首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.  相似文献   

3.
4.
5.
6.
Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in osteoblasts. By generating transgenic mice harboring various fragments of the promoter, we identified a 117-bp segment (-1656 to -1540) that is a minimal sequence able to confer high-level expression of a lacZ reporter gene selectively in osteoblasts when cloned upstream of the proximal 220-bp pro-alpha 1(I) promoter. This 220-bp promoter by itself was inactive in transgenic mice and unable to direct osteoblast-specific expression. The 117-bp enhancer segment contained two sequences that appeared to have different functions. The A sequence (-1656 to -1628) was required to obtain expression of the lacZ gene in osteoblasts, whereas the C sequence (-1575 to -1540) was essential to obtain consistent and high-level expression of the lacZ gene in osteoblasts. Gel shift assays showed that the A sequence bound a nuclear protein present only in osteoblastic cells. A mutation in the A segment that abolished the binding of this osteoblast-specific protein also abolished lacZ expression in osteoblasts of transgenic mice.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Phex (a phosphate-regulating gene with homologies to endopeptidases on the X chromosome) is expressed predominantly in bone in which it has been implicated in the mineralization process. Multiple factors and hormones, including PTHrP, regulate formation, development, and/or homeostasis of bone. The purpose of the present study was to determine whether PTHrP(1-34) regulates Phex expression and identify the signaling pathway used. Phex mRNA and protein levels were analyzed by RT-PCR and immunoblotting, respectively. In UMR-106 cells, PTHrP(1-34) caused a time- and concentration-dependent decrease in Phex expression. Forskolin, an adenylate cyclase activator, had the same effect. Dibutiryl cAMP also decreased Phex expression, and its effect was blocked by H89, a protein kinase A (PKA) inhibitor. In contrast, 12-O-tetradecanoyl phorbol-13-acetate, a protein kinase C (PKC) activator, increased Phex expression in a time- and dose-dependent manner. This effect was reversed by bisindolylmaleimide Iota, a PKC inhibitor. Bovine PTH(3-34), which activates PKC but not PKA, had no effect. On the contrary, human PTH(1-31), which activates PKA but not PKC, decreased Phex expression. H89 but not bisindolylmaleimide Iota blocked the effect of PTHrP(1-34). PTHrP(1-34) also decreased Phex expression in cultures of fetal rat calvaria cells at d 7 of culture but not at later stages. These data demonstrate that PTHrP(1-34), through PKA, down-regulates Phex expression in osteoblasts.  相似文献   

18.
PTH has anabolic and catabolic effects in bone through activation of the PTH-1 (PTH/PTHrP) receptor and the cAMP/protein kinase A pathway. The effects of agents that regulate cAMP in nontransformed osteoblasts in relation to cell differentiation have not been described. The purpose of this study was to determine the effects of PTH fragments with differing cAMP-stimulating activity, and nonPTH cAMP regulators on PTH-1 receptor expression and activity, and osteoblast differentiation in vitro using MC3T3-E1 and primary rat calvarial cells. PTH (1-34), but not PTH (53-84), (7-34), or PTHrP (107-139) treatment (24 h) resulted in down-regulation of steady-state messenger RNA for the PTH-1 receptor. Forskolin (a stimulator of cAMP accumulation) also down regulated the PTH-1 receptor, whereas 9-(tetrahydro-2-furyl) adenine (THFA) (an inhibitor of adenylyl cyclase) had no effect. Similarly, PTH (1-34) treatment for 48 h abolished PTHrP binding to cell surface receptors; however, neither the PTH analogs nor the cAMP regulating agents altered PTH binding or numbers of binding sites on osteoblastic cells. Basal levels of cAMP were reduced in cultured cells treated for 6 days with PTH (7-34) or THFA compared with controls. In contrast, PTH-stimulated cAMP levels were significantly increased in cultures treated with PTH (7-34) and THFA for 6 days during osteoblast differentiation and were decreased in cultures treated with PTH (1-34) and forskolin compared with controls. To evaluate effects of the cAMP pathway on osteoblast differentiation, cultures were treated continuously with PTH analogs and cAMP regulators during an 18-day differentiation regime, total RNA was isolated at multiple time points, and Northern blot analysis for osteocalcin (OCN) was performed. THFA and PTH (7-34)-treated cultures had increased OCN expression; whereas, PTH (1-34) and forskolin reduced OCN expression. Interestingly, PTH (7-34) and THFA-treated cultures had increased mineralized nodule formation, in contrast to PTH (1-34) and forskolin treatment, which reduced nodule formation. Similarly, calcium accumulation in cultures was significantly increased in the PTH (7-34) and THFA-treated cultures and reduced in the PTH (1-34) and forskolin-treated cultures. These data demonstrate that agents that increase cAMP down regulate PTH-1 receptor messenger RNA and inhibit osteoblast differentiation in vitro. Agents that reduce or block adenylyl cyclase or cAMP activity do not alter PTH-1 receptor expression or binding, but have striking effects on promoting osteoblast differentiation. We conclude that many effects of PTH on osteoblasts may be mimicked or antagonized by agents that alter cAMP activity and bypass the PTH-1 receptor.  相似文献   

19.
20.
PTH induces c-fos expression rapidly and transiently in osteoblastic cells and requires the activity of the cAMP response element-binding protein (CREB). Here we provide evidence that protein kinase A (PKA) is the enzyme responsible for phosphorylating CREB at serine 133 (S133) and that this event is required for PTH-induced c-fos expression. PTH increases the level of phosphorylation of CREB at S133 in a time- and dose-dependent manner, correlating with the time and level of activation of PKA in response to PTH. PTH-(1-34) and -(1-31), each known to activate the cAMP pathway, induced the phosphorylation of CREB and increased the levels of c-fos messenger RNA, whereas PTH-(3-34), -(13-34), and -(28-48) could not. Specific inhibitors of calcium/calmodulin-dependent protein kinases and protein kinase C could not inhibit CREB phosphorylation or c-fos expression in response to PTH; however, H-89, a specific inhibitor of PKA, could do so in a dose-dependent manner. In addition, PTH-induced c-fos promoter activity was completely inhibited in a dose-dependent fashion by transfection of the heat-stable inhibitor of PKA. Taken together, these data provide strong evidence that PKA is the enzyme responsible for phosphorylating CREB at S133 in response to PTH and that PKA activity is required for PTH-induced c-fos expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号