首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high‐density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long‐lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well‐controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.  相似文献   

2.
Transcranial magnetic stimulation (TMS) may offer a reliable means to characterize significant pathophysiologic and neurochemical aspects of restless legs syndrome (RLS). Namely, TMS has revealed specific patterns of changes in cortical excitability and plasticity, in particular dysfunctional inhibitory mechanisms and sensorimotor integration, which are thought to be part of the pathophysiological mechanisms of RLS rather than reflect a non-specific consequence of sleep architecture alteration.If delivered repetitively, TMS is able to transiently modulate the neural activity of the stimulated and connected areas. Some studies have begun to therapeutically use repetitive TMS (rTMS) to improve sensory and motor disturbances in RLS. High-frequency rTMS applied over the primary motor cortex or the supplementary motor cortex, as well as low-frequency rTMS over the primary somatosensory cortex, seem to have transient beneficial effects. However, further studies with larger patient samples, repeated sessions, an optimized rTMS setup, and clinical follow-up are needed in order to corroborate preliminary results.Thus, we performed a systematic search of all the studies that have used TMS and rTMS techniques in patients with RLS.  相似文献   

3.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

4.
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS‐EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS‐EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR ‘transcranial magnetic stimulation’) AND (EEG OR electroencephalog*) NOT (rTMS OR ‘repetitive transcranial magnetic stimulation’ OR TBS OR ‘theta burst stimulation’) AND (healthy). The study presents an overview of TMS‐EEG methodology and neurophysiological indices and reviews previous findings from TMS‐EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS‐EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS‐EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.  相似文献   

5.
Recent years have seen the introduction of non‐invasive brain stimulation techniques (e.g. transcranial direct current stimulation and transcranial magnetic stimulation) utilized to target neural‐based pathologies, for therapeutic gain. The direct manipulation of cortical brain activity by repetitive transcranial magnetic stimulation (rTMS) could potentially serve as an efficacious complimentary rehabilitatory treatment for speech, language and swallowing disorders of a neurological origin. The high prevalence of positive reports on communication and swallowing outcomes support these premises. Nonetheless, experimental evidence to date in some areas is considered rudimentary and is deficient in providing placebo‐controlled substantiation of longitudinal neuroplastic change subsequent to stimulation. The most affirmative therapeutic responses have arisen from small placebo‐controlled trials using low‐frequency rTMS for patients with non‐fluent aphasia and high‐frequency rTMS applied to individuals with Parkinson's disease to improve motor speech performance and outcomes. Preliminary studies applying rTMS to ameliorate dysphagic symptoms post‐stroke provide positive swallowing outcomes for patients. Further research into the optimization of rTMS protocols, including dosage, stimulation targets for maximal efficacy and placebo techniques, is critically needed to provide a fundamental basis for clinical interventions using this technique. rTMS represents a highly promising and clinically relevant technique, warranting the future development of clinical trials across a spectrum of communication and swallowing pathologies, to substantiate and expand on the methods outlined in published reports.  相似文献   

6.
Repetitive transcranial magnetic stimulation (rTMS) procedures are being widely applied in therapeutic and investigative studies. Numerous studies have investigated the effects of rTMS on cortical excitability and inhibition, yielding somewhat contradictory results. The purpose of this study was to comprehensively review this literature to guide the selection of methodology in therapeutic studies. We conducted a comprehensive review of all identified studies that investigated effects of low and/or high frequency rTMS on motor cortical excitability or inhibition. Low frequency rTMS appears to produce a transient reduction in cortical excitability as assessed by motor evoked potential (MEP) size and produces no substantial effect on cortical inhibition. High frequency rTMS appears to produce a persistent increase in MEP size and a reduction in cortical inhibition measured with paired pulse methods although few studies have investigated frequencies greater than 5Hz. A number of novel stimulation paradigms have significant potential for altering cortical excitability but require further investigation. Although commonly applied forms of rTMS have effects on cortical excitability, more substantial effects may be obtained through the use of novel stimulation paradigms or innovative approaches to the stimulation of areas connected to a potential target site. Further research is required, however, before these paradigms can be more widely adopted.  相似文献   

7.
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex is a relatively non-invasive technique with putative therapeutic effects in major depression. However, the exact neurophysiological basis of these effects needs further clarification. Therefore, we studied the impact of ten daily sessions of left, dorsolateral prefrontal rTMS on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 30 patients. As compared to the non-responders, responders (33%) showed changes in parameters pointing towards a reduced cortical excitability. These results suggest that repetitive transcranial magnetic stimulation of the dorsolateral, prefrontal cortex may have inhibitory effects on motor cortical neuronal excitability in patients with major depressive disorder. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of antidepressant stimulation techniques like rTMS.  相似文献   

8.
Major depressive disorder (MDD) is a common debilitating condition where only one third of patients achieve remission after the first antidepressant treatment. Inadequate efficacy and adverse effects of current treatment strategies call for more effective and tolerable treatment options. Transcranial magnetic stimulation (TMS) is a noninvasive approach to manipulate brain activity and alter cortical excitability. There has been more than 15 years of research on the use of repetitive form of TMS (rTMS) for the treatment of patients with depression, which has shown it to be an effective antidepressant treatment. Even though rTMS treatment has shown efficacy in treating depression, there is a high degree of interindividual variability in response. A newer form of rTMS protocol, known as theta‐burst stimulation (TBS), has been shown to produce similar if not greater effects on brain activity than standard rTMS. TBS protocols have a major advantage over standard rTMS approaches in their reduced administration duration. Conventional rTMS procedures last between 20 and 45 min, as compared to TBS paradigms that require 1 to 3 min of stimulation. Recently, a small number of studies have suggested that TBS has similar or better efficacy in treating depression compared to rTMS. Optimization, identification of response predictors, and clarification of neurobiological mechanisms of TBS is required if it is to be further developed as a less time intensive, safe, and effective treatment for MDD.  相似文献   

9.
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short‐ and long‐term forms of synaptic plasticity, resembling short‐term potentiation (STP) and long‐term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5‐Hz rTMS interferes with LTP/LTD‐like plasticity induced by intermittent and continuous theta‐burst stimulation (iTBS and cTBS). The effects induced by 5‐Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5‐Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5‐Hz rTMS. Interactions between 5‐Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5‐Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5‐Hz rTMS and TBS, and delivering one and ten 5‐Hz rTMS trains. We also investigated whether 5‐Hz rTMS induces changes in intracortical excitability tested with paired‐pulse transcranial magnetic stimulation. When given alone, 5‐Hz rTMS induced short‐lasting and iTBS/cTBS induced long‐lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5‐Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS‐induced after‐effects disappeared. The 5‐Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5‐Hz rTMS abolishes iTBS/cTBS‐induced LTP/LTD‐like plasticity through non‐homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short‐term and long‐term rTMS‐induced plasticity in human M1.  相似文献   

10.
Repetitive transcranial magnetic stimulation (rTMS) is an effective tool for inducing functional plastic changes in the brain. rTMS can also potentiate the effects of other interventions such as tactile coactivation, a form of repetitive stimulation, when both are applied simultaneously. In this study, we investigated the interaction of these techniques in affecting tactile acuity and cortical excitability, measured with somatosensory evoked potentials after paired median nerve stimulation. We first applied a session of 5‐Hz rTMS, followed by a session of tactile repetitive stimulation, consisting of intermittent high‐frequency tactile stimulation (iHFS) to a group of 15 healthy volunteers (“rTMS + iHFS” group). In a second group (“rTMS w/o iHFS”), rTMS was applied without iHFS, with a third assessment performed after a similar wait period. In the rTMS w/o iHFS group, the 5‐Hz rTMS induced an increase in cortical excitability that continued to build for at least 25 min after stimulation, with the effect on excitability after the wait period being inversely correlated to the baseline state. In the rTMS + iHFS group, the second intervention prevented the continued increase in excitability after rTMS. In contrast to the effect on cortical excitability, rTMS produced an improvement in tactile acuity that remained stable until the last assessment, independent of the presence or absence of iHFS. Our results show that these methods can interact homeostatically when used consecutively, and suggest that different measures of cortical plasticity are differentially susceptible to homeostatic interactions.  相似文献   

11.
The past decade has seen significant developments in the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess cortical network properties such as excitability and connectivity in humans. New hardware solutions, improved EEG amplifier technology, and advanced data processing techniques have allowed substantial reduction of the TMS‐induced artifact, which had previously rendered concurrent TMS–EEG impossible. Various physiological artifacts resulting from TMS have also been identified, and methods are being developed to either minimize or remove these sources of artifact. With these developments, TMS–EEG has unlocked regions of the cortex to researchers that were previously inaccessible to TMS. By recording the TMS‐evoked response directly from the cortex, TMS–EEG provides information on the excitability, effective connectivity, and oscillatory tuning of a given cortical area, removing the need to infer such measurements from indirect measures. In the following review, we investigate the different online and offline methods for reducing artifacts in TMS–EEG recordings and the physiological information contained within the TMS‐evoked cortical response. We then address the use of TMS–EEG to assess different cortical mechanisms such as cortical inhibition and neural plasticity, before briefly reviewing studies that have utilized TMS–EEG to explore cortical network properties at rest and during different functional brain states. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has received increasing attention for the treatment of tinnitus, but its therapeutic mechanisms are unclear. We performed low-frequency rTMS treatment for a patient with chronic tinnitus and examined changes of cortical excitability and cerebral blood flow using paired-pulse TMS and single-photon emission computed tomography. After the rTMS treatment, tinnitus loudness was decreased, cortical excitability was reduced, and blood flow in the thalamus was increased. Our results suggest that low-frequency rTMS treatment reduces tinnitus loudness by an inhibitory effect on the cortical excitability and a remote activation effect on the thalamus through the corticothalamic networks.  相似文献   

13.
Over the past decade, efforts have been made to assess the positive therapeutic effects of transcranial magnetic stimulation (TMS) by altering the excitability of the brain. We conducted a double-blind, placebo-controlled study to assess the efficacy of right prefrontal slow repetitive TMS in patients with treatment refractory major depression. This pilot study supports the therapeutic potential of rTMS in the low-frequency range of 1 Hz on right prefrontal cortex for the treatment of refractory major depression. Additional studies will be necessary to assess the efficacy of rTMS with different indices (frequency, intensity, and stimulation site) for major depression and other psychiatric diseases.  相似文献   

14.
Intermittent theta burst stimulation (iTBS) is a novel, non‐invasive form of brain stimulation capable of facilitating excitability of the human primary motor cortex with therapeutic potential in the treatment of neurological conditions, such as multiple sclerosis. The objectives of this study were to evaluate the effects of iTBS on cortical properties in the human pharyngeal motor system. Transcranial magnetic stimulation (TMS)‐evoked pharyngeal motor responses were recorded via a swallowed intra‐luminal catheter and used to assess motor cortical pathways to the pharynx in both hemispheres before and for up to 90 min after iTBS in 15 healthy adults (nine male/six female, 22–59 years old). Active/sham iTBS comprised 600 intermittent repetitive TMS pulses, delivered in a double‐blind pseudo‐randomised order over each hemisphere on separate days at least 1 week apart. Abductor pollicis brevis (APB) recordings were used as control. Hemispheric interventional data were compared with sham using repeated‐measures anova . iTBS was delivered at an average intensity of 43 ± 1% of stimulator output. Compared with sham, iTBS to the hemisphere with stronger pharyngeal projections induced increased responses only in the contralateral weaker projection 60–90 min post‐iTBS (maximum 54 ± 19%, P 0.007), with no change in stronger hemisphere responses. By contrast, iTBS to weaker projections had no significant effects (P = 0.39) on either hemisphere. APB responses similarly did not change significantly (P = 0.78) across all study arms. We conclude that iTBS can induce remote changes in corticobulbar excitability. While further studies will clarify the extent of these changes, iTBS holds promise as a potential treatment for dysphagia after unilateral brain damage.  相似文献   

15.
Background and purpose: The purpose of this study was to compare the long‐term effect of five daily sessions of 1 vs. 3 Hz repetitive transcranial magnetic stimulation (rTMS) on motor recovery in acute stroke. Methods: A total of 36 patients with acute ischaemic stroke participated in the study. The patients were randomly assigned into one of three groups; the first and second groups received real rTMS; 1 and 3 Hz and third group received sham stimulation, daily for 5 days. Motor disability was assessed before and after the last session, and then after first, second and third month. Cortical excitability was assessed before and after the second and fifth session. The outcome measure was clinical disability at 3 months post‐rTMS. Results: No significant differences were found in basal rating scales between the three groups. At the 3‐month time point, both of the real rTMS groups had improved significantly more in different rating scales than the sham group; in addition, the 1 Hz group performed better than the 3 Hz group. Measures of cortical excitability immediately after the last session showed that the 1 Hz group had reduced excitability of the non‐stroke hemisphere and increased excitability of the stroke hemisphere, whereas the 3 Hz group only showed increased excitability of the stroke hemisphere. Conclusion: These results confirm that five daily sessions of rTMS over motor cortex using either 1 Hz over the unaffected hemisphere or 3 Hz over the affected hemisphere can enhance recovery. At 3 months, the improvement was more pronounced in 1 Hz group.  相似文献   

16.
BACKGROUND: Abnormalities in brain plasticity, possibly related to abnormal cortical inhibition (CI), have been proposed to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation (TMS) provides a dynamic method for non-invasive study of plastic processes in the human brain. We aimed to determine whether patients with schizophrenia would exhibit an abnormal response to repetitive TMS (rTMS) applied to the motor cortex and whether this would relate to deficient cortical inhibition. METHODS: Measures of motor cortical excitability and cortical inhibition were made before and after a single 15-min train of 1-Hz rTMS applied to the motor cortex in medicated and unmedicated patients with schizophrenia as well as healthy controls. RESULTS: All three groups had equal motor cortical excitability prior to rTMS, although both patient groups had a shorter cortical silent period (CSP) and less cortical inhibition than the control group. Cortical excitability, as assessed by motor threshold levels, did not reduce in both medicated and unmedicated patients in response to rTMS as was seen in the control group. Significant differences were also seen between the groups in response to the rTMS for motor-evoked potential (MEP) size and cortical silent period duration. CONCLUSIONS: Both medicated and medication free patients with schizophrenia demonstrated reduced brain responses to rTMS and deficits in cortical inhibition.  相似文献   

17.
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.  相似文献   

18.
In this review, we aimed at identifying the studies that have employed repetitive transcranial magnetic stimulation (rTMS) in patients with sleep disorders. Low-frequency (LF) rTMS stimulating the right dorsolateral prefrontal cortex (DLPFC) or the posterior parietal cortex (PPC) was found to be effective to reduce cortical hyperexcitability and improve the sleep quality in subjects with chronic primary insomnia (PI). Both high-frequency (HF) and LF rTMS applied over the primary motor cortex or the supplementary motor cortex seem to have transient beneficial effects in patients with restless legs syndrome (RLS). Stimulation of upper airway muscles during sleep by isolated TMS and by rTMS twitch can improve airflow dynamics in obstructive sleep apnea syndrome (OSAS) patients without arousal. A single case report study indicates that HF rTMS over the left DLPFC might represent an alternative choice for symptom control in narcoleptic patients with cataplexy, and a pilot study also raises the possibility of therapeutic benefits from rTMS in patients with sleep bruxism. rTMS may also exert intrinsic effects on hypersomnia in depressed adolescents.In conclusion, rTMS may contribute to the development of new non-pharmacological therapeutic options for several sleep disorders. rTMS might be useful as therapeutical tool in particular in patients with PI, RLS, OSAS and narcolepsy, while its effect in other sleep disorders (ie, parasomnias) has not yet been explored. rTMS integrated with clinical, sleep-related, and neuroimaging data may represent an effective tool in modulating cortical excitability and inducing short-term synaptic plasticity. Further studies with larger patient samples, repeated sessions, an optimized rTMS setup, and clinical follow-up warranted to verify the initial findings, and to expand clinical and research interest towards neuromodulation in the different sleep disorders.  相似文献   

19.
Background. Initially developed to excite peripheral nerves, magnetic stimulation was quickly recognized as a valuable tool to noninvasively activate the cerebral cortex. The subsequent discovery that repetitive transcranial magnetic stimulation (rTMS) could have long‐lasting effects on cortical excitability spawned a broad interest in the use of this technique as a new therapeutic method in a variety of neuropsychiatric disorders. Although the current outcomes from initial trials include some conflicting results, initial evidence supports that rTMS might have a therapeutic value in different neurologic conditions. Methods. We reviewed the results of clinical trials of rTMS on four different disorders: stroke, Parkinson's disease, chronic refractory pain, and epilepsy. We reviewed randomized, controlled studies only in order to obtain the strongest evidence for the clinical effects of rTMS. Results. An extensive literature review revealed 32 articles that met our criteria. From these studies, we found evidence for the therapeutic efficacy of rTMS, particularly in the relief of chronic pain and motor neurorehabilitation in single hemisphere stroke patients. Repetitive TMS also seems to have a therapeutic effect on motor function in Parkinson's disease, but the evidence is somewhat confounded by the uncontrolled variability of multiple factors. Lastly, only two randomized, sham‐controlled studies have been performed for epilepsy; although evidence indicates rTMS may reduce seizure frequency in patients with neocortical foci, more research is needed to confirm these initial findings. Conclusions. There is mounting evidence for the efficacy of rTMS in the short‐term treatment of certain neurologic conditions. More long‐term research is needed in order to properly evaluate the effects of this method in a clinical setting.  相似文献   

20.
OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability. These effects outlast the rTMS train, and range from inhibition to facilitation according to the variables used for rTMS. Several studies have demonstrated short and long-term effects on motor evoked potential (MEP) size, whereas the effects on intracortical inhibition (ICI) and facilitation (ICF) are still unclear. We investigated short- (1-15 min), intermediate- (16-30 min), and long-term (6 h) effects on intracortical excitability. METHODS: Fourteen healthy subjects were stimulated with rTMS trains of 900 pulses (1 Hz, 90% resting motor threshold (rMTh)), delivered over the primary motor cortex and the occipital area. MTh, MEP size, silent period, intracortical inhibition at short (ICI) and long inter-stimulus intervals, and ICF were tested before and after rTMS. RESULTS: ICI was reduced 16-30 min after 1 Hz rTMS trains over the primary motor area, whereas the other response variables remained unchanged. The ICI reduction at 16-30 min was reproducible on different days in the same subjects; it was absent at 6 h and after stimulation of the occipital area. CONCLUSIONS: Subthreshold 1 Hz rTMS decreases ICI by reducing the excitability of intracortical inhibitory interneurones or by altering the electrical properties of the facilitatory chain of neurons responsible for the I waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号