首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The contribution of specific follicle populations to dimeric inhibin production and inhibin subunit mRNA expression by the rat ovary has been investigated in two model systems, granulosa cells isolated from 25-day-old diethylstilboestrol (DES)-treated rats and post-natal rat ovaries, dispersed in culture or whole ovaries, using specific two-site immunoassays and 'real time' PCR. Media from FSH-stimulated granulosa cell cultures fractionated by gel filtration and RP-high performance liquid chromatography revealed two predominant peaks of alpha subunit activity which were attributed to alpha subunit and 31 k dimeric inhibin-A. The corresponding inhibin-B levels were low. FSH stimulation did not alter the ratio of inhibin-A:alpha subunit produced by granulosa cells. All three inhibin subunit mRNAs were expressed by granulosa cells, with eight-fold more alpha subunit mRNA relative to either of the beta subunits. Administration of DES to immature rats prior to the isolation of granulosa cells from the ovary led to beta(A) and beta(B) mRNA expression being down-regulated in the absence of any significant change in alpha subunit expression by the granulosa cells. Inhibin-A, -B and -alpha subunit were produced by basal and stimulated cultures of ovarian cells prepared from 4-, 8- and 12-day-old rats, indicating that primary, preantral and antral follicles contribute to total inhibin production. Consistent with these results, follicles within these ovaries expressed all three inhibin subunit mRNAs, with maximal expression observed in the ovaries of 8-day-old rats. The appearance of antral follicles in the ovary at day 12 led to a decline in the mRNA levels of each of the subunits but was most evident for the beta subunits. There was a profound influence of secondary preantral follicles on dimeric inhibin-A production, with FSH stimulation increasing inhibin-A relative to alpha subunit levels in cultures of ovarian cells prepared from 8-day-old rats. Thus, preantral follicles exposed to FSH contribute significantly to beta(A) subunit production by the ovary. In contrast, primary and preantral follicles did not produce inhibin-B in response to FSH stimulation. Transforming growth factor-beta (TGF-beta) enhanced, in a time-dependent manner, the production of the inhibin forms by ovarian cells in culture, although inhibin-B production was not responsive until day 8. The simultaneous treatment of ovarian cell cultures with FSH and TGF-beta elicited the greatest increases in production of all the inhibin forms. In summary, ovaries of 4-, 8- and 12-day-old rats expressed inhibin subunit mRNAs and produced dimeric inhibin-A and -B and free alpha subunit. Preantral follicles (day-8 ovarian cell cultures) were particularly sensitive to stimulation by FSH and TGF-beta and had a substantial capacity for inhibin production. The production of oestrogen by follicles may be instrumental in regulating inhibin production given that beta subunit mRNA expression was down-regulated by DES. The mechanisms by which inhibin-A and inhibin-B are individually regulated are likely to be similar during the post-natal period, when folliculogenesis is being established, and diverge thereafter, when inhibin-A becomes the predominant form in the fully differentiated ovary.  相似文献   

3.
In Sertoli cells from 21-day-old rats, the expression of the mRNA encoding the alpha-subunit of inhibin, and the production of immunoreactive inhibin are stimulated by follicle-stimulating hormone (FSH). In contrast, the amount of beta B-subunit mRNA is not increased after FSH treatment of the cells, and the ratio between bioactive and immunoactive inhibin decreases after stimulation with FSH. These data suggest that the beta B-subunit is the limiting factor in the production of bioactive inhibin. The aim of the present experiments was to investigate the effect of changes in the amount of beta B-subunit mRNA on the production of bioactive and immunoreactive inhibin. During early postnatal testicular development, the relative amounts of the 4.2 kb and 3.5 kb mRNAs encoding the beta B-subunit of inhibin changed markedly. The meaning of this changing ratio between beta B-subunit mRNAs is not clear, since both mRNAs are actively translated, as demonstrated by polysomal analysis. The total amount of beta B-subunit mRNA correlated with the in vitro production of bioactive inhibin as published earlier. Prolonged stimulation of cultured Sertoli cells from 14-day-old rats with 4 beta-phorbol 12-myristate 13-acetate (PMA) caused a decreased expression of the beta B-subunit mRNAs, presumably by down-regulation of protein kinase C. A similar effect was obtained after addition of the calcium ionophore A23187. Concomitantly, a decreased production of bioactive inhibin was observed. Furthermore, Western blotting revealed that secretion of the 32 kDa inhibin alpha beta-dimer was decreased, whereas secretion of the combination of the C-terminal part with the pro-region of the alpha-subunit was increased. It is concluded that the level of the beta B-subunit of inhibin is rate-limiting for the production of bioactive inhibin in cultured Sertoli cells, and that its expression can be influenced by modulation of protein kinase C, and/or intracellular calcium levels.  相似文献   

4.
The distributions of the alpha-, beta A-, and beta B subunits of inhibin/activin polypeptides were studied in the testis of adult (60-day-old) and immature (12-day-old) rats. Immunohistochemical techniques using antisera selective for each subunit were used to localize the polypeptide chains. In situ hybridization using radiolabeled complementary RNA probes enabled localization of the messenger RNAs (mRNAs) encoding these subunits. In 12-day-old rats, immunostaining and mRNA signal for the alpha-subunit was found in Leydig cell clusters. The beta A- and beta B-subunit staining and beta A-subunit message were detectable in isolated interstitial cells, but the clusters appeared to lack these subunits. Positive immunostaining for each subunit was localized in a Sertoli cell-like pattern in seminiferous tubules, as was a positive mRNA signal for the alpha- and beta B-subunit over regions containing these cell types. Treatment with human CG (hCG) and PMSG greatly enhanced the production of the alpha-subunit in the Leydig cell clusters, but not within the tubules, of these young rats. In adult rats, alpha- and beta B-subunit staining, and alpha-subunit mRNA signal, was observed in the interstitial cells. As in the immature animals, all three subunits were localized in a Sertoli cell-like pattern in the tubules, and a positive mRNA signal for the alpha- and beta B-subunits was found over these cells. There was, however, no obvious change in the expression of the subunits in the testis of adult rats after gonadotropin treatment. The present findings suggest that: 1) in the rat testis, both Sertoli and interstitial cells produce inhibin/activin subunits; 2) the alpha- and beta-subunits are produced by different types of interstitial cells in immature rats; and 3) the production of the alpha-subunit in the Leydig cells of immature rats is regulated by LH-like hormones.  相似文献   

5.
6.
This study investigates the effects of spermatogenic germ cells on inhibin alpha-subunit and beta B-subunit expression, and inhibin alpha-subunit and inhibin B production by rat Sertoli cells in vitro. Sertoli cells isolated from 19-day-old rats were cultured for 48 h at 32 degrees C, in the presence or absence of FSH (2.3-2350 mIU/ml), and in the presence of pachytene spermatocytes, round spermatids or cytoplasts of elongated spermatids purified from adult rat testis by elutriation and density gradient separation. Sertoli cell secretion of inhibin alpha-subunit and inhibin B, as measured by immunoassay, was dose-dependently stimulated by FSH (maximal stimulation 13- and 2-fold, respectively). Round spermatids or cytoplasts co-cultured with Sertoli cells had no effect on basal or FSH-induced secretion of inhibin alpha-subunit or inhibin B. When Sertoli cells were co-cultured with pachytene spermatocytes, inhibin alpha-subunit secretion was unaltered, while inhibin B secretion was suppressed in a cell concentration-dependent manner to reach a maximal suppression of 45% compared with Sertoli cells alone (P<0.01). A similar suppression in inhibin B was still observed (64% of Sertoli cells alone) when the pachytene spermatocytes were separated from Sertoli cells by a 0.45 microm pore membrane barrier in bicameral chambers. Pachytene spermatocytes also suppressed FSH-induced inhibin B levels in Sertoli cell co-cultures and this suppression was attributed to a decrease in basal inhibin B production rather than a change in FSH responsiveness. Quantitation of Sertoli cell inhibin alpha- and beta B-subunit mRNA by quantitative (real-time) PCR demonstrated that pachytene spermatocytes did not alter Sertoli cell alpha-subunit mRNA expression, but significantly (P<0.01) suppressed basal and FSH-induced beta B-subunit mRNA expression to a similar degree to that seen with inhibin B protein levels. It is concluded that pachytene spermatocytes in vitro suppress Sertoli cell inhibin B secretion via factor-mediated suppression of inhibin beta B-subunit expression. These findings support the hypothesis that specific germ cell types can influence inhibin B secretion by the testis independent of FSH regulation.  相似文献   

7.
8.
9.
Little is known about the ability of the fetal primate gonads to produce inhibin/activin. We investigated the presence of the alpha-, beta A-, and beta B-subunits of inhibin/activin in fetal human (16-23 weeks gestational age) and rhesus monkey (days 150-157 of gestation; term = 165 days) testes and ovaries by immunocytochemistry. The regulation of alpha-inhibin secretion by gonadotropins was studied in fetal testicular cultures. In the human fetal testis, alpha-subunit immunostaining was found in interstitial and intratubular cells, while beta A- and beta B-subunit immunostaining occurred in clusters of Leydig cells that were clearly demarcated from groups of Leydig cells that were immunonegative. In the late gestational monkey testis, the alpha-subunit was localized in tubular cells, and the beta B-subunit was present in the tubules and interstitium. Testicular cells from midgestation human testes secreted detectable immunoreactive alpha-inhibin in response to FSH and hCG stimulation; alpha-inhibin levels were significantly higher after hCG than FSH. In contrast, levels of alpha-inhibin secreted by rhesus monkey testicular cells were significantly increased by FSH, but not hCG. In the ovary, only weak beta B-subunit immunoreactivity was detected in granulosa cells of a few primary follicles from midgestational human fetal ovaries. In contrast, all three subunits were found in granulosa cells of numerous primary and secondary follicles in the late gestation rhesus monkey ovary. In light of recent evidence that inhibins/activins have actions on gonadal differentiation and growth modulation in vitro, as well as endocrine effects on the fetal pituitary, we propose that these proteins may have intragonadal and endocrine roles in human and subhuman intrauterine gonadal development.  相似文献   

10.
Our research programs required the preparation of hypophysectomized and orchidectomized rhesus monkeys. This afforded us the possibility to characterize and compare levels of the gonadotropin and inhibin subunit mRNAs in pituitaries from intact and castrate monkeys. Eighteen adult male monkeys, four of which had been bilaterally orchidectomized 5-9 months previously, were used in this study. Plasma concentrations of LH and FSH were, respectively, 188.5 +/- 5.3 and 246.8 +/- 25.2 ng/ml in the castrate monkeys and 25.8 +/- 4.5 and 4.1 +/- 1.1 ng/ml (mean +/- SEM) in the intact animals. Total pituitary RNA was hybridized to cDNA probes for cynomolgus monkey gonadotropin subunits (FSH beta, LH beta, and the common alpha-subunit) and for human inhibin subunits (alpha, beta B, and beta A) by Northern blot analysis, and mRNA levels were normalized by subsequent hybridization to cyclophilin. Each of the gonadotropin subunit probes hybridized to a single RNA species with the approximate sizes of 1.6 kilobases (kb; FSH beta), 0.7 kb (LH beta), and 0.8 kb (alpha). Levels of LH beta and alpha-subunit mRNAs in pituitaries from castrate monkeys were about 5- and 2-fold higher, respectively, than those in pituitaries from intact monkeys. FSH beta mRNA, on the other hand, was elevated about 27-fold in castrate monkeys [mean +/- SEM, 3176 +/- 408 cpm bound (n = 4 castrate) and 116 +/- 30 cpm bound (n = 8 intact]). Inhibin beta B-subunit mRNA was present in the monkey pituitary as a doublet of about 5 kb, and it was approximately twice as abundant in intact pituitaries as in castrate pituitaries. Hybridizations involving inhibin beta A cDNA revealed a faint band in the region expected for monkey beta A mRNA (6.5 kb) in three of six RNA samples from intact monkeys and a 0.3- to 0.4-kb mRNA species. mRNA encoding the inhibin alpha-subunit was undetectable by Northern blot hybridization. These results indicate that the postpubertal testis imposes an inhibition on the expression of the genes encoding FSH beta, LH beta, and glycoprotein hormone alpha-subunit and that this suppression of the FSH beta gene in the monkey is much greater than that in the rat. In addition, the monkey pituitary may be a source of activin, which may act locally to modulate FSH gene expression and secretion.  相似文献   

11.
In rats, FSHbeta gene expression and FSH secretion are increased and decreased, respectively, by pituitary activin and follistatin. Because little information is available on the paracrine control of FSH secretion in the primate, follistatin and activin/inhibin beta(B) messenger RNA (mRNA) levels were measured in pituitaries of adult male rhesus monkeys 6 weeks after castration or sham surgery (n = 5/group). Follistatin mRNA was determined by quantitative RT-PCR assay using oligonucleotide primers designed to span exons 3-5 of the human follistatin gene. Activin/inhibin beta(B) mRNA levels were measured by ribonuclease protection. Orchidectomy resulted in a 100-fold increase in plasma FSH concentrations and a 60-fold rise in those of LH. In castrated monkeys, levels of mRNA encoding FSHbeta, LHbeta, alpha- subunit, and GnRH receptor (GnRH-R) were increased 21-, 2.1-, 1.7-, and 1.7-fold, respectively (P < 0.01). Levels of pituitary follistatin and activin/inhibin beta(B) mRNAs, however, were similar in castrated and intact animals. These data suggest that the paracrine control of FSH secretion in the male differs substantially in primates and rodents. Specifically, the relatively greater postcastration rise in FSHbeta gene expression and FSH secretion in the adult male monkey may result because in this species pituitary follistatin gene expression does not increase after orchidectomy, as it does in the rat.  相似文献   

12.
Effects of recombinant human inhibin (rh inhibin) and testosterone on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion and mRNA levels of gonadotropin subunits were investigated in superfused male rat pituitary cell cultures. During superfusion, the cells were stimulated with gonadotropin-releasing hormone (GnRH) pulses (10 nM, 6 min/h) and exposed to rh inhibin (2 ng/ml) and/or testosterone (10 nM) for up to 20 h. The concentrations of FSH and LH were measured in effluent media by radioimmunoassay (RIA), and subunit mRNAs were determined by Northern blot hybridizations using rat FSH beta, LH beta and alpha genomic and cDNA probes. Rh inhibin suppressed the secretion of FSH (30-40% of control) and the secretion of LH to 50-60% of control, but inhibited only FSH beta mRNA (to non-detectable levels). Testosterone alone suppressed the release of LH to 50% of control, whereas FSH release was increased to 130-160% (P less than 0.05) of control. This increase was due to higher interpulse values without significant changes in the pulse amplitude. Also FSH beta mRNA level was increased (1.5-fold, P less than 0.05) but only after 17-20 h of treatment. On the other hand, testosterone had no effect on LH beta and alpha subunit mRNA levels. Testosterone in combination with rh inhibin showed an inhibitory effect on LH beta mRNA; however, the pattern of LH release was not significantly different from that observed with rh inhibin or testosterone alone. Combined effects of testosterone and rh inhibin on FSH secretion and FSH beta mRNA were similar to those observed with rh inhibin alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
During the human menstrual cycle the circulating levels of inhibin B, a dimer of inhibin alpha- and beta(B)-subunits, fluctuate in a fashion distinct from that of inhibin A, the alpha-beta(A)-subunit dimer. This suggests that human inhibin subunits are each regulated in a distinct manner in human ovarian granulosa cells by endocrine and local factors. We have previously shown using cultures of human granulosa-luteal (hGL) cells that gonadotropins stimulate the steady state mRNA levels of inhibin alpha- and beta(A)-subunits, but not those of the beta(B)-subunit, which, on the other hand, are up-regulated by, for instance, activin and TGF beta. We recently identified the TGF beta gene family member bone morphogenetic protein-3 (BMP-3) as a granulosa cell-derived growth factor, but whether BMP-3 or other structurally related BMPs regulate human granulosa cell inhibin production is not known. We show here that hGL cells express mRNAs for distinct serine/threonine kinase receptors (BMP-RIA and BMP-RII) and Smad signaling proteins (Smad1, Smad4, and Smad5) involved in the mediation of cellular effects of BMPs. Subsequently, we determined in hGL cell cultures the effects of distinct members of the BMP family previously found to be expressed in mammalian ovaries. Recombinant BMP-2 induces potently in a time- and concentration-dependent manner the expression of the inhibin beta(B)-subunit mRNAs in hGL cells without affecting the levels of alpha- or beta(A)-subunit mRNAs. BMP-6 has a similar, but weaker, effect than BMP-2, whereas BMP-3 and its close homolog, BMP-3b (also known as growth differentiation factor-10) had no effect on inhibin subunit mRNA expression. hCG treatment of hGL cells was previously shown to abolish the stimulatory effect of activin on beta(B)-subunit mRNA levels, and here hCG is also shown to suppress the effect of BMP-2. Furthermore, BMP-2 stimulates hGL cell secreted dimeric inhibin B levels in a concentration-dependent manner. Depending on the experiment, maximal increases in inhibin B levels of 6- to 28-fold above basal levels were detected during a 72-h culture period. We conclude that activation of the BMP-signaling pathway in hGL cells stimulates inhibin beta(B)-subunit mRNA levels and leads at the protein level to a dramatic stimulation of secreted inhibin B dimers. Our results are consistent with the suggestion that in addition to the distinct activin- and TGF beta-activated signaling pathways, the BMP-activated pathway is likely to be implicated in the complex regulation of inhibins in the human ovary.  相似文献   

14.
The immunohistochemical localization of the alpha-, beta A-, and beta B-subunits of inhibin was examined in human follicles during follicular growth. Immunoreactive staining with antisera against the alpha-, beta B-subunits was observed in follicular granulosa cells, whereas no staining for each inhibin subunit was observed in thecal or interstitial cells. In the preantral and small antral follicles, the granulosa cells exhibited positive immunoreactive staining with antisera against beta A- and beta B-subunits and negative immunostaining with antiserum against alpha-subunit. In medium-sized healthy antral follicles obtained during the midfollicular phase, positive immunostaining with antisera against alpha-, beta B-subunits was detected in the granulosa cells. In contrast, immunostaining for alpha-, beta A-, and beta B-subunits was not detected in the granulosa cells of similarly sized atretic follicles. The granulosa cells of preovulatory follicles revealed enhanced positive staining for the three inhibin subunits. The present findings suggest that immunoreactive inhibin subunits are present in the follicular granulosa cells during the menstrual cycle, and that the localization and intensity of immunostaining for each inhibin subunit might change during follicular development and maturation.  相似文献   

15.
This study investigates the concentrations of inhibin in the bovine fetal ovary and testis throughout gestation (days 40 to 270/term) as determined by inhibin in vitro bioassay and RIA techniques. In addition, the expression of the inhibin alpha- and beta-subunits (beta A and beta B) in these tissues was evaluated by Northern blot analysis and in situ hybridization. Testicular concentrations of inhibin bioactivity and immunoactivity increased 2.5-fold (103 +/- 24.5 to 256 +/- 11.7 U/g wet weight; mean +/- SE) and 10.4-fold (139 +/- 56 to 1430 +/- 172) respectively, between 90 days and term. The corresponding ratio of inhibin biological: immunological activities (B/I ratio) decreased 8.3-fold (1.5 +/- 0.7 to 0.18 +/- 0.01). The concentration of ovarian bioactive inhibin increased significantly (P less than 0.05) 4.6-fold between 90 days and term (73.6 +/- 14.7 to 340 +/- 11.1 U/g wet weight), whereas the immunoactive inhibin concentration increased 10.3-fold between 120 and 210 days of gestation (7.2 +/- 1.9 to 40.0 +/- 8.7). The corresponding B/I ratio remained unchanged throughout gestation (8.3 +/- 2.4 to 12.5 +/- 4.0). Although the levels of alpha subunit mRNA in the testis and ovary increased over gestation, the levels of testicular beta A subunit mRNA remained low and unchanged. Ovarian levels of beta A subunit mRNA were also low but variable. Furthermore, no beta B subunit mRNA could be detected in gonadal tissue throughout gestation. alpha-Subunit mRNA was detected by in situ hybridization in the sex cords of the fetal testis and the granulosa cells of the fetal ovary while beta A subunit mRNA was detected only in the granulosa cells of the fetal ovary. It is concluded that inhibin is produced by the fetal testis and ovary and these tissue levels increase throughout gestation. The location of alpha- and beta A-subunit mRNA to the sex cords of the testis and granulosa cells of the ovary indicate that these cells are the primary source of inhibin production. The rapid fall in inhibin B/I ratio in testicular extracts over gestation is attributed to the production of an inhibin-related protein with limited or negligible biological activity.  相似文献   

16.
To elucidate the endocrine and paracrine regulation of testicular inhibin production, the effects of follicle-stimulating hormone (FSH), (Bu)2cAMP, germ cells (either crude or enriched preparations) and germ cell-conditioned media on inhibin production (immuno- and bio-activities) and the levels of alpha- and beta B-subunit mRNAs were assessed in cultured Sertoli cells isolated from 20-day-old rats. FSH and (Bu)2-cAMP stimulated both secreted and intracellular inhibin levels in a dose-dependent manner. Using cDNA probes corresponding to the alpha-subunit and the beta B-subunit of rat inhibin it was also shown that both FSH and (Bu)2cAMP markedly increased the level of alpha-subunit mRNA but had no effect on the beta B-subunit mRNA. Addition of a crude mixture of germ cells to Sertoli cell monolayers was found to enhance inhibin secretion. Of the different germ cell fractions tested in co-culture, early spermatids reproducibly stimulated both basal and (Bu)2cAMP-induced production of inhibin whereas pachytene spermatocytes only increased the latter; cytoplasts from elongated spermatids (CES) had no effect. Co-culture of Sertoli cells with liver epithelial cells (LEC) significantly enhanced (Bu)2cAMP-induced inhibin levels. Media conditioned by early spermatids consistently and dramatically stimulated the secretion of both bioactive and immunoactive inhibin by Sertoli cells while spent media from pachytene spermatocytes displayed less activity. CES-conditioned media had only minor stimulatory effects, which may have resulted from the contamination of this fraction by spermatids. Media conditioned by LEC had no effect on inhibin production, confirming that the activity of this cell line is not mediated via a diffusible factor. Early spermatids were found to increase levels of the alpha-subunit mRNA. The current study provides evidence for the involvement of germ cells, in particular of early spermatids, in the local testicular regulation of inhibin gene expression and production in the rat. This may be of crucial importance for the ontogeny of this parameter of Sertoli cell function, and has important implications with regard to the postulated endocrine and paracrine roles of inhibin.  相似文献   

17.
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGFbeta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnRH-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin betaA and betaB subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (<2 amol/reaction). Significant changes in expression (P<0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r = 0.77; P<0.001) and beta-glycan (r = 0.45; P<0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P<0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r = 0.33; P = 0.06) and ActRIIA (r = 0.34; P = 0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P<0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.  相似文献   

18.
19.
Follicle-stimulating hormone (FSH) stimulates ovarian follicle development and the production of protein hormones including inhibin A and inhibin B. The inhibins are dimeric proteins (alpha-beta(A) or alpha-beta(B)) secreted by growing follicles that suppress FSH in a classical endocrine negative feedback loop. Siberian hamsters, Phodopus sungorus, exhibit seasonal variation in FSH levels. Given the role of inhibin in FSH regulation, we hypothesized that ovarian inhibin expression differs between animals reared in long (16 h light:8 h darkness) and short (6 h light:18 h darkness) photoperiods. To examine inhibin expression in animals housed under long or short photoperiods, hamster inhibin alpha-, beta(A)-, and beta(B)-subunits were cloned and used to detect and localize inhibin subunit mRNA in developing follicles. Ovarian inhibin alpha-subunit mRNA levels were significantly higher in long day-exposed (LD) than in short day-exposed (SD) hamsters. In addition, dimeric inhibin, as well as inhibin alpha-, beta(A)-, and beta(B)-subunit protein levels were higher in the LD than in the SD hamster ovaries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号