首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular analysis of hypoxanthine-guanine phosphoribosyltransferase (hprt) cDNA from 6-thioguanine-resistant T-lymphocytes cloned from smoking and non-smoking adult donors showed that 35% of these mutants were defective in splicing of hprt mRNA. Among a set of 42 hprt splice mutants, we observed i) complete loss of one or more exons, ii) partial loss of one exon, or iii) inclusion of part of an intron sequence between adjacent exons. Loss of exon 4 was significantly more frequent than of the other exons, suggesting that the sequences that regulate splicing of this exon are either larger than those of the other exons or especially prone to mutation. In order to identify the molecular nature of DNA alterations causing aberrant splicing of hprt mRNA, 17 splice mutants were analyzed in more detail by sequencing the genomic regions flanking the mis-spliced exon. Base pair substitutions or small deletions causing defective splicing were either detected in exon sequences or in splice site consensus sequences of introns. Furthermore, genomic deletions encompassing entire exons were found. In some mutants, the alteration responsible for incorrect splicing could not be identified, suggesting that the target sequence for splice mutations is larger than merely the splice junctions. Molecular characterization of hprt splice mutations will lead to the identification of specific sequences regulating splicing of hprt mRNA and will reveal whether the mutational spectrum in splice mutants is similar to that found in the hprt coding region.  相似文献   

3.
To identify human intronic sequences associated with 5' splice site recognition, we performed a systematic search for motifs enriched in introns downstream of both constitutive and alternative cassette exons. Significant enrichment was observed for U-rich motifs within 100 nucleotides downstream of 5' splice sites of both classes of exons, with the highest enrichment between positions +6 and +30. Exons adjacent to U-rich intronic motifs contain lower frequencies of exonic splicing enhancers and higher frequencies of exonic splicing silencers, compared with exons not followed by U-rich intronic motifs. These findings motivated us to explore the possibility of a widespread role for U-rich motifs in promoting exon inclusion. Since cytotoxic granule-associated RNA binding protein (TIA1) and TIA1-like 1 (TIAL1; also known as TIAR) were previously shown in vitro to bind to U-rich motifs downstream of 5' splice sites, and to facilitate 5' splice site recognition in vitro and in vivo, we investigated whether these factors function more generally in the regulation of splicing of exons followed by U-rich intronic motifs. Simultaneous knockdown of TIA1 and TIAL1 resulted in increased skipping of 36/41 (88%) of alternatively spliced exons associated with U-rich motifs, but did not affect 32/33 (97%) alternatively spliced exons that are not associated with U-rich motifs. The increase in exon skipping correlated with the proximity of the first U-rich motif and the overall "U-richness" of the adjacent intronic region. The majority of the alternative splicing events regulated by TIA1/TIAL1 are conserved in mouse, and the corresponding genes are associated with diverse cellular functions. Based on our results, we estimate that approximately 15% of alternative cassette exons are regulated by TIA1/TIAL1 via U-rich intronic elements.  相似文献   

4.
5.
Small consensus sequences have been defined for RNA splicing, but questions about splicing in humans remain unanswered. Analysis of germline mutations in the factor IX gene offers a highly advantageous system for studying the mutational process in humans. In a sample of 860 families with hemophilia B, 9% of independent mutations are likely to disrupt splicing as their primary mode of action. This includes 26 splicing mutations reported herein. When combined with the factor IX splice mutations reported by others, at least 104 independent mutations have been observed, 80 of which are single base substitutions within the splice donor and splice acceptor consensus sequences. After analysis of these mutations, the following inferences emerge: (1) the susceptibility of a splice donor sequence to deleterious mutation depends on the degree of similarity with the donor consensus sequence, suggesting a simple "5-6 hypothesis" for predicting deleterious vs. neutral mutations; (2) the great majority of mutations that disrupt the splice donor or splice acceptor sequences result in at least a 100-fold decrement in factor IX coagulant activity, indicating that the mutations at these sites generally function as an on/off switch; (3) mutations that create cryptic splice junctions or that shorten but do not interrupt the polypyrimidine tract in the splice acceptor sequence can reduce splicing by a variable amount; and (4) there are thousands of potential donor-acceptor consensus sequence combinations in the 38-kb factor IX gene region apparently not reduced by evolutionary selective pressure, presenting an apparent paradox; i.e., mutations in the donor and acceptor consensus sequences at intron/exon splice junctions can dramatically alter normal splicing, yet, appropriately spaced, good matches to the consensus sequences do not predispose to significant amounts of alternative splicing.  相似文献   

6.
Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited.  相似文献   

7.
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.  相似文献   

8.
Ke S  Zhang XH  Chasin LA 《Genome research》2008,18(4):533-543
We have used comparative genomics to characterize the evolutionary behavior of predicted splicing regulatory motifs. Using base substitution rates in intronic regions as a calibrator for neutral change, we found a strong avoidance of synonymous substitutions that disrupt predicted exonic splicing enhancers or create predicted exonic splicing silencers. These results attest to the functionality of the hexameric motif set used and suggest that they are subject to purifying selection. We also found that synonymous substitutions in constitutive exons tend to create exonic splicing enhancers and to disrupt exonic splicing silencers, implying positive selection for these splicing promoting events. We present evidence that this positive selection is the result of splicing-positive events compensating for splicing-negative events as well as for mutations that weaken splice-site sequences. Such compensatory events include nonsynonymous mutations, synonymous mutations, and mutations at splice sites. Compensation was also seen from the fact that orthologous exons tend to maintain the same number of predicted splicing motifs. Our data fit a splicing compensation model of exon evolution, in which selection for splicing-positive mutations takes place to counter the effect of an ongoing splicing-negative mutational process, with the exon as a whole being conserved as a unit of splicing. In the course of this analysis, we observed that synonymous positions in general are conserved relative to intronic sequences, suggesting that messenger RNA molecules are rich in sequence information for functions beyond protein coding and splicing.  相似文献   

9.
To elucidate the mechanism that produces enormous molecular diversity in troponin T (TnT) of fast skeletal muscle, we determined the 5-half genomic sequence of the chicken fast muscle TnT gene. The sequence of ca. 16 kb included seven exons (exons 1, 2, 3, 4, w, 5, and 6), which have been reported previously and presumed by sequencing TnT cDNAs. Additionally we found six 15 nt and one 18 nt sequences in the region between exons 5 and 6 (i.e. the exon x region). They were encompassed by consensus splice donor and acceptor sites and preceded by putative branch sites, and designated herein as exons xa to xg. Our result shows that the sequence derived from exons x1, x2, and x3, the exons presumed previously by cDNA sequencing, is actually encoded by the seven exons xa to xg, establishing the precise gene structure in the exon x region. Based on our data, together with that on the 3-half genomic sequence of the quail fast muscle TnT gene, we conclude that the avian fast skeletal muscle TnT gene includes 27 exons, 16 of which are alternatively spliced.  相似文献   

10.
11.
Dichotomous splicing signals in exon flanks   总被引:5,自引:1,他引:4  
Intronic elements flanking the splice-site consensus sequences are thought to play a role in pre-mRNA splicing. However, the generality of this role, the catalog of effective sequences, and the mechanisms involved are still lacking. Using molecular genetic tests, we first showed that the approximately 50-nt intronic flanking sequences of exons beyond the splice-site consensus are generally important for splicing. We then went on to characterize exon flank sequences on a genomic scale. The G+C content of flanks displayed a bimodal distribution reflecting an exaggeration of this base composition in flanks relative to the gene as a whole. We divided all exons into two classes according to their flank G+C content and used computational and statistical methods to define pentamers of high relative abundance and phylogenetic conservation in exon flanks. Upstream pentamers were often common to the two classes, whereas downstream pentamers were totally different. Upstream and downstream pentamers were often identical around low G+C exons, and in contrast, were often complementary around high G+C exons. In agreement with this complementarity, predicted base pairing was more frequent between the flanks of high G+C exons. Pseudo exons did not exhibit this behavior, but rather tended to form base pairs between flanks and exon bodies. We conclude that most exons require signals in their immediate flanks for efficient splicing. G+C content is a sequence feature correlated with many genetic and genomic attributes. We speculate that there may be different mechanisms for splice site recognition depending on G+C content.  相似文献   

12.
13.
Exon-intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon-intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3' and 5' splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery.  相似文献   

14.
15.
16.
Mutations causing defective splicing in the human hprt gene.   总被引:2,自引:0,他引:2  
Ten intron mutations and one exon mutation giving rise to defective splicing in the human gene for hypoxanthine phosphoribosyl transferase (hprt) in T-lymphocytes have been characterized. The splicing mutants were detected by PCR amplification of hprt cDNA and direct sequencing. Nine of the mutants showed skipping of whole exons or parts of exons in the cDNA, one mutant had an inclusion of an intron sequence into the cDNA, and one mutant showed both inclusion of an intron sequence and skipping of exons as well as a normal cDNA. Genomic PCR and direct sequencing of the splice sites involved showed one deletion of three base pairs and 10 different single base alterations to be responsible for these splice alterations. One mutation in the last base pair of exon 6 causing skipping of the entire exon 6 was found, whereas an identical mutation in the last base pair of exon 2 caused no aberrant splicing. It was also found that a deletion mutation in the pyrimidine rich stretch of the acceptor site of intron 7 caused skipping of the entire exon 8, whereas a base substitution in the last base of intron 7 caused exclusion of only the first 21 base pairs of exon 8 as a result of the activation of a cryptic acceptor site in exon 8. The results show that many different types of mutations at several different sites can cause splicing errors in the hprt gene and that the sequence differences between the splice sites influence the possible spectrum of mutations in each site.  相似文献   

17.
18.
19.
Interaction of the ends of the exons with loop 1 of the U5 snRNA aligns the exons for ligation in the second step of pre-mRNA splicing. To study the effect of Prp18 on the exons' interactions, we analyzed the splicing of pre-mRNAs with random sequences in the exon bases at the splice junctions. The exon mutations had large effects on splicing in yeast with a Prp18 protein lacking its most conserved region, but not in wild-type yeast. Analysis of splicing kinetics demonstrated that only the second step was affected in vivo and in vitro, showing that Prp18 - and specifically its conserved region - plays a key role in stabilizing the interaction of the exons with the spliceosome at the time of exon joining. Superior exon sequences defined by the prp18 results accelerated the second step of splicing by wild-type spliceosomes with inefficient AT-AC pre-mRNAs, implying that normal exon interactions follow the rules we discerned for prp18 splicing. Our results show that As are preferred at the ends of both exons and support a revised model of the interactions of the exons with U5 in which the exons are arranged in a continuous double helix that facilitates the second reaction.  相似文献   

20.
Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within protein-coding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in diseases, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict whether a given mutation will have effects on splicing based on sequence alone. Here, we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary non-polyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659, indicating that their primary effect is on splicing. Surprisingly, the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together, our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号