首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chung YH  Kim SI  Joo KM  Kim YS  Lee WB  Yun KW  Cha CI 《Brain research》2004,1018(1):141-146
Although oxidative stress may influence the fluid properties of blood, resulting in a potential decrement in blood flow and oxygen delivery to the brain during aging, very little is known about age-related changes in Epo expression. Therefore, we examined age-related changes in Epo expression in the cerebral cortex and hippocampus with an immunohistochemical technique. In aged rats, there was a significant decrease in Epo immunoreactivity in the pyramidal cells in the cortical regions. In the hippocampus of adult rats, a distinct immunoreactivity pattern was observed in the CA1-3 areas and dentate gyrus. In aged hippocampus, Epo immunoreactivity was significantly deceased in the pyramidal layer of CA1 regions, and the granule cell layer of dentate gyrus. It was noted that there was distinct pattern of Epo immunoreactivity in the pyramidal layer of CA2-CA3 region of aged rats. Epo immunoreactivity was relatively strong, but was observed only in the periphery of the cytoplasm. The first demonstration of age-related decreases in Epo expression in the cerebral cortex and hippocampus may provide useful data for investigating the pathogenesis of age-related neurodegenerative diseases, suggesting that age-related decreases in Epo may contribute to degenerative events following age-related decreases in brain flow and oxygen supply.  相似文献   

2.
Lipoprotein lipase (LPL) is a key enzyme involved in lipid metabolism. Previous studies have shown that the levels of brain LPL mRNA, protein and activity are up‐regulated after brain and nerve injury. The aim of this study was to determine the response of expression and activity of brain LPL following acute cerebral ischemia‐reperfusion. Adult male Sprague‐Dawley rats were subjected to surgical occlusion of the middle cerebral artery. The expression of brain LPL was assessed by immunohistochemical staining and the enzyme activity of brain LPL was evaluated by colorimetric method. Increase of LPL immunopositive cells in the cerebral cortex around the infarction area was observed at 4, 6, 12 h ischemia, 2 h ischemia 2 h reperfusion, and 4 h ischemia 2 h reperfusion. LPL activity was significantly decreased in the ischemic side cortex at 2 h ischemia, and then significantly increased at 4 and 6 h ischemia. Our results showed that LPL immunopositive cells were increased in the cortex around the infarction area, and activity of LPL first decreased and then increased following acute cerebral ischemia‐reperfusion. These results may suggest that LPL plays a potential role in the pathophysiological response of the brain to cerebral ischemia‐reperfusion.  相似文献   

3.
4.
5.
Lipoprotein lipase (LPL) is a member of a lipase family known to hydrolyze triglyceride molecules found in lipoprotein particles. This particular lipase also has a role in the binding of lipoprotein particles to different cell-surface receptors. LPL has been identified in the brain but has no specific function yet. This study aimed at elucidating the role of LPL in the brain in response to injury. Mice were subjected to hippocampal deafferentation using the entorhinal cortex lesion and mRNA and protein expression were assessed over a time-course of degeneration/reinnervation. Hippocampal LPL levels peaked at 2 days post-lesion (DPL) both at the mRNA and protein levels. No change was observed for receptors of the LDL-receptor family or RAP at DPL 2 in the hippocampus but the glia-specific syndecan-4 was found to be significantly upregulated at DPL 2. These results suggest that LPL is involved in the recycling of cholesterol and lipids released from degenerating terminals after a lesion through a syndecan-4-dependent pathway.  相似文献   

6.
Postnatal day (P)20 rats are sensitive to CA1 injury following a single injection of kainic acid (KA) but are resistant to this injury when animals have a history of two neonatal seizures. We hypothesized that the two earlier seizures led to neuroprotection by a preconditioning mechanism. Therefore, morphology, [Ca(2+)](i) and NMDA subunit proteins of the hippocampus were examined after KA was administered once (1 × KA, on P6, P9, P13 or P20), twice (2 × KA, on P6 and P9) or three times (3 × KA, on P6, P9, P13 or P20). After 1 × KA on P20, the Golgi method revealed marked decreases in spine densities and aborization of CA1 and CA3 apical dendrites. After 3 × KA, morphological alterations were attenuated in CA1 neurons and were similar to pruning observed after 1 × KA on P6 or 2 × KA. After 1 × KA at P13, baseline [Ca(2+)](i) was elevated within pyramidal and dentate granule cells. N-methyl-D-aspartate (NMDA) responses were simultaneously enhanced. After 3 × KA, Ca(2+) elevations were attenuated. Immunohistochemistry revealed selective depletion of the NR2A/B subunit modulator in the same areas. NR1 subunit expression was downregulated in the subiculum and increased in the CA3, causing a significant shift in the NR1:NR2A/B ratio throughout the hippocampus. After 1 × KA or 3 × KA at P20, reduced expression was only observed in areas of cell injury. Results indicate that different changes in morphology and excitatory responses occur depending upon when seizures begin. Partial pruning and persistent shift in the NR1:NR2A/B ratio among excitatory synapses of the hippocampus early in life may produce epileptic tolerance and protect against subsequent insults.  相似文献   

7.
The influence of kainic acid (KA)-induced limbic seizure activity on the expression of mRNA for nerve growth factor (NGF) in adult rat brain was studied using in situ hybridization and S1 nuclease protection techniques with RNA probes complementary to murine and rat NGF mRNA. Within hippocampus, intracerebroventricular injection of 0.5 microgram KA caused a dramatic bilateral increase in hybridization of the 35S-labeled cRNA within stratum granulosum. This increase was first evident 1 h post-KA, appeared maximal at approximately 20-fold control levels at 2-3 h post-injection, and declined to control levels by 48 h post-injection. During the period of maximal hybridization, all but the deepest cells within stratum granulosum appeared to be autoradiographically labeled. Hybridization of the NGF cRNA probe was also increased within superficial layers of piriform and entorhinal cortex and, to much lesser extent, within scattered neurons of layers II and III of neocortex in KA-treated rats. In olfactory cortical areas, hybridization was maximally elevated 15.5-24.5 h after KA injection. In contrast to these effects, KA treatment did not consistently influence the density of hybridization, or number of neurons labeled, within the dentate gyrus hilus or the hippocampus proper (CA1-CA3). In agreement with the in situ hybridization results, S1 nuclease protection assay detected KA-induced increases in hybridization within pooled dentate gyrus/CA1 samples, but not hippocampal CA3 samples. These data support the conclusion that seizure activity stimulates a transient increase in NGF expression by select populations of forebrain neurons and indicates that experimental seizure paradigms might be further exploited for analyses of the mechanisms of NGF regulation and processing in the adult brain.  相似文献   

8.
The expression of S100beta and glial fibrillary acidic protein (GFAP) was analyzed following bilateral injection of kainic acid (KA), a glutamate derivative, into the CA3 region of the adult rat hippocampus. This treatment produces a progressive degeneration of the pyramidal neurons of the hippocampus while sparing the granule cells of the dentate gyrus which undergo sprouting of their axons in the supragranular layer. Messenger RNA and protein levels were measured, by Northern blot and ELISA, in the hippocampus of lesioned and sham-operated rats 1, 7, and 30 days after KA injection. A significant increase of GFAP and its mRNA was demonstrated at each time point, whereas S100beta mRNA levels were significantly enhanced only 30 days after the KA injection and the levels of S100beta protein remained unchanged at all time points. However, when analyzed by immunohistochemistry the S100beta showed clear changes in its expression and distribution depending on the region considered. One month after KA injection, S100beta immunoreactivity was considerably reduced in the stratum radiatum of CA3 region, but there was increased S100beta immunoreactivity in the stratum moleculare. In particular, a notable band of S100beta positive, hypertrophic astrocytes appeared in the supragranular layer of the dentate gyrus where the sprouting of mossy fiber collaterals was detected by Timm's staining. These data show for the first time that an increase in S100beta expression in subpopulations of reactive astrocytes may be involved in the structural reorganization of the hippocampus following KA-induced neurodegeneration.  相似文献   

9.
Importins, also called karyopherins, belong to a large family of proteins involved in cytoplasm-to-nucleus transport. Transport machinery generally involves a complex formed by two different importin subtypes (alpha and beta). Both alpha and beta importins are expressed in the brain, and their expression and localization is regulated by physiological neuronal activity. Little is known about regulation of importin expression in brain pathological conditions. Here we studied the expression of importin beta1 (imp beta 1) in the rat hippocampus after acute and chronic seizures induced by the glutamate agonist kainic acid (KA). The overall content of imp beta 1 mRNA and protein did not change after acute KA seizures. However, acute KA seizures rapidly induced the translocation of imp beta 1 protein from the cytoplasm to the nucleus in pyramidal CA1 neurons. KA-induced imp beta 1 translocation was prevented by the NMDA (N-methyl-D-aspartic acid) receptor blocker MK-801. After chronic seizures, the overall levels of imp beta 1 mRNA and protein did not change in the whole hippocampus. Immunohistochemistry revealed a massive loss of imp beta 1-positive neurons in pyramidal layers (that degenerated after KA), whereas an increased number of imp beta 1-positive cells was detected in the stratum radiatum of rats with chronic seizures compared with control animals. Double-labeling experiments identified these cells as glial cells expressing the chondroitin sulfate proteoglycan NG2 (neuron/glial antigen 2), a glial subtype recently shown to regulate hippocampal neuron excitability. These data show a differential regulation of imp beta 1 expression after acute and chronic seizure activity in the rat hippocampus.  相似文献   

10.
Five-day-old Wistar albino rats were injected with kainic acid (KA) or saline i.p. to investigate time-dependent alterations in morphology and number of basic fibroblast growth factor (bFGF) immunoreactive (-ir) astrocytes and neurons in hippocampus at 15, 30, and 90 days after the injections. Sections were stained with cresyl violet for morphological evaluation and bFGF immunohistochemistry was used for quantitative evaluation of bFGF-ir cell density. Fifteen days after KA injection, there was gliosis but no neuronal loss although disorganization in CA1, CA3, CA4 pyramidal layers and neuronal loss were evident 30 and 90 days after the injection. KA injected rats demonstrated significantly increased number of bFGF-ir astrocytes throughout the hippocampus and pyramidal neurons in CA2 after 15 days and decreased number of bFGF-ir cells after 30 and 90 days. The decrease in the number of bFGF-ir astroglia and neurons in long term after KA injection may indicate a decrease in the production of bFGF and/or number of bFGF-ir cells suggesting that protective effects of bFGF may be altered during epileptogenesis in hippocampus.  相似文献   

11.
Fos oncoprotein expression has been shown to be a sensitive marker for sequential neuronal activation in response to a specific stimulus. The present study investigated the effect of the γ-aminobutyric acid (GABA)-A receptor agonist muscimol on kainic acid (KA)-induced limbic seizures and Fos expression in the rat forebrain. One hour after KA injection, a substantial Fos expression was observed in the hippocampal dentate gyrus, whereas only a low level of Fos induction was seen in CA1–3 fields. Six hours post-injection a prominent increase of Fos expression occurred in most forebrain structures, including the whole hippocampus. Following 0.5 mg/kg muscimol treatment a remarkable decrease of Fos expression occurred but only in the caudate putamen and core of the accumbens nucleus. Treatment with 1 mg/kg muscimol led to further significant decreases of Fos expression in CA1–3 pyramidal neurons and the disappearance of Fos induction in the cerebral cortex above the rhinal fissure, reticular thalamic nucleus, claustrum, fundus striati, ventral pallidum, septal nucleus, lateral habenular nucleus, and lateral amygdaloid nucleus. When 2 mg/kg muscimol was injected, animals exhibited 'absence seizures' instead of limbic seizures, and Fos expression in the hippocampus was effectively blocked. These results suggest that a reduction of GABAergic inhibition plays a crucial role not only in limbic seizure genesis in the dentate gyrus, but also in the seizure spread mechanism in many brain structures, among which the hippocampal CA1–3 fields are most markedly involved, less marked in the cerebral cortex and some other structures, and least marked in the caudate putamen and core of the accumbens nucleus.  相似文献   

12.
OBJECTIVE: In this study, we aimed to examine time-dependent morphologic changes and quantitative alterations in the density of basic fibroblast growth factor (bFGF)-immunoreactive (ir) astrocytes and CA2 pyramidal neurons in dorsal hippocampus of rats after status epilepticus (SE) induced by kainic acid (KA) injection. METHODS: Wistar albino rats were injected with saline or KA i.p. to investigate time-dependent alterations in morphology and the number of bFGF-ir astrocytes and neurons in the dorsal hippocampus 15, 30 and 90 days after KA injection. RESULTS: Fifteen days after KA injection, gliosis was present throughout the hippocampus and neuronal loss was evident in CA1 and CA3 regions, which was more severe after 30 and 90 days. KA-injected rats demonstrated significantly increased number of both bFGF-ir astrocytes throughout the hippocampus and pyramidal neurons in CA2 after 15 days and decreased number after 30 and 90 days. CONCLUSION: The decrease in the number of bFGF-ir astroglia and neurons in long term after KA injection may indicate a decrease in the production of bFGF and/or number of bFGF-ir cells, suggesting that protective effects of bFGF might be altered during epileptogenesis in the hippocampus.  相似文献   

13.
Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4°C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with KA (12 mg/kg, ip) and kept at 4°C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after KA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fosB,junB, andegr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment ( junD). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of KA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death.  相似文献   

14.
We have investigated by in situ hybridization changes in the content of mRNAs encoding for chromogranin B, secretogranin II, synaptin/synaptophysin and p65 after kainic acid-induced seizures and pentylenetetrazol kindling. Kainic acid seizures resulted in marked but transient increases in secretogranin II mRNA concentrations in the granule cell layer and throughout the pyramidal cell layers of the hippocampus (by 100-500%) as well as in various areas of the cerebral cortex (by up to 900%) and the thalamus (up to 300%) 12 h after injection of the toxin. Chromogranin B mRNA concentrations were persistently increased in granule cells (but not in pyramidal cells) of the hippocampus (suprapyramidal blade, 450%) and in cortical areas (250%) at all time intervals after kainic acid injection (12 h to 60 days). Accordingly chromogranin B immunoreactivity was enhanced in the terminal field of mossy fibers and in the inner part of the molecular layer 30 days after kainic acid. Secretogranin II immunoreactivity was also markedly increased in CA1, the paraventricular thalamic nucleus and in the central amygdala. In rats kindled with pentylenetetrazol only chromogranin B (by 200%) but not secretogranin II mRNA was increased in dentate granule cells. In contrast to the mRNAs of these secretory proteins concentrations of mRNAs encoding synaptin/synaptophysin and p65, two membrane proteins of synaptic vesicles, were not altered in any of these brain structures. These data demonstrate that in brain the biosynthesis of chromogranin B and secretogranin II is regulated like that of neuropeptides which is consistent with a role of these secretory polypeptides as precursors of functional peptides. Activation of neurons induces an increased synthesis of neuropeptides but not a concomitant synthesis of membrane proteins of synaptic vesicle. This might lead to an increased quantal content available for transmission.  相似文献   

15.
Clavel S  Paradis E  Ricquier D  Richard D 《Neuroreport》2003,14(16):2015-2017
Intraperitoneal injection of kainic acid (KA) in C57BL/6J and 129T2SvEmsJ mice led to a transient induction of uncoupling protein-2 (Ucp2) mRNA expression in several brain regions, which included the CA1 subfield of the hippocampus, the dorsal endopiriform nucleus and the piriform cortex in both strains. In all those regions, levels of Ucp2 mRNA expression, as determined by in situ hybridization, peaked at 24 h and returned to basal levels within 72 h post-injection. The increase in mRNA expression was mainly observed in neurons, with microglial cells displaying only scattered expression of the gene. The neuronal induction of Ucp2 in response to KA was stronger in 129T2SvEmsJ mice than in C57BL/6J, which suggests a role for Ucp2 in excitotoxic challenges and neuroprotection.  相似文献   

16.
Kainic acid-induced limbic seizures enhance expression of tenascin-C (TN) in the hippocampus of adult rats. TN mRNA was detectable by in situ hybridization in many granule cells in the dentate gyrus 4.5 hr after kainic acid injection but not in saline-injected animals (controls) or in animals killed 2 or 24 hr after injection. Thirty days after kainic acid injection, TN mRNA was detectable only in pyramidal cells of CA3 and CA1. At the protein level, TN was detectable by immunocytochemistry in control animals in the strata oriens and lacunosum moleculare of CA1, in the molecular layer, and within a narrow area at the inner surface of the granule cell layer in the dentate gyrus. Twenty-four hours after kainic acid injection, TN immunoreactivity was enhanced in these areas and throughout the granule cell layer. Thirty days after kainic acid injection, TN immunoreactivity was downregulated in these areas, while it was prominent in the stratum oriens and in clusters of immunoreactivity in the stratum lucidum of CA3. Western blot analysis of the hippocampus showed a peak of TN expression 24 hr after kainic acid injection. These observations show that TN expression is upregulated in predominantly neuronal cells already by 4.5 hr after kainic acid injection, coincident with activation of granule cells and sprouting of axon terminals, whereas the remaining TN expression 30 days after injection relates to pyramidal cells in CA1 and CA3, coincident with an astroglial response, as marked by a strong expression of glial fibrillary acidic protein. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The enzyme 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) catalyzes the conversion of progesterone into its inactive form, 20alpha-hydroxyprogesterone. We studied the expression of 20alpha-HSD mRNA in mouse brain by in situ hybridization. 20alpha-HSD mRNA was exclusively found in neurons in cortex and hippocampus. In the cortex, the labelled cells were concentrated in the external granular layer, the external pyramidal layer and the inner granular layer. In the hippocampus, the labelling was mostly located over pyramidal cells of the CA1 layer. These results suggest that progesterone can be inactivated by 20alpha-HSD in some specific brain areas.  相似文献   

18.
Functional kainate receptors can be formed by various combinations of subunits with low (GluR5, GluR6 and GluR7) or high affinity (KA1 and KA2) for kainate. The precise contribution of each subunit to native receptors, as well as their distribution within the central nervous system (CNS) is still unclear. Here, we describe the presence of KA1-like immunoreactivity in both neurons and glial cells of the CNS, using a newly developed antiserum to a specific carboxy terminus epitope of the KA1 subunit. Intense immunoreactivity was observed in the CA3 area of the rat hippocampus. Electron microscopy revealed that immunostaining was present in dendritic structures postsynaptic to commissural-associational fibers, rather than in those contacted by mossy fiber terminals. We also observed immunostaining of CA1 pyramidal cell apical dendrites. In the cerebral cortex, KA1-like immunostaining was observed in many pyramidal neuron somata, mainly in layer V, and along their apical dendrites. A subset of gamma-amino-butyric acidic cells were also intensely stained. In the cerebellum, the antiserum selectively stained Purkinje cell somata and their dendrites as well as Bergmann glial processes. Other types of macroglia were also labeled by the KA1 antiserum. Thus, optic nerve oligodendrocytes both in vitro and in situ and cultured astrocytes were densely stained. Our results indicate that KA1-type subunits are more widely distributed throughout the CNS than previously thought. This newly developed antiserum may help to clarify the properties of kainate receptors containing KA1 or KA1-type subunits within the normal and pathological brain.  相似文献   

19.
To determine the spatio-temporal expression in brain of the high-affinity kainate receptor subunit KA1, we generated transgenic mice expressing Cre recombinase from the KA1 gene on a chromosomally integrated 550 kb yeast artificial chromosome (YAC). Activity of the KA1 gene promoter during brain development was visualized by Cre immunohistochemistry, and by X-gal staining of beta-galactosidase induced by Cre recombinase in double transgenic KA1-Cre/lacZ indicator mice. During early brain development, expression from the YAC-carried KA1-Cre transgene was observed in all major brain areas, predicting a function for KA1 in the developing central nervous system. In the adult brain, KA1-Cre transgene expression was restricted mainly to hippocampal CA3 pyramidal and dentate gyrus granule cells, an adult expression pattern characteristic for the endogenous KA1 alleles. KA1-Cre transgenic mice may help in elucidating the role of floxed genes ablated in vivo in KA1 expressing neurons.  相似文献   

20.
Using in situ hybridization histochemistry neuropeptide Y (NPY) mRNA expression was investigated after intraperitoneal injection of kainic acid (KA) and after local application of KA or quinolinic acid into the dentate gyrus of the rat. Enhanced concentrations of NPY mRNA were observed in interneurons of the hilus, including presumptive fusiform neurons and pyramidal-shaped basket cells already 4 hours after initiation of limbic seizures by KA (10 mg/kg, i.p.). IncreaseD NPY expression persisted in neurons resistant to seizure-induced cell death (6–48 h after i.p. KA). Exceptionally high hybridization signals were found in interneurons of the hilus and the CA1 and CA3 sectors 8 months after KA-induced limbic seizures. In the granule cell layer only a transient but pronounced increase in NPY mRNA was observed 12–24 h after injection. Only moderate changes were observed in this cell layer at later intervals. Anticonvulsant treatment with thiopental, after a brief period of generalized seizures, prevented the increase in NPY mRNA in granule cells but not in interneurons. No change in NPY message was found also in granule cells of rats which responded with mild “wet dog shake” behvior but not with motor seizures to KA injection. Local injections of low doses of KA (0.05–0.2 nmol) or quinolinic acid (6.5–100 nmol) into the dentate gyrus of the hippocampus under deep thiopental anesthesia, after 24 h, resulted in increased concentrations of NPY message in interneurons of the ipsilateral, but not of the contralateral hilus and not in granule cells. Higher doses of the excitatory amino acid analogs caused partial neurodegeneration at the injection site, but enhanced NPY expression in interneurons of the contralateral dentate. Only the highest dose of quinolinic acid (100 nmol), resulting in general neuronal cell loss at the injection area, induced enhanced NPY mRNA expression also in granule cells of the contralateral dentate gyrus. The experiments suggest different mechanisms for NPY mRNA expression in interneurons and in granule cells of the dentate gyrus. Whereas in the stratum granulosum NPY mRNA expression was only observed after generalized limbic seizures, in hilar interneurons it was augmented by only moderate neuronal stimulation or directly by KA. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号