首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
CD11c(+) myeloid dendritic cells (MDCs) and CD11c(-) CD123(+) plasmacytoid DCs (PDCs) have been identified as main human DC subsets. MDCs are professional antigen-presenting cells for T cells, and include Langerhans cells, dermal DCs, and interstitial DCs. They have been associated with HIV-1 capture and sexual transmission, whereas PDCs play an important role in the innate immune responses to different types of viruses, including HIV-1. To compare the influence of MDCs and PDCs on HIV-1 infection of T cells, we isolated donor-matched MDCs and PDCs from peripheral blood, activated them by adding different maturation-inducing compounds, and cocultured them with T cells and HIV-1. We found that MDCs enhance HIV-1 infection through capture of the virus and subsequent transmission to T cells, and that differently matured MDC subsets have different HIV-1 transmission efficiencies. These differences were not due to soluble factors, viral capture differences, or the expression of integrins ICAM-1, -2, -3, or LFA-1. In contrast, regardless of their state of maturation, PDCs inhibit HIV-1 replication in T cells through the secretion of IFNalpha and an additional, unidentified small molecule. This study shows that the 2 main types of DCs have opposing roles in HIV-1 infection of T cells.  相似文献   

2.
The developmental origin of dendritic cells (DCs) is controversial. In the mouse CD8alpha(+) and CD8alpha(-) DC subsets are often considered to be of lymphoid and myeloid origin respectively, although evidence on this point is conflicting. Very recently a novel CD11c(+) B220(+) DC subset has been identified that appears to be the murine counterpart to interferon alpha (IFNalpha)-producing human plasmacytoid DCs (PDCs). We show here that CD11c(+) B220(+) mouse PDCs, like human PDCs, are present in the thymus and express T lineage markers such as CD8alpha and CD4. However, the intrathymic development of PDCs can be completely dissociated from immature T lineage cells in mixed chimeras established with bone marrow cells from mice deficient for either Notch-1 or T-cell factor 1, two independent mutations that severely block early T-cell development. Our data indicate that thymic PDCs do not arise from a bipotential T/DC precursor.  相似文献   

3.
The continuous release of blood-stage malaria parasites and their products can activate components of the innate immune system and induce the production of proinflammatory cytokines. Toll-like receptors (TLRs) have emerged as pattern-recognition receptors, residing on/in innate immune cells whose function is recognizing specific conserved components on different microbes. The aim of this study was to determine the expression of TLR2, TLR4 and TLR9 on antigen-presenting cells (APCs) in patients with mild and severe forms of falciparum malaria. Healthy individuals were used as controls. Peripheral blood mononuclear cells (PBMCs) were stained with specific monoclonal antibodies (mAbs) to investigate the percentage and the level of TLR expression by flow cytometry. Patients with severe and mild malaria showed increased surface expression of TLR2 and TLR4 on CD14(+)monocytes and myeloid dendritic cells (MDCs) and decreased intracellular expression of TLR9 on plasmacytoid dendritic cells (PDCs), compared to those of healthy controls. A significant decrease in the percentage of circulating CD14(+)monocytes and MDCs expressing TLR2 was found in both severe and mild malaria patients. These findings suggested that TLRs might play role in innate immune recognition in which the differential expression of TLRs on APCs could be regulated by the P. falciparum parasite.  相似文献   

4.
5.
Patients in first remission of acute lymphoblastic leukaemia (ALL) considered to be at high risk of relapse were offered autologous bone marrow transplantation (ABMT) using purged marrow as a therapeutic alternative to cranial irradiation and maintenance chemotherapy. Twenty-seven bone marrows taken in remission, were purged using monoclonal antibodies (anti CD7 for T lineage and anti CD10 and/or anti CD19 for B lineage leukaemias) plus rabbit complement. Retrospective analysis of 19 purged marrows by immunophenotyping or immunoglobulin gene rearrangement studies demonstrated no evidence of disease. Engraftment was seen in 26 of the patients. No correlation was found between the numbers of infused nucleated cells or colony forming units-granulocyte-macrophage (CFU-GM) and subsequent engraftment kinetics. The actuarial disease-free survival (DFS) is 32% at 7 years (median follow-up 3.4 years). There were two transplant related deaths (actuarial risk 8%); the main cause of treatment failure has been disease recurrence with an overall actuarial risk of 67%; 76% for T-ALL (five of nine), 62% for common ALL (five of 10), two of five pre B and none of three patients with B-ALL. In these 27 high risk patients in vitro purging of remission marrow as part of ABMT appears not to improve patient outcome, although confirmation of this would require a randomized trial.  相似文献   

6.
The C-type lectins DC-SIGN (CD209) and L-SIGN (CD299) recognize defined carbohydrates expressed on pathogens and cells. Those lectins are expressed on dendritic cells (DC) and/or on liver-sinusoidal endothelial cells. Both cell types modulate immune responses. In acute lymphoblastic leukemia (ALL), aberrant glycosylation of blast cells can alter their interaction with the C-type lectins DC-SIGN and L-SIGN, thereby affecting their immunological elimination. We investigated whether recombinant DC-SIGN and L-SIGN bind to blood or bone marrow cells from B- and T-ALL patients and compared that with binding of peripheral blood lymphocytes from healthy donors. It was found that increased binding of ALL cells to DC-SIGN and L-SIGN was observed compared to cells from healthy donors. Furthermore, L-SIGN bound a higher percentage of leukemic and normal cells than DC-SIGN. B-ALL bone marrow cells showed the highest binding to L-SIGN. DC-SIGN bound equally well to B-ALL and T-ALL cells. Within ALL subtypes, DC-SIGN binding was higher with mature T-ALL. Interestingly, our data demonstrate that increased binding of DC-SIGN and L-SIGN to peripheral leukemic cells from B-ALL patients is associated with poor survival. These data demonstrate that high binding of B-ALL peripheral blood cells to DC-SIGN and L-SIGN correlates with poor prognosis. Apparently, when B-ALL cells enter the blood circulation and are able to interact with DC-SIGN and L-SIGN the immune response is shifted toward tolerance. Additional studies are necessary to ascertain the possible role of these results in terms of disease pathogenesis and their potential as target to eradicate leukemic cells.  相似文献   

7.
Dendritic cells (DCs) are responsible for the initiation of immune responses. Two distinct subsets of blood DCs have been characterized thus far. Myeloid DCs (MDCs) and plasmacytoid monocytes (PDCs) were shown to be able to promote polarization of naive T cells. This study shows a dramatic quantitative imbalance in both circulating blood DC subsets in 37 patients with acute myeloid leukemias. Eleven patients (30%) displayed a normal quantitative profile (MDC mean, 0.37% +/- 0.21%; range, 0.01% to 0.78%; PDC mean, 0.21% +/- 0.24%; range, 0.04% to 0.62%), whereas 22 (59%) showed a tremendous expansion of MDCs (9 patients: mean, 16.76% +/- 14.03%; range, 1.36% to 41%), PDCs (4 patients: mean, 7.28% +/- 6.84%; range, 1% to 14%), or both subsets (9 patients: MDC mean, 10.86% +/- 12.36%; range, 1.02% to 37.1%; PDC mean, 4.25% +/- 3.78%; range, 1.14% to 13.04%). Finally, in 4 patients (11%), no DC subsets were detectable. Both MDC and PDC subsets exhibited the original leukemic chromosomal abnormality. Ex vivo, leukemic PDCs, but not leukemic MDCs, had impaired capacity for maturation and decreased allostimulatory activity. Also, leukemic PDCs were altered in their ability to secrete interferon-alpha. These data provide evidence that DC subsets in vivo may be affected by leukemogenesis and may contribute to leukemia escape from immune control.  相似文献   

8.
There is growing recognition that HIV-1 infection leads to an activation of the immune system that includes perturbations of cytokine expression, redistribution of lymphocyte subpopulations, cell dysfunction, and cell death. Here, we explored the relationships between HIV-1 infection and immune activation in chronically HIV-1-infected human lymph nodes. In addition to CD4 T-cell depletion, we found increased effector T-cell frequencies associated with profound up-regulation of an activation marker CD38 in naive, central memory, and effector CD4(+) and CD8(+) T cells. Likewise, Fas death receptor (CD95) was more frequently detectable on T cells from HIV-1 nodes. Dendritic cell (DC) depletion was dramatic, with plasmacytoid DCs (PDCs) 40-fold and myeloid DCs (MDCs) 20-fold less frequent in HIV(+) nodes than in control nodes. Cytokine dysregulation was evident, with IL-2 and IL-15 as much as 2 or 3 logs greater in infected nodes than in control nodes. Thus, activated effector cells are inappropriately attracted and/or retained in lymphoid tissue in chronic HIV-1 infection. High-level cytokine expression in turn activates and retains more cells at these sites, leading to lymphadenopathy and massive bystander activation that characterizes HIV-1 infection. Strategies targeting these activation pathways may lead to new therapies.  相似文献   

9.
Relapse of B-lineage acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (HSCT) commonly results from the failure of a graft-versus-leukemia (GVL) effect to eradicate minimal residual disease. Augmenting the GVL effect by the adoptive transfer of donor-derived B-ALL-specific T-cell clones is a conceptually attractive strategy to decrease relapse rates without exacerbating graft-versus-host disease (GVHD). Toward this end, we investigated whether a genetic engineering approach could render CD8(+) cytotoxic T lymphocytes (CTLs) specific for tumor cells that express the B-cell lineage cell surface molecule CD19. This was accomplished by the genetic modification of CTLs to express a chimeric immunoreceptor composed of a CD19-specific single-chain immunoglobulin extracellular targeting domain fused to a CD3-zeta intracellular signaling domain. CD19-redirected CTL clones display potent CD19-specific lytic activity and chimeric immunoreceptor-regulated cytokine production and proliferation. Because B-ALL cells can evade T-cell/natural killer- cell recognition by down-regulation of cell surface accessory molecules that participate in the formation of a functional immunologic synapse, we compared the CD19-specific effector function of genetically modified CD8(+) CTLs toward CD19(+) cells with disparate levels of intercellular adhesion molecule 1 (ICAM-1), leukocyte function-associated antigen 1 (LFA-1), and LFA-3. We observed that recognition of B-lineage tumor lines by CD19-specific CTLs was not impaired by low levels of ICAM-1, LFA-1, and LFA-3 cell surface expression, a functional attribute that is likely a consequence of our high-affinity CD19-specific chimeric immunoreceptor. Furthermore, the CD19-specific CTLs could lyse primary B-ALL blasts. These preclinical observations form the basis for implementing clinical trials using donor-derived CD19-specific T-cell clones to treat or prevent relapse of B-ALL after allogeneic HSCT.  相似文献   

10.
Chi AW  Chavez A  Xu L  Weber BN  Shestova O  Schaffer A  Wertheim G  Pear WS  Izon D  Bhandoola A 《Blood》2011,118(10):2723-2732
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells. Yet, it was not known whether these progenitors were multipotent at the clonogenic level or there existed heterogeneity within these progenitors with different lineage potential. Here we report that previously defined CMPs possess T-lineage potential, and that this is exclusively found in the Flt3(+)CD150(-) subset of CMPs at the clonal level. In contrast, we did not detect B-lineage potential in CMP subsets. Therefore, these Flt3(+)CD150(-) myeloid progenitors were T/myeloid potent. Yet, Flt3(+)CD150(-) myeloid progenitors are not likely to efficiently traffic to the thymus and contribute to thymopoiesis under normal conditions because of the lack of CCR7 and CCR9 expression. Interestingly, both Flt3(+)CD150(-) and Flt3(-)CD150(-) myeloid progenitors are susceptible to Notch1-mediated T-cell acute lymphoblastic leukemia (T-ALL). Hence, gain-of-function Notch1 mutations occurring in developing myeloid progenitors, in addition to known T-lineage progenitors, could lead to T-ALL oncogenesis.  相似文献   

11.
We performed sensitive polymerase chain reaction-based minimal residual disease (MRD) analyses on bone marrow samples at 9 follow-up time points in 71 children with T-lineage acute lymphoblastic leukemia (T-ALL) and compared the results with the precursor B-lineage ALL (B-ALL) results (n = 210) of our previous study. At the first 5 follow-up time points, the frequency of MRD-positive patients and the MRD levels were higher in T-ALL than in precursor-B-ALL, reflecting the more frequent occurrence of resistant disease in T-ALL. Subsequently, patients were classified according to their MRD level at time point 1 (TP1), taken at the end of induction treatment (5 weeks), and at TP2 just before the start of consolidation treatment (3 months). Patients were considered at low risk if TP1 and TP2 were MRD negative and at high risk if MRD levels at TP1 and TP2 were 10(-3) or higher; remaining patients were considered at intermediate risk. The relative distribution of patients with T-ALL (n = 43) over the MRD-based risk groups differed significantly from that of precursor B-ALL (n = 109). Twenty-three percent of patients with T-ALL and 46% of patients with precursor B-ALL were classified in the low-risk group (P =.01) and had a 5-year relapse-free survival (RFS) rate of 98% or greater. In contrast, 28% of patients with T-ALL were classified in the MRD-based high-risk group compared to only 11% of patients with precursor B-ALL (P =.02), and the RFS rates were 0% and 25%, respectively (P =.03). Not only was the distribution of patients with T-ALL different over the MRD-based risk groups, the prognostic value of MRD levels at TP1 and TP2 was higher in T-ALL (larger RFS gradient), and consistently higher RFS rates were found for MRD-negative T-ALL patients at the first 5 follow-up time points.  相似文献   

12.
Dendritic cells (DCs) are believed to regulate T cell-mediated immunity primarily by directing differentiation of naive T cells. Here, we show that a large fraction of CD4(+) memory cells produce IL-10 within the first hours after interaction with plasmacytoid DCs (PDCs). In contrast, CD11c(+) DCs induce IFN-gamma and little IL-10. IL-10-secreting T cells isolated after 36 hours of culture with PDCs suppressed antigen-induced T-cell proliferation by an IL-10-dependent mechanism, but were distinct from natural and type 1 regulatory T cells. They proliferated strongly and continued to secrete IL-10 during expansion with PDCs, and after restimulation with immature monocyte-derived DCs or CD11c(+) DCs. The IL-10-producing T cells acquired the ability to secrete high levels of IFN-gamma after isolation and subsequent coculture with PDCs or CD11c(+) DCs. Compared to CD11c(+) DCs, PDCs were superior in their ability to selectively expand T cells that produced cytokines on repeated antigenic challenge. The DC-dependent differences in cytokine profiles were observed with viral recall antigen or staphylococcal enterotoxin B and were independent of extracellular type I interferon or IL-10. Our results show that DCs can regulate memory responses and that PDCs rapidly induce regulatory cytokines in effector T cells that can suppress bystander activity.  相似文献   

13.
CEACAM family members are a set of widely expressed proteins involved in several biological functions, including cell adhesion, migration, signal transduction, and the regulation of gene expression. Abnormal overexpression and downregulation of some CEACAMs have been described in tumor cells. Monoclonal antibodies grouped in the CD66 cluster recognize CEACAM members. Ectopic CD66 expression is commonly detected in B-cell lineage acute lymphoblastic leukemia (ALL). To investigate the CEACAM messenger RNA (RNA) expression in leukemic blasts, we performed a quantitative polymerase chain reaction (RQ-PCR) analysis in purified RNA samples from a consecutive series of acute leukemias (135 patients). Most B-cell lineage ALL expressed CD66 (79.5%), whereas no single case of T-cell lineage ALL disclosed CD66 reactivity (0%). All the BCR-ABL+ ALL cases showed CD66 expression. CD66 was positive even in cases without CD10 expression (72.7%) and/or with MLL rearrangements. Despite the sharp contrast between T-ALL and B-ALL in CD66 reactivity, CEACAM patterns were comparable, and only minor differences for CEACAM1 and CEACAM8 were detected. All the leukemic samples showed overexpression of CEACAM6 and 8 when compared with normal granulocytes. These results were confirmed by dilutional experiments. The leukemic pattern paralleled the normal regenerating bone marrow with lower values for CEACAM1. In line with the results for CD66 reactivity, neoplastic cell lines had a uniform low expression of CEACAM family members. It remains to be investigated whether these CEACAM disturbances provide growth advantages to tumoral cells by inhibiting the anoikis process.  相似文献   

14.
Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.  相似文献   

15.
Background: Dysregulation of WNT signaling has been reported in many malignancies. Objective: This study was conducted to investigate the expression pattern of 14 members of the WNT gene family in different immunophenotypic subtypes of ALL. Methods: Semi-quantitative RT-PCR was performed on samples from 71 ALL patients and 36 age-matched healthy individuals. The ALL patients were categorized into B-ALL (76%), T-ALL (22.6%) and mixed lineage (1.4%) and the B-ALL cases were further classified into pro-B, pre-BI, pre-BII and immature/mature-B based on immuno-phenotypic results. Results: Among the WNT genes, WNT-7B (p=0.026), WNT-9A (p=0.020) and WNT-16B (p=0.023) were significantly over-expressed, whereas WNT-2B (p=0.033), WNT-5A (p=0.016), WNT-7A (p<0.0001) and WNT-10A (p<0.0001) were down-regulated in B-ALL. Among the T-ALL subtype, however, significant down-regulation of WNT-2B, WNT-5B, WNT-7A, WNT-10A and WNT-11 was evident. Comparison between B-ALL subtypes showed significant over-expression of WNT-7B, WNT-9A and WNT-5B in certain subtypes. Conclusion: Our results suggest contribution of the WNT genes in leukemogenesis of ALL.  相似文献   

16.
The immunophenotypic features of leukemia blast cells were analyzed in a group of 156 patients with different immunological subtypes of acute leukemia, both lymphoblastic and myeloblastic. Of the 58 patients for whom immunologic studies were performed at relapse, 42 (72%) showed changes in the expression of immunologic markers. The minor shifts in B-ALL were observed most frequently and concerned of the loss of CD34 antigen in 17 cases and the loss of cALLA (CD10) in 7 cases of B-ALL at the first relapse. The acquisition of cell markers was not frequently observed, only in four cases could be seen. HLA-DR molecules remained relatively constant from diagnosis to relapse. In 2 from 3 T-ALL cases the loss of CD1 and CD2 markers, respectively, was noticed at relapse. CD5 and CD7 markers were relatively stable. In AML cases at relapse the acquisition of CD13 marker (in 4 from 7 cases) was often observed. It was interesting that comparing to the B-ALL cases, the loss of CD34 marker in AML cases was stray. In one case the acquisition of this antigen at relapse was actually observed. The major interlineage shift was detected in one case of B-ALL, that was newly diagnosed at relapse as AML M4 and presented different cytogenetic features. This case provides strong connection with the treatment, as more recently epipodophyllotoxins (vumon in our patient) have been linked to the development of secondary AML associated with a shorter latency period. The immunophenotypic changes frequently occur at relapse in all acute leukemia types. The shifts (loss or acquisition) in expression of individual markers at relapse are bound with the first diagnosis and may have a relationship to the treatment and are important for correct assessment of minimal residual disease.  相似文献   

17.
Activating FLT3 mutations are the most common genetic aberrations in acute myeloid leukemia (AML), resulting in the constitutive activation of this receptor tyrosine kinase (RTK), but such mutations are rarely found in acute lymphoblastic leukemia (ALL). Here we describe a unique subset of de novo adult T-cell ALL (T-ALL) cases that coexpress CD117/KIT and cytoplasmic CD3 (CD117/KIT(+) ALL). Activating mutations in the FLT3 RTK gene were found in each of 3 CD117/KIT(+) cases that were analyzed, but not in 52 other adult T-ALL samples from the same series that lacked CD117/KIT expression. Our results indicate the need for clinical trials to test the efficacy of drugs that inhibit the FLT3 RTK in this subset of patients with T-ALL.  相似文献   

18.
Although the antigen expression patterns of childhood acute lymphoblastic leukemia (ALL) are well known, little attention has been given to standardizing the diagnostic and classification criteria. We retrospectively analyzed the flow cytometric data from a large study of antigen expression in 1,774 children with newly diagnosed ALL in JPLSG. T- and B-lineage ALL accounted for 13 and 87% of childhood ALL cases, respectively. Cytoplasmic CD3 and CD7 antigens were positive in all T-ALL cases. More than 80% of T-ALL cases expressed CD2, CD5 and TdT. In B-lineage ALL, the frequencies of early pre-B, pre-B, transitional pre-B and B-ALL were 81, 15.5, 0.6 and 2.9%, respectively. More than 90% of early pre-B ALL cases expressed CD19, CD79a, CD22, CD10 and TdT. CD34 was expressed in three-fourths of early pre-B ALL cases. The frequencies of TdT and CD34 expression were lower in pre-B ALL than in early pre-B ALL. B-ALL showed less frequent expression of CD22, CD10, CD34 and TdT than other B-lineage ALL cases. Expression of CD13 and CD33, aberrant myeloid antigens, was significantly more frequently associated with B-lineage ALL than with T-ALL. Based on this retrospective study of antigen expression in 1,774 de novo childhood ALL cases in JPLSG, we propose standardized clinical guidelines for the immunophenotypic criteria for diagnosis and classification of pediatric ALL.  相似文献   

19.
The family of multidrug resistance-associated proteins (MRPs) belongs to the superfamily of adenosine triphosphate-binding-cassette (ABC) transporters, which have the ability to function as outward pumps for chemotherapeutic drugs and therefore might be involved in drug resistance. In this study the expression of the MRP2, MRP3, MRP4, MRP5, and SMRP genes was measured using TaqMan real-time polymerase chain reaction (PCR) in 103 children with previously untreated acute lymphoblastic leukemia (ALL) (precursor B-cell ALL [B-ALL], n = 71; T-cell ALL [T-ALL], n = 32). All 5 genes were expressed with a great variability. Only MRP3 expression was associated with a significantly worse prognosis (P =.008). The median expression of MRP3 was 10-fold higher in T-ALL than in precursor B-ALL (P <.001) and 4-fold higher in male patients than in female patients (P <.001). The prognostic impact of MRP3 was independent of immunophenotype or sex. Higher levels of MRP3 were found in patients with a poor in vivo response to prednisone, but this could not be confirmed in an independent case-control study (40 patients) for prednisone response. In healthy donors, the median expression of MRP4 was 4-fold higher in bone marrow and 8-fold higher in CD34+ stem cells compared with peripheral blood (P =.002). Our results suggest that MRP3 is involved in drug resistance in childhood ALL. It therefore represents an interesting target to overcome multidrug resistance. High levels of MRP3 could possibly be the reason for the poorer prognosis of male patients or patients who have T-ALL. Similar to other members of the family of ABC transporters, MRP4 seems to be a marker for immature stem cells.  相似文献   

20.
A small population of CD2+CD19+ lymphoid cells have been suggested to be common lymphoid progenitors. CD2+CD19+ biphenotypic ALL account for less than 2% of ALL. We analysed the clinical and laboratory features of a series of 16 patients with CD2+CD19+ ALL.
The incidence of tumoural syndrome was comparable to a previously published series of pre B-ALL but significantly different from that of T-ALL. The mean age of the 11 children of this series was 101 ±46 months, and differed significantly from that of children with pre B-ALL (P <0.01). Complete remission was obtained for all patients except two adults. Only three relapses have been observed.
Regardless of the presence of CD2+, the 16 ALL could be classified as pre B-ALL, according to the nomenclature used by the GEIL. Nine samples could be analysed by Southern blotting. Seven had rearranged IGH genes, usually on both chromosomes. IGK rearrangement was observed in three cases. Only one case had rearranged both TCRG and TCRβ. The patterns observed here and those reported previously follow that of the pre B-ALL which confirms the engagement of most CD2+CD19+ biphenotypic ALL in the B-lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号