首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of silicone rubber hollow fiber membrane oxygenator for ECMO   总被引:6,自引:0,他引:6  
Silicone rubber hollow fiber membrane produces an ideal gas exchange for long-term ECMO due to nonporous characteristics. The extracapillary type silicone rubber ECMO oxygenator having an ultrathin hollow fiber membrane was developed for pediatric application. The test modules were compared to conventional silicone coil-type ECMO modules. In vitro experiments demonstrated a higher O2 and CO2 transfer rate, lower blood flow resistance, and less hemolysis than the conventional silicone coil-type modules. This oxygenator was combined with the Gyro C1E3 centrifugal pump, and three ex vivo experiments were conducted to simulate pediatric V-A ECMO condition. Four day and 6 day experiments were conducted in cases 1 and 2, respectively. Case 3 was a long-term experiment up to 2 weeks. No plasma leakage and stable gas performances were achieved. The plasma free hemoglobin was maintained within a normal range. This compact pump-oxygenator system in conjunction with the Gyro C1E3 centrifugal pump has potential for a hybrid total ECMO system.  相似文献   

2.
Extracorporeal membrane oxygenator compatible with centrifugal blood pumps   总被引:1,自引:0,他引:1  
Coil-type silicone membrane oxygenators can only be used with roller blood pumps due to the resistance from the high blood flow. Therefore, during extracorporeal membrane oxygenation (ECMO) treatment, the combination of a roller pump and an oxygenator with a high blood flow resistance will induce severe hemolysis, which is a serious problem. A silicone rubber, hollow fiber membrane oxygenator that has a low blood flow resistance was developed and evaluated with centrifugal pumps. During in vitro tests, sufficient gas transfer was demonstrated with a blood flow less than 3 L/min. Blood flow resistance was 18 mm Hg at 1 L/min blood flow. This oxygenator module was combined with the Gyro C1E3 (Kyocera, Japan), and veno-arterial ECMO was established on a Dexter strain calf. An ex vivo experiment was performed for 3 days with stable gas performance and low blood flow resistance. The combination of this oxygenator and centrifugal pump may be advantageous to enhance biocompatibility and have less blood trauma characteristics.  相似文献   

3.
An experimental silicone hollow fiber membrane oxygenator for long-term extracorporeal membrane oxygenation (ECMO) was developed in our laboratory using an ultrathin silicone hollow fiber. However, the marginal gas transfer performances and a high-pressure drop in some cases were demonstrated in the initial models. In order to improve performance the following features were incorporated in the most recent oxygenator model: increasing the fiber length and total surface area, decreasing the packing density, and modifying the flow distributor. The aim of this study was to evaluate the gas transfer performances and biocompatibility of this newly improved model with in vitro experiments. According to the established method in our laboratory, in vitro studies were performed using fresh bovine blood. Gas transfer performance tests were performed at a blood flow rate of 0.5 to 6 L/min and a V/Q ratio (V = gas flow rate, Q = blood flow rate) of 2 and 3. Hemolysis tests were performed at a blood flow rate of 1 and 5 L/min. Blood pressure drop was also measured. At a blood flow rate of 1 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 72.45 +/- 1.24 and 39.87 +/- 2.92 ml/min, respectively. At a blood flow rate of 2 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 128.83 +/- 1.09 and 47.49 +/- 5.11 ml/min. Clearly, these data were superior to those obtained with previous models. As for the pressure drop and hemolytic performance, remarkable improvements were also demonstrated. These data indicate that this newly improved oxygenator is superior to the previous model and may be clinically acceptable for long-term ECMO application.  相似文献   

4.
Two types small and efficient ECMO oxygenators were developed utilizing the most up to date hollow fiber technology. Newly silicone hollow fibers possess sufficient mechanical strength while maintaining ultra thin walls of 50 micro meter. Two types of oxygenators were made with this fiber. The fiber length for the type 1 module is 150mm with a priming volume 194 cc (surface area 1.3 m(2)) and type 2 has a fiber length of 100 mm with a 144 cc priming volume (the surface area 0.8 m(2)). The studies were performed at 0.5, 1.0 and 2.0 L/min of blood flow and these oxygenators demonstrated. O(2) gas transfer rate of 69+/-4 ml/min/L for type 1 and 68+/-6 ml/min/L for type 2. The CO(2) gas transfer rate was 25+/-2 ml/min/L for type 1 and 32+/-2 ml/min/L for type 2. These results demonstrate type 2 oxygenator has similar gas exchange capabilities to those of Kolobows' oxygenator which has about 2.0 times larger surface area. Additionally, comparative hemolysis tests were preformed with this new oxygenator and the Kolbow. The NIH value was 0.006 (g/100 L) for the type 1 oxygenator and 0.01 (g/100 L) for the Kolbow oxygenator. These results suggested that this ECMO oxygenator had sufficient gas exchange performance in spite of being smaller and induced minimal blood damage.  相似文献   

5.
Based on the results of in vitro studies of many experimental models, a silicone hollow fiber membrane oxygenator for pediatric cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber with a 300 microm outer diameter and a wall thickness of 50 microm. In this study, we evaluated the gas transfer performance of this oxygenator simulating pediatric CPB and ECMO conditions. Two ex vivo studies in a pediatric CPB condition for 6 h and 5 ex vivo studies in an ECMO condition for 1 week were performed with venoarterial bypass using healthy calves. At a blood flow rate of 2 L/min and V/Q = 4 (V = gas flow rate, Q = blood flow rate) (pediatric CPB condition), the O2 and CO2 gas transfer rates were maintained at 97.44 +/- 8.88 (mean +/- SD) and 43.59 +/- 15.75 ml/min/m2, respectively. At a blood flow rate of 1 L/min and V/Q = 4 (ECMO condition), the O2 and CO2 gas transfer rates were maintained at 56.15 +/- 8.49 and 42.47 +/- 9.22 ml/min/m2, respectively. These data suggest that this preclinical silicone membrane hollow fiber oxygenator may be acceptable for both pediatric CPB and long-term ECMO use.  相似文献   

6.
Abstract: A hemoconcentrator is an instrument essential for open heart surgery without blood transfusion. In order to simplify the extracorporeal blood circuit and to facilitate handling of cardiopulmonary bypass, we have combined a hollow fiber unit for gas exchange and that for hemofiltration into one component and developed a new membrane oxygenator with the function of a hemoconcentrator. The cylindrical device consists of a hollow fiber for hemofiltration with another fiber for gas exchange provided outside. Both of them adopt the blood outside perfusion system. Blood enters and flows through the central hole for hemofiltration and then flows into the oxygenator. By applying the flow mode to the device, blood is allowed to flow from the center of the core toward the hollow fiber around it. Therefore, even distribution of blood flow to the entire fiber is realized, and the performance of the device is improved. The oxygen transfer rate was 317 ml/min at a flow rate of 6 L/min, and the ultrafiltration rate was 7 L/h at a flow rate of 4 L/tnin with a hematocrit of 25%. The combined structure of the two units has not caused any adverse effects. In conclusion, by combining an oxygenator and a hemoconcentrator, excellent and simplified hemoconcentration is made available as the blood outside flow mode is adopted, which is one of the unique aspects of this device.  相似文献   

7.
The most common technical complication during ECMO is clot formation. A large clot inside a membrane oxygenator reduces effective membrane surface area and therefore gas transfer capabilities, and restricts blood flow through the device, resulting in an increased membrane oxygenator pressure drop (dpMO). The reasons for thrombotic events are manifold and highly patient specific. Thrombus formation inside the oxygenator during ECMO is usually unpredictable and remains an unsolved problem. Clot sizes and positions are well documented in literature for the Maquet Quadrox‐i Adult oxygenator based on CT data extracted from devices after patient treatment. Based on this data, the present study was designed to investigate the effects of large clots on purely technical parameters, for example, dpMO and gas transfer. Therefore, medical grade silicone was injected into the fiber bundle of the devices to replicate large clot positions and sizes. A total of six devices were tested in vitro with silicone clot volumes of 0, 30, 40, 50, 65, and 85 mL in accordance with ISO 7199. Gas transfer was measured by sampling blood pre and post device, as well as by sampling the exhaust gas at the devices’ outlet at blood flow rates of 0.5, 2.5, and 5.0 L/min. Pre and post device pressure was monitored to calculate the dpMO at the different blood flow rates. The dpMO was found to be a reliable parameter to indicate a large clot only in already advanced “clotting stages.” The CO2 concentration in the exhaust gas, however, was found to be sensitive to even small clot sizes and at low blood flows. Exhaust gas CO2 concentration can be monitored continuously and without any risks for the patient during ECMO therapy to provide additional information on the endurance of the oxygenator. This may help detect a clot formation and growth inside a membrane oxygenator during ECMO even if the increase in dpMO remains moderate.  相似文献   

8.
Based on the results of many experimental models, a hollow fiber silicone membrane oxygenator applicable for long-term extracorporeal membrane oxygenation (ECMO) was developed. For further high performance and antithrombogenicity, this preclinical model was modified, and a new improved oxygenator was successfully developed. In addition to ECMO application, the superior biocompatibility of silicone must be advantageous for pediatric cardiopulmonary bypass (CPB). An ex vivo short-term durability test for pediatric CPB was performed using a healthy miniature calf for six hours. Venous blood was drained from the left jugular vein of a calf, passed through the oxygenator and infused into the left carotid artery using a Gyro C1E3 centrifugal pump. For six hours, the O2 and CO2 gas transfer rates were maintained around 90 and 80 ml/min at a blood flow rate of 2 L/min and V/Q=3, respectively. The plasma free hemoglobin was maintained around 5 mg/dl. These data suggest that this newly improved oxygenator has superior efficiency, less blood trauma, and may be suitable for not only long-term ECMO but also pediatric CPB usage.  相似文献   

9.
Extracorporeal membrane oxygenation has been used successfully to support both cardiac and pulmonary function following Stage I Norwood operation. Determination of the return of native cardiac function and pulmonary function can be easily accomplished because of the single ventricle physiology. The pulmonary function can be assessed while on full flow ECMO by isolating the membrane oxygenator gas compartment, allowing evaluation of native pulmonary gas exchange through the modified Blalock-Taussig shunt. Cardiac output can be calculated by using the following oxygen delivery equation: Total O2 delivery = ECMO oxygen delivery + ventricular oxygen delivery. The ventricular O2 saturation used in the formula for oxygen delivery is same as the mixed venous O2 saturation returning to the ECMO pump because of the large atrial communication following the Norwood operation. A 3.2 kilogram patient was placed on a pediatric ECMO circuit utilizing a heparin-coated centrifugal pump and a microporous membrane oxygenate after failure to wean from bypass because of a low oxygen saturation and poor ventricular function. On day 1 of support, the systemic arterial oxygen saturation was 100% and matched the ECMO arterial saturation. On day 2 of the support, the patient's arterial saturation decreased to 96%, and the ECMO mixed venous saturation was 87%. Using the oxygen delivery formula, the ventricular cardiac output was calculated to be 175 mL/min, with an ECMO flow of 400 mL/min for a total cardiac output of 575 mL/min. The native ventricular contribution was, therefore, 30% of total cardiac output. Calculation of cardiac output would normally require a left ventricular sample in a patient with biventricular physiology. The single ventricle physiology in the post-operative Norwood patient makes this calculation a useful tool for assessing return of ventricular function in these patients.  相似文献   

10.
Silicon hollow fiber membrane oxygenator is considered to be useful for long term extracorporeal membrane oxygenation (ECMO) and blood usually flows inside of the fiber (inside flow type). But if it flows outside of the fiber (outside flow type), the pressure drop is supposed to be less than that of inside flow type. In this study the oxygenator of an outside flow type was used. At first, the pilot study was done to evaluate the capability of this oxygenator as an outside flow type. The pressure drop was 50 mmHg at the blood flow of 400 ml.min-1. At this blood flow and same gas flow, CO2 transfer rate was 22.3 ml.min-1. In the second study, the effects of pumpless arterio-venous ECMO (pumpless A-V ECMO) were studied in 8 dogs under mechanical hypoventilation. During ECMO, there were no significant changes in hemodynamics when the blood flow rate was 15% of cardiac output. PaO2 and PaCO2 recovered considerably. In conclusion, pumpless A-V ECMO using this membrane oxygenator of outside flow type is effective for CO2 removal and considered to be clinically useful.  相似文献   

11.
In order to facilitate the handling of cardiopulmonary bypass (CPB) and simplify the circuit, we have developed a new membrane oxygenator with a hemofiltration function. The hollow fiber units for gas exchange and hemofiltration were combined in concentric circles in a cylindrical housing. The total priming volume was 190 ml. Because we used a silicon-coated hollow fiber membrane for gas exchange, this oxygenator was completely resistant to serum leakage. The gas exchange and hemofiltration sections both have a blood-outside flow configuration. All blood flows in a radial direction from around the central core to the surrounding hollow fiber units, first to the hemofiltration portion and then to the gas exchange section. Filtered fluid was easily collected through a stopcock mechanism. The oxygen transfer rate was 312 ml/min at a blood flow rate of 6 L/min, and the ultrafiltration rate was 3.5 L/hour at a blood flow rate of 4 L/min with 25% hematocrit and 200 mmHg transmembrane pressure in an in vitro study. The pressure drop was 62 mmHg at a blood flow rate of 4 L/min. We found no adverse effects in an in vivo study using a mongrel dog. In conclusion, this durable combined device could achieve excellent and simplified hemoconcentration by having all the blood in the unit flow through the hemofiltration portion, and may be useful not only in CPB during open heart surgery, but also in extracorporeal membrane oxygenation.  相似文献   

12.
For patients with most severe acute respiratory distress syndrome (ARDS) conservative treatment with lung protective ventilation is often not sufficient to prevent life-threatening hypoxemia and additional strategies are necessary. Extracorporeal lung assist (ECLA) or extracorporeal membrane oxygenation (ECMO) using capillary membrane oxygenators can provide sufficient gas exchange and lung rest. In 2 randomized trials mortality was unchanged for ECMO. Today an technically enhanced ECMO is used for most severe ARDS using clinical algorithm and different case studies demonstrated a survival rate about 56%. Today miniaturized ECMO with optimized blood pumps and oxygenators are available and could enhance safety and clinical management. Another approach is an arterio-venous pumpless interventional lung assist (ILA) with a low resistance oxygenator. Advantages seem a simplified clinical management and less blood trauma. At present new devices are developed for chronic respiratory failure or bridge to lung transplant. Oxygenators with even less flow resistance could be implanted paracorporeal using the right ventricle as driving force. An intravascular oxygenator has been developed using the combination of a miniaturized blood pump and an oxygenator for implantation in the vena cava. Well designed clinical trials are necessary to demonstrate a clinical benefit for these experimental devices.  相似文献   

13.
This study compares the gas transfer capacity, the blood trauma, and the blood path resistance of the hollow-fiber membrane oxygenator Dideco D 903 with a surface area of 1.7 m2 (oxygenator 1.7) versus a prototype built on the same principles but with a surface area of 2 m2 (oxygenator 2). Six calves (mean body weight: 68.2 +/- 3.2 kg) were connected to cardiopulmonary bypass (CPB) by jugular venous and carotid arterial cannulation, with a mean flow rate of 4 l/min for 6 h. They were randomly assigned to oxygenator 1.7 (N = 3) or 2 (N = 3). After 7 days, the animals were sacrificed. A standard battery of blood samples was taken before the bypass, throughout the bypass, and 24 h, 48 h, and 7 days after the bypass. The oxygenator 2 group showed significantly better total oxygen and carbon dioxide transfer values throughout the perfusion (p < .001 for both comparison). Hemolytic parameters (lactate dehydrogenase and free plasma hemoglobin) exhibited a slight but significant increase after 5 h of bypass in the oxygenator 1.7 group. The pressure drop through the oxygenator was low in both groups (range, 43-74 mmHg). With this type of hollow-fiber membrane oxygenator, an increased surface of gas exchange from 1.7 m2 to 2 m2 improves gas transfer, with a limited impact on blood trauma and no increase of blood path resistance.  相似文献   

14.
Prediction of flow patterns through oxygenator fiber bundles can allow shape optimization so that efficient gas exchange occurs with minimal thrombus formation and hemolysis. Computational fluid dynamics (CFD) simulations can be used to predict three-dimensional flow velocities and flow distribution from spatially dependent variables and they allow estimations of erythrocyte residence time within the fiber bundle. This study builds upon previous work to develop an accurate numerical model for oxygenators, which would allow for accelerated iterations in oxygenator shape and diffuser plate design optimization. Hollow fiber flow channels were developed to permit experimental calculation of fluid permeability in two directions: main flow along the hollow fiber and perpendicular to the hollow fibers. Commercial software was used to develop three-dimensional CFD models of the experimental flow channels and an anisotropic porous media model for oxygenators from these experimental results. The oxygenator model was used to predict pressure loss throughout the device, visualize blood distribution within the fiber bundle, and estimate erythrocyte residence time within the bundle. Experimental flow channels measurements produced a streamwise permeability of 1.143e(-8) m(2) and transverse permeability of 2.385e(-9) m(2) . These permeabilities, coupled with previous work with volume porosity, were used to develop the numerical model of anisotropic behavior through porous fiber bundles, which indicated a more uniform flow field throughout the oxygenator. Incorporation of known anisotropic fiber bundle behavior in previous numerical models more accurately represents fluid behavior through an oxygenator fiber bundle. CFD coupled with experimental validation can produce a powerful tool for oxygenator design and development.  相似文献   

15.
Low flow veno-venous ECMO: an experimental study   总被引:1,自引:0,他引:1  
Clinical use of extracorporeal membrane oxygenation (ECMO) and carbon dioxide removal (ECCO 2R) have become well established techniques for the treatment of severe respiratory failure; however they require full cardiopulmonary bypass, representing major procedures with high morbidity. We theorized the possibility of an efficient low flow veno-venous extracorporeal membrane gas exchange method. Four mongrel 12 kg dogs were submitted to veno-venous extracorporeal membrane gas exchange via a jugular dialysis catheter using a low flow (10 ml/min) roller pump and a membrane oxygenator for a period of four hours. Respiratory rate was set at 4 breaths/min with a FiO 2 of 21% and ventilatory dead space was increased. Adequate gas exchange was obtained (pO 2139, pCO 224, Sat 99.4%), without major hemodynamic changes or hematuria. Our results demonstrate the feasibility of a low flow, less aggressive system. Further research should be considered.  相似文献   

16.
This study compared the quality of perfusion delivered by two oxygenators--the hollow-fiber membrane Capiox Baby RX05 and silicone membrane Medtronic 0800--using hemodynamic energy indicators. The oxygenators were tested across varying flow rates and perfusion modes in a neonatal extracorporeal life support (ECLS) model. The experimental ECLS circuit included a Jostra HL-20 heart/lung machine with Jostra Roller pump, oxygenators with associated tubing and components, and a neonatal pseudo-patient. We used a 40/60 glycerin/water solution in the circuit as a blood analog. Testing occurred at flow rates of 250, 500, and 750 mL/min at 37°C under both pulsatile and nonpulsatile flow conditions. Hemodynamic data points consisted of recording 20-s intervals of data, and a total of 96 experimental repetitions were conducted. The pressure drop across the Capiox Baby RX05 oxygenator was significantly lower than the pressure drop across the Medtronic 0800 at all flow rates and perfusion modes. Furthermore, the Medtronic 0800 oxygenator showed significantly lower post-oxygenator energy equivalent pressures, total hemodynamic energy values, and surplus hemodynamic energy retention values compared to those of the Capiox Baby RX05. These results indicate the Medtronic 0800 oxygenator significantly dampens the hemodynamic energy compared to the Capiox Baby RX05. Consequently, clinical use of the Medtronic 0800 in a pulsatile ECLS setting is likely to mitigate the benefits provided by pulsatile flow. In contrast, the Capiox Baby RX05 better transmits hemodynamic energy to the patient with much lower pressure drop.  相似文献   

17.
We have evaluated the feasibility of a newly developed single‐use, magnetically levitated centrifugal blood pump, MedTech Mag‐Lev, in a 3‐week extracorporeal membrane oxygenation (ECMO) study in calves against a Medtronic Bio‐Pump BPX‐80. A heparin‐ and silicone‐coated polypropylene membrane oxygenator MERA NHP Excelung NSH‐R was employed as an oxygenator. Six healthy male Holstein calves with body weights of about 100 kg were divided into two groups, four in the MedTech group and two in the Bio‐Pump group. Under general anesthesia, the blood pump and oxygenator were inserted extracorporeally between the main pulmonary artery and the descending aorta via a fifth left thoracotomy. Postoperatively, both the pump and oxygen flow rates were controlled at 3 L/min. Heparin was continuously infused to maintain the activated clotting time at 200–240 s. All the MedTech ECMO calves completed the study duration. However, the Bio‐Pump ECMO calves were terminated on postoperative days 7 and 10 because of severe hemolysis and thrombus formation. At the start of the MedTech ECMO, the pressure drop across the oxygenator was about 25 mm Hg with the pump operated at 2800 rpm and delivering 3 L/min flow. The PO2 of the oxygenator outlet was higher than 400 mm Hg with the PCO2 below 45 mm Hg. Hemolysis and thrombus were not seen in the MedTech ECMO circuits (plasma‐free hemoglobin [PFH] < 5 mg/dL), while severe hemolysis (PFH > 20 mg/dL) and large thrombus were observed in the Bio‐Pump ECMO circuits. Plasma leakage from the oxygenator did not occur in any ECMO circuits. Three‐week cardiopulmonary support was performed successfully with the MedTech ECMO without circuit exchanges. The MedTech Mag‐Lev could help extend the durability of ECMO circuits by the improved biocompatible performances.  相似文献   

18.
Abstract: In this study, the performances of the TinyPump (priming volume 5 mL) system including the pediatric cannulae (Stöckert Pediatric Arterial Cannulae 2.6, 3.0, and 4.0 mm, Stöckert Instruments GmbH, Munich, Germany; Polystan 20‐Fr Venous Catheter, MAQUET GmbH, Rastatt, Germany) and an oxygenator (Terumo Capiox RX05 Baby‐RX, Terumo Cardiovascular Systems Co., Tokyo, Japan) were studied in vitro followed with preliminary ex vivo studies in 20‐kg piglets. In vitro results revealed that the TinyPump system met the requirements for pump speed, pump flow, and pressure drop as extracorporeal circulatory support during open heart surgery and extracorporeal membrane oxygenation (ECMO) in pediatric patients. In 2‐h ex vivo studies using 20‐kg piglets where the blood contacting surface of the TinyPump was coated with a biocompatible phospholipid polymer, the plasma‐free hemoglobin levels remained less than 5.0 mg/dL and no thrombus formation was observed inside the pump. The TinyPump system including the oxygenator and connecting circuits resulted in an overall priming volume of 68 mL, the smallest ever reported. The TinyPump can be a safe option for pediatric circulatory support during open heart surgery and ECMO without requiring blood transfusion.  相似文献   

19.
We developed an extracorporeal membrane oxygenation (ECMO) system with high antithrombogenicity and durability characteristics for prolonged continuous cardiopulmonary support. The oxygenator consists of a special hollow-fiber-type polyolefin gas-exchange membrane, which has an ultrathin dense layer in contact with the blood, in order to prevent plasma leakage during protracted use (Platinum Cube NCVC). The centrifugal pump (RotaFlow) is free of seals. The entire blood-contacting surface of the system is coated with a newly developed heparin material (Toyobo-NCVC coating). We performed a venoarterial bypass in a goat, and the ECMO system was driven for 34 days without systemic anticoagulants. Plasma leakage from the oxygenator did not occur, and sufficient gas exchange performance was maintained. Thrombus formation was hardly observed in the ECMO system except in the casing margins of the oxygenator. This ECMO system showed potential for long-term cardiopulmonary support with minimal or no use of systemic anticoagulants.  相似文献   

20.
Abstract: We have developed a newly designed blood pump, named the vibrating flow pump (VFP), which can generate high frequency oscillated flow. The driving frequency is 10–50 Hz, and flow volume is linearly controlled electric power (current and voltage). The VFP was applied as the pump for extracorporeal circulation (ECC) in acute animal experiments. The gas exchange efficiency of the membrane oxygenator with the VFP and a roller pump (RP) was evaluated. Under general anesthesia with halothane, 7 adult goats underwent ECC; an inflow can-nula was inserted into the right atrium, an outflow cannula was sutured to the descending thoratic aorta, and total ECC was performed with a flow of about 80 ml/min/ kg. The ECC system with the VFP showed excellent gas exchange efficiency compared with that of the RP. The hemodynamics of ECC using the VFP were easily maintained within normal limits. These results suggest that the VFP is very useful as a pump for ECC; thus, a compact-sized ECC system may be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号