of immunoinformatical programmes. CD8 T lymphocytes recognise the steric configuration of functional groups at the TCR contact side chain with a parallel observation that peptide backbones of various epitopes adapt to the conserved conformation upon binding to the same MHC class I molecule. Variant epitopes with amino acid substitutions at the TCR contact site are not recognised by specific CD8 T lymphocytes without compromising their binding capacity to MHC class I molecules, which demonstrates two discrete antigen presentation events for the binding of peptides to MHC class I molecules and for TCR recognition. The predicted outcome of immunoinformatical programmes is not consistent with the results of epitope identification by laboratory experiments in the absence of information on the interaction with TCR contact residues. Immunoinformatical programmes based on the binding affinity to MHC class I molecules are not sufficient for the accurate prediction of CD8 T-lymphocyte epitopes. The predictive capacity is further improved to distinguish mutant epitopes from the non-mutated epitopes if the peptide-TCR interface is integrated into the computing simulation programme.  相似文献   

13.
The affinity of 232 8- to 11-mer peptides carrying HLA-A*3303 anchor residues at position 2 (P2) (Ala, Ile, Leu, Val, Phe or Tyr) and the C-terminus (Arg) was analysed by a stabilization assay using RMA-S transfectants expressing HLA-A*3303 and human beta2-microglobulin. One hundred and nineteen of these peptides (51.3%) bound to HLA-A*3303, confirming that these residues are anchors for HLA-A*3303. Evaluation of P2 residues demonstrated that binding of peptides with Phe or Tyr at P2 is stronger than that of peptides with aliphatic hydrophobic residues at P2. This was confirmed by analysis of a panel of peptides mutated at P2. Analysis of the C-terminal mutant peptides showed that substitution of Lys for Arg had minimal influence on binding to HLA-A*3303. This implies that peptides carrying HLA-A*1101 anchor residues (Val, Ile, Phe or Tyr at P2 and Lys at the C-terminus) can bind to HLA-A*3303. However, such peptides showed lower binding for HLA-A*3303 than for HLA-A*1101. Thus, Arg at the C-terminus is much stronger anchor for HLA-A*3303 than Lys. The preference for Arg and Lys at the C-terminus by HLA-A*1101 and HLA-A*3303 respectively may be due to sequences of three residues (70, 97 and 114) forming the F-pocket of these HLA class I molecules. Statistical analysis of 232 peptides further showed a positive effect of negatively charged residues at P1 for peptide binding to HLA-A*3303. Thus, residues at P1, P2 and the C-terminus play an important role in peptide binding to HLA-A*3303.  相似文献   

14.
The second HLA-DR molecules, which are encoded by loci different from HLA-DRB1 are weakly polymorphic. Predominant alleles such as HLA-DRB3*0101, HLA-DRB4*0101 and HLA-DRB5*0101 are therefore interesting targets to define antigenic peptides with major impact for the entire population. Strikingly, they have been poorly investigated. Thus we have characterized peptides from the major bee venom allergen that bind efficiently to these molecules and compared them to peptides specific for preponderant HLA-DRB1 molecules. Interestingly, DRB5*0101 and DRB1*0701 molecules share four binding peptides and use some identical anchor residues. Similarities are also found between DRB3*0101 and its haplotype-associated molecules DRB1*0301 and DRB1*1301. In sharp contrast, DRB4*0101 exhibits a unique binding specificity, which results from particular structural features of its peptide binding site. Ybeta81 seems to alter the amino acid preferences of the P1 pocket, while Rbeta71, Ebeta74, Nbeta26 and Cbeta13 confer to the P4 pocket a unique topology. Our results show that the two HLA-DR molecules expressed in most haplotypes studied here have mostly complementary binding patterns. Only haplotype HLA-DR52 exhibits peptide binding redundancies. Finally our results document functional similarities among HLA-DR molecules and allow us to propose peptide sequences that might be useful for bee venom immunotherapy.  相似文献   

15.
目的研究抗菌肽LL-37抑制呼吸道合胞病毒复制的核心功能区。方法①根据LL-37的氨基酸序列,合成从N-端到c-端的系列短肽P1到P6②RSV感染Hep-2细胞,同时分别加入LL-37和合成的不同短肽,用实时定量聚合酶链反应检测RSVN基因的表达,分析LL-37和各种短肽对RSV复制的影响。③Hep-2细胞分别加入LL-37和不同的短肽,用酶联免疫吸附法(ELISA)测定细胞培养液中趋化因子RANTES、IL-8及MCP-1的表达水平。结果①根据LL-37合成的N-端短肽不具有抑制RSV复制的功能(P〉0.05),但不同区段的C-端短肽可不同程度地抑制RSV的复制(P〈0.05或P〈0.01)。②LL-37可诱导趋化因子IL-8、RANTES和MCP-1的表达(P〈0.05),但C端短肽P6对上述趋化因子的表达没有影响(P〉0.05)。结论由LL-37的C-端22氨基酸残基组成的区域是抑制RSV复制的核心功能区。LL-37可诱导趋化因子IL培、RANTES和MCP-1的表达,但c-端短肽不能诱导趋化因子的表达。  相似文献   

16.
HLA-B*3501 is associated with subacute thyroditis and fast progression of AIDS. An important prerequisite to investigate the T cell recognition of HLA-B*3501-restricted antigens is the characterization peptide-HLA-B*3501 interactions. Therefore the HLA-B*3501 interactions of 240 chemically synthesized 9-mer - 11-mer peptides were determined in quantitative peptide binding assays. The results were statistically analyzed to evaluate the influence of both anchor and nonanchor positions and the predictability of peptide binding. The importance of Pro as auxiliary anchor was extended to 10-mers and 11-mers as opposed to Ala, which associated with poor binding. Aliphatic hydrophobic nonanchor residues at positions 3, 5, and 7 (8) of 9-mers (10-mers) and position 3 of 11-mers significantly enhanced HLA-B*3501 binding. Similar effects were observed for aromatic residues at position 1 of 9-mers - 11-mers, acidic at position 8 and 10 of 11-mers. Negative effects were observed for Pro at position 1 and for 9-mers (11-mers) carrying residues with positively charged side chains at position 3, 5 and 7 (8). These findings were validated by the successful prediction of fifty-five 9-mers - 11 mers.  相似文献   

17.
CD4+ T cells recognize antigenic peptides bound to the polymorphic peptide-binding site of major histocompatibility complex (MHC) class II molecules. The polymorphism of this site is thought to dictate which peptides can be bound and thus presented to the T cell receptor. The mycobacterial 65-kDa heat-shock protein (hsp65) peptide 3-13 is an important T cell epitope: it is immunodominant in the mycobacterium-specific T cell response of HLA-DR3+ individuals but, interestingly cannot be recognized in the context of any other HLA-DR molecules. We, therefore, have tested whether the hsp65 epitope p3-13 is selected for T cell recognition in the context of only HLA-DR3 molecules by an unique binding specificity for HLA-DR3. Using biotinylated peptides and EBV-transformed BLCL comprising all known HLA class II specificities, we find that p3-13 binds to HLA-DRw17(DR3) but not to any other HLA-DR molecule. Conversely, a control peptide p307-319 influenza hemagglutinin binds to all known HLA-DR molecules but only weakly to HLA-DRw17 and HLA-DR9. Peptide binding could be inhibited by excess unbiotinylated competitor analogue as well as by anti-DR monoclonal antibodies but not by anti-class I-, anti-DP- or anti-DQ monoclonal antibodies. The amino acid sequence of DRw17 molecules differs uniquely at five positions from the other DR beta 1 sequences. Three of these five residues (positions 26, 71 and 74) are potential peptide contacting residues. These residues map closely together in the hypothetical three-dimensional model of the DR molecule and, thus, most probably form a positively charged pocket, critical for the binding of p3-13. Interestingly, p3-13 does not bind to a DR3 variant, the DRw18 molecule. The DRw18 beta 1 chain differs from DRw17 at two major positions, close to or within the DRw17-specific pocket. These substitutions drastically change the structure and charge of the pocket and thus presumably abrogate its ability to bind p3-13.  相似文献   

18.
ABSTRACT: BACKGROUND: Mugwort pollen allergens represent the main cause of pollinosis in late summer. The major allergen, Art v 1, contains only one single immunodominant, solely HLA-DR-restricted T cell epitope (Art v 125-36). The frequency of HLA-DR1 is highly increased in mugwort-allergic individuals and HLA-DR1 serves as restriction element for Art v 125-36. However, Art v 125-36 also binds to HLA-DR4 with high affinity and DR1-restricted Art v 125-36 -specific T cell receptors can be activated by HLA-DR4 molecules. To understand the predominance of HLA-DR1 in mugwort allergy in spite of the degeneracy in HLA/peptide-binding and TCR-recognition, we investigated the molecular background of Art v 125-36 /MHC/TCR interactions in the context of HLA-DR1 compared to -DR4. RESULTS: The majority of Art v 125-36 -specific T cell lines and clones from HLA-DR1 carrying, mugwort pollen-allergic donors reacted to synthetic and naturally processed Art v 1-peptides when presented by HLA-DR1 or HLA-DR4 expressing antigen presenting cells. However, at limiting peptide concentrations DR1 was more effective in T cell stimulation. In addition, the minimal epitope for 50% of Art v 125-36 -specific T cells was shorter for DR1 than for DR4. In vitro binding assays of Art v 125-36 mutant peptides to isolated DR1- and DR4-molecules indicated similar binding capacities and use of the same register. In silico simulation of Art v 125-36 binding to HLA-DR1 and -DR4 suggested similar binding of the central part of the peptide to either molecule, but a higher flexibility of the N- and C-terminal amino acids and detachment at the C-terminus in HLA-DR1. CONCLUSIONS: The predominance of HLA-DR1 in the response to Art v 125-36 may be explained by subtle conformation changes of the peptide bound to DR1 compared to DR4. Computer simulation supported our experimental data by demonstrating differences in peptide mobility within the HLA-DR complex that may influence TCR-binding. We suggest that the minor differences observed in vitro may be more relevant in the microenvironment in vivo, so that only presentation by HLA-DR1, but not -DR4 permits successful T cell activation.  相似文献   

19.
The class II HLA molecule (HLA-DR, -DQ or -DP) is expressed on various antigen presenting cells (APC). Proteolytic fragments of peptides processed by APC that match the physiochemical character of the peptide-binding grooves formed by alpha and beta chains of class II HLA molecules are expressed on the surface of APC and are recognized by T cells. Many class II-binding peptide motifs reported to date follow the 9-mer peptide pattern AxxBxCDxE, with A, B, C, D, and E residues functioning to bind to HLA, thereby designated as "anchors". On the contrary, the x residues are recognized by T cells through the T cell receptor (TCR). Analog peptides with single residue substitutions at x residues changed signals in T cells, leading to quantitative and qualitative (anergy/survival, etc.) changes in human T cell clonal responses. Certain analogs changed signals in monocytes, leading to the upregulation of IL-12. Furthermore, cross-linking of class II HLA molecules on monocytes using mAbs leads to upregulation of monokines, in which HLA-DR, -DQ, and -DP play differential roles. Thus, HLA molecules when recognized by TCR, not only present peptide antigens to T cells but also transmit signals to APC, where the polymorphism and heterogeneity of HLA molecules may play important roles.  相似文献   

20.
A study was made of the binding properties of 96 human immunodeficiency virus peptides to human leucocyte antigen (HLA)-DR1 and HLA-DR103 molecules, which differ by three amino acids at positions 67, 70 and 71 in the beta chains. The affinity of the peptides was characterized by their inhibitory concentrations in competitive binding assays which displace half of the labelled influenza haemagglutinin peptide HA306-318 (IC50). Among the high-affinity peptides (IC50 < or = 1 microM), seven bound to DR1, three to DR103 and five equally well to both alleles (promiscuous peptides). Thirty-two other peptides showed medium or low affinity for DR molecules. The role of polymorphic residues was analysed using six mutated DR molecules, intermediates between DR1 and DR103 and differing by one or two substitutions at positions 67, 70 or 71. We reached the same conclusions when using DR1-specific or DR103-specific peptides: modification of residue 70 had no effect on peptide affinity, but single substitution at positions 67 or 71 decreased the allele specificity of the peptides while double substitution at 67 and 71 completely reversed the peptide specificity. In functional assays, DR-binding peptides are able to outcompete specific T-cell proliferation. Furthermore, modification at position 67 or 70 significantly affects the T-cell response and mutation at position 71 abolishes completely the T-cell proliferation. Thus, the polymorphic positions 67 and 71 contributed to the peptide binding with direct effects on T-cell receptor (TCR) recognition while position 70 seems to be mostly engaged in TCR interactions. Furthermore, our results suggest that polymorphic residues may select allele-specific peptides and also influence the conformation of promiscuous peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号