首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is an investigation to evaluate in situ adipose tissue regeneration in fat pads. Gelatin microspheres with different water contents were prepared for the controlled release of basic fibroblast growth factor (bFGF). After a collagen sponge scaffold was incorporated by the microspheres containing 0, 0.01, 0.1, 1, and 10 microg of bFGF with or without syngeneic rat preadipocytes (1 x 10(5) cells/site) into a defect of rat fat pad, adipogenesis at the implanted site of scaffold was evaluated histologically. in situ formation of adipose tissue accompanied with angiogenesis was observed in the scaffold implanted with the microspheres containing 1.0 microg of bFGF, although the extent was less at the lower and higher bFGF doses. The in situ formation induced by the microspheres containing bFGF was significantly higher than that induced by free bFGF of the same dose. Adipogenesis was enhanced with time after implantation up to 4 weeks and thereafter leveled off. Such in situ adipogenesis was reproducibly induced by implantation of collagen scaffold incorporating gelatin microspheres containing 1 microg of bFGF, whereas addition of rat syngeneic preadipocytes did not promote the adipogenesis. The degradation of microspheres and the consequent FGF release became faster with an increase in the water content of gelatin microspheres. Less in situ formation of adipose tissue was observed at the lower water content of microspheres, which showed longer-term bFGF release. We conclude that combination of scaffold collagen with an appropriate controlled release of bFGF was essential to achieve the in situ formation of adipose tissue even without preadipocytes.  相似文献   

2.
Controlled release of basic fibroblast growth factor (bFGF) from gelatin microspheres achieved de novo adipogenesis at the implanted site of a basement membrane extract (Matrigel). Following subcutaneous co-implantation of Matrigel and gelatin microspheres incorporating 0.1 microg of bFGF into the back of mice, adipose tissue was formed at the implanted site after 4 weeks postoperatively although the extent increased with implantation time. Formation of adipose tissue was significantly faster than the co-implantation of Matrigel, and 0.1 microg of free bFGF while a larger volume of the adipose tissue formed was retained 15 weeks later. When measured in Matrigel co-implanted with the gelatin microspheres incorporating bFGF, the number of cells infiltrated into Matrigel increased to a significantly high extent compared with the bFGF co-implantation. Matrigel alone was much less effective in inducing formation of adipose tissue. We conclude that gelatin microspheres incorporating bFGF enable Matrigel to efficiently induce de novo adipogenesis at the implanted site in respect to the formation rate and volume of adipose tissue.  相似文献   

3.
De novo adipogenesis at the implanted site of a basement membrane extract (Matrigel) was induced through controlled release of basic fibroblast growth factor (bFGF). bFGF was incorporated into biodegradable gelatin microspheres for its controlled release. When the mixture of Matrigel and bFGF-incorporated gelatin microspheres was implanted subcutaneously into the back of mice, a clearly visible fat pad was formed at the implanted site 6 weeks later. Histologic examination revealed that the de novo formation of adipose tissue accompanied with angiogenesis was observed in the implanted Matrigel at bFGF doses of 0.01, 0.1, and 1 microg/site, the lower and higher doses being less effective. The de novo formation induced by the bFGF-incorporated microspheres was significantly higher than that induced by free bFGF of the same dose. The mRNA of a lipogenesis marker protein, glycerophosphate dehydrogenase, was detected in the formed adipose tissues, biochemically indicating de novo adipogenesis. Free bFGF, the bFGF-incorporated gelatin microspheres, or Marigel alone and bFGF-free gelatin microspheres with or without Matrigel did not induce formation of adipose tissue. This de novo adipogenesis by mixture of Matrigel and the bFGF-incorporated gelatin microspheres will provide a new idea for tissue engineering of adipose tissue.  相似文献   

4.
This study is an investigation to evaluate how the controlled release of basic fibroblast growth factor (bFGF) affects the hair follicle growth of mice in different hair cycle stages: second anagen and second telogen. bFGF was incorporated into biodegradable gelatin hydrogels for its controlled release. After subcutaneous implantation of gelatin hydrogels incorporating 0, 0.7, 7, and 70 microg of bFGF or injection of 0 and 70 microg of free bFGF into the backs of mice, hair follicle growth was evaluated photometrically and histologically on the basis of three parameters: skin color of the reverse side of the implanted or injected site, skin thickness, and area occupied by hair follicle tissue. For mice in second anagen, the darkness of the reverse side of skin implanted with gelatin hydrogel incorporating 7 microg of bFGF was significantly higher than that of skin injected with 70 microg of bFGF 10 days after bFGF application. Implantation of gelatin hydrogel incorporating bFGF enabled the hair follicles to increase the area occupied in skin tissue to a significantly greater extent than in other groups, whereas no effect on skin thickness was observed. bFGF-free, empty gelatin hydrogels did not affect hair follicle growth. Moreover, hair shaft length was significantly elongated by gelatin hydrogel incorporating 7 microg of bFGF, in marked contrast to other agents. The skin of telogen mice receiving gelatin hydrogel incorporating 7 microg of bFGF did not show any change in darkness of reverse skin side or skin thickness, but a significant increase in the size of hair follicles 10 days later. These results indicate that the controlled release of bFGF positively affects the hair growth cycle of mice.  相似文献   

5.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

6.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

7.
Artificial dermis (AD) has been used to regenerate dermis-like tissues in the treatment of full-thickness skin defects, but it takes 2 or 3 weeks to complete dermal regeneration. Our previous study demonstrated that injection of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres (MS) into the AD accelerates the regeneration of dermis-like tissue. However, injection of gelatin MS before clinical use is complicated and time consuming. This study investigated a new scaffold, in which collagen and gelatin are integrated, and which is capable of sustained bFGF release. We produced collagen/gelatin sponges with a gelatin concentration of 0wt%, 10wt%, 30wt%, and 50wt%. The mean pore size in each sponge decreased with the gelatin concentration. In an in vitro study, proliferation of fibroblasts in each sponge was not significantly different over 7 days of culture. As for in vivo sustained release of bFGF, a radioisotope study demonstrated that retention of bFGF in gelatin 10wt% and 30wt% sponges was significantly larger than that in gelatin 0wt% sponge. The collagen/gelatin sponges were grafted on full-thickness skin defects created on a rabbit ear, and we evaluated regeneration of dermis-like tissue by measuring the amount of hemoglobin and size of dermis-like tissue on histological sections. Seven days after implantation, the amount of hemoglobin in dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in control and gelatin 50wt% sponge. Twenty-eight days after implantation, the area of dermis-like tissue in gelatin 10wt% sponge was significantly larger than those in the other specimens. We conclude that the collagen sponge integrated with 10wt% gelatin has the most potential for sustained release of bFGF and that the combination of collagen/gelatin 10wt% sponge and bFGF is a promising therapeutic modality for the treatment of full-thickness skin defects.  相似文献   

8.
Adipose tissue-derived stem cells (ASCs), including preadipocytes, may play an important role in de novo adipogenesis and are expected to be a useful external source of cells for adipose tissue engineering. In this study, we examined in vivo adipogenesis up to 24 weeks after implantation, induced by human ASCs that were isolated from adipose tissues and expanded in vitro. ASCs proliferated in vitro in the presence of basic fibroblast growth factor (bFGF), and the number of cells increased by more than 1000-fold at the fourth passage. The ability to differentiate into mature adipocytes was maintained up to the third passage. We incorporated designated numbers of third-passage-expanded cells into a type I collagen scaffold and implanted them into the back of nude mice with or without controlled-release bFGF. After the implantation of 2 x 10(6) ASCs with controlled-release bFGF, the greatest cross-sectional surface area of adipose tissue in the scaffold was 1.19 mm(2) at 12 weeks and 2.14 mm(2) at 24 weeks. About 2 x 10(6) ASCs with controlled-release bFGF was the best condition for total adipogenesis. Immunohistochemical analysis with antihuman vimentin antibody showed that the area of human-origin adipose tissue was maximum in the group with 8 x 10(6) ASCs incorporated in a scaffold at both 12 and 24 weeks. The amount of human-origin adipose tissue increased in all groups with implanted ASCs from 12 to 24 weeks. Only trace of human-origin adipose tissue was observed in other groups implanted ASCs. Our results show that human ASCs not only function as progenitor cells for in vivo adipogenesis, but also induce de novo adipogenesis for long period.  相似文献   

9.
We examined whether transplantation of autologous bone marrow mononuclear cells (BM-MNCs) can augment neovascularization and bone regeneration of bone marrow in femoral bone defects of rabbits. Gelatin microspheres containing basic fibroblast growth factor (bFGF) were prepared for the controlled release of bFGF. To evaluate the in vivo effect of implanted BM-MNCs, we created bone defects in the rabbit medial femoral condyle, and implanted into them 5 x 10(6) fluorescent-labeled autologous BM-MNCs together with gelatin microspheres containing 10 microg bFGF on an atelocollagen gel scaffold. The four experimental groups, which were Atelocollagen gel (Col), Col + 5 x 10(6) BM-MNCs, Col + 10 microg bFGF, and Col + 5 x 10(6) BM-MNCs + 10 microg bFGF, were implanted into the sites of the prepared defects using Atelocollagen gel as a scaffold. The autologous BM-MNCs expressed CD31, an endothelial lineage cell marker, and induced efficient neovascularization at the implanted site 2 weeks after implantation. Capillary density in Col + BM-MNCs + bFGF was significantly large compared with other groups. This combination also enhanced regeneration of the bone defect after 8 weeks to a significantly greater extent than either BM-MNCs or bFGF on their own. In summary, these findings demonstrate that a combination of BM-MNCs and bFGF gelatin hydrogel enhance the neovascularization and the osteoinductive ability, resulting in bone regeneration.  相似文献   

10.
To regenerate periodontal tissues, a sandwich membrane composed of a collagen sponge scaffold and gelatin microspheres containing basic fibroblast growth factor (bFGF) in a controlled-release system was developed according to the new concept of "in situ tissue engineering." A three-walled alveolar bone defect (3 x 4 x 4 mm) was made bilaterally in edentulous regions created mesially to the canines in both the maxilla and mandible of nine beagle dogs. A sandwich membrane with or without bFGF (100 microg) was implanted in each defect (each group, n = 18). During weeks 1, 2, and 4, histologic evaluation and histometric analyses were performed on three dogs. Throughout the 4 weeks, vascularization and osteogenesis were active only in the bFGF-treated group (p < 0.01). New cementum was formed (2.4 +/- 0.9 mm) on the exposed root surface at 4 weeks, and functional recovery of the periodontal ligament was indicated in part by the perpendicular orientation of regenerated collagen fibers. In the control group, epithelial downgrowth and root resorption occurred and the defects were filled with connective tissue. Thus, our sandwich membrane induced successful regeneration of the periodontal tissues in a short period of time.  相似文献   

11.
Adipose tissue forms when basement membrane extract (Matrigel) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 microL collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.  相似文献   

12.
Adipose tissue engineering for breast reconstruction can be performed for patients who have undergone breast surgery. We have previously confirmed adipogenesis in mice implanted with type I collagen sponge with controlled release of fibroblast growth factor 2 (FGF2) and human adipose tissue-derived stem cells. However, in order to use this approach to treat breast cancer patients, a large amount of adipose tissue is needed, and FGF2 is not readily available. Thus, we aimed to regenerate large amounts of adipose tissue without FGF2 for a long period. Under general anesthesia, cages made of polypropylene mesh were implanted into the rabbits’ bilateral fat pads. Each cage was 10 mm in radius and 10 mm in height. Minced type I collagen sponge was injected as a scaffold into the cage. Regenerated tissue in the cage was examined with ultrasonography, and the cages were harvested 3, 6, and 12 months after the implantation. Ultrasonography revealed a gradually increasing homogeneous high-echo area in the cage. Histology of the specimen was assessed with hematoxylin and eosin staining. The percentages of regenerated adipose tissue area were 76.2 ± 13.0 and 92.8 ± 6.6 % at 6 and 12 months after the implantation, respectively. Our results showed de novo adipogenesis 12 months after the implantation of only type I collagen sponge inside the space. Ultrasonography is a noninvasive and useful method of assessing the growth of the tissue inside the cage. This simple method could be a promising clinical modality in breast reconstruction.  相似文献   

13.
The objective of this study was to evaluate the effect of incorporation of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres into an artificial dermis on the regeneration of dermis-like tissues. When used in the free form in vivo, bFGF cannot induce sufficient wound healing activity, because of its short half-life. Therefore, sustained release of bFGF was achieved by impregnation into biodegradable gelatin microspheres. A radioisotope study revealed that incorporation of bFGF-impregnated gelatin microspheres significantly prolonged in vivo retention of bFGF in the artificial dermis. Artificial dermis with incorporated bFGF-impregnated gelatin microspheres or bFGF in solution was implanted into full-thickness skin defects on the back of guinea pigs (1.5 cm x 1.5 cm) (n = 4). Incorporation of bFGF into the artificial dermis accelerated fibroblast proliferation and capillary formation in a dose-dependent manner. However, the accelerated effects were more significant with the incorporation of bFGF-impregnated gelatin microspheres than with free bFGF at doses of 50 microg or higher. We conclude that the gelatin microsphere is a promising tool to accelerate bFGF-induced tissue regeneration in artificial dermis.  相似文献   

14.
The objective of this study is to examine whether or not bone formation at a skull bone defect induced by gelatin microspheres incorporating transforming growth factor (TGF)-beta1 is promoted by prevention of fibrous tissues into the defect. The 6-mm diameter bone defect of rabbit skulls was applied with gelatin microspheres incorporating TGF-beta1 or free TGF-beta1 and physically covered by a barrier membrane. When the bone formation at the defect was assessed 6 weeks postoperatively, combinational application of gelatin microspheres incorporating 0.1 microg of TGF-beta1 with the barrier membrane induced bone formation at the skull defect, in marked contrast to that of 0.1 microg of free TGF-beta1 and empty gelatin microspheres. Complete defect closure was histologically observed by the newly formed bone tissue. Without the barrier membrane, gelatin microspheres incorporating TGF-beta1 were less effective in inducing bone formation, whereas free TGF-beta1 and empty gelatin microspheres were ineffective. The skull defect was occupied by fibrous tissue infiltrated in place of bone tissue. The bone mineral density at the skull defect applied with gelatin microspheres incorporating TGF-beta1 plus the membrane was significantly higher than that of gelatin microspheres incorporating TGF-beta1 alone. The present data indicated that physical protection from the soft tissue infiltration enabled gelatin microspheres incorporating TGF-beta1 to synergistically enhance the osteoinductive ability at the skull defect.  相似文献   

15.
De novo adipose tissue formation appears to proceed via two different biological events: neovascularization and spontaneous accumulation of preadipocytes and subsequent differentiation to mature adipocytes. In this article, we perform accelerated de novo adipose tissue engineering using photocured, styrenated, gelatin-based microspheres (SGMs) with different drug release rates of immobilized angiogenic and adipogenic factors. The concept of this system is to induce neovascularization and migration of endogenous preadipocytes by the rapid delivery of the angiogenic factor basic fibroblast growth factor (bFGF), followed by the proliferation and differentiation of preadipocytes into adipocytes by the prolonged delivery of the adipogenic factors, insulin and insulin-like growth factor I (IGF-I). Bioactive substance-immobilized SGMs with different drug release rates were prepared with different gelatin concentrations. An in vitro study showed the prolonged release of an immobilized model protein and the dependence of drug release rate on gelatin concentration. After the subcutaneous injections of SGMs immobilized with these bioactive substances in different combinations, the formation of masses or clusters of adipocytes was observed in rats. Triglyceride content in the injection site for the group that received bFGF-, insulin-, and IGF-I-immobilized SGMs was significantly higher than that for the group that received insulin- and IGF-I-immobilized SGMs 4 weeks after the injection of microspheres. These results suggest that the system developed here is effective for the de novo formation of adipose tissue as it enables the induction of the two-step biological reaction by single injection.  相似文献   

16.
We need a better method of assessing adipose tissue formation non-invasively than the current one, which requires resecting tissue samples in vivo. The aim of this study was to establish a system to evaluate adipogenesis using laser Doppler imaging (LDI) to measure subcutaneous microcirculation. CGSs containing adipose stem cells with or without bFGF were implanted in the backs of 30 mice. Once per week after implantation, LDI was used to evaluate blood flow at the implantation site. The implantation sites were resected at 6 weeks, and the tissue was weighed. Six weeks after implantation, LDI showed that mice who received CGS with 1 μg/cm2 bFGF had the greatest mean blood flow, and these mice had the heaviest resected specimens, which contained the most newly formed adipose tissue. The findings for LDI and the weight findings were compatible. This study indicates that LDI could be used to assess subcutaneous tissue regeneration in vivo in a real-time, non-invasive manner.  相似文献   

17.
Adipose tissue engineering by human adipose-derived stromal cells   总被引:12,自引:0,他引:12  
Tissue engineering has emerged as a promising alternative approach to current clinical treatments for restoration of soft tissue defects. The purpose of this study was to investigate adipose tissue formation in vitro and in vivo by using human adipose-derived stromal cells (ADSCs) utilizing a gelatin sponge (Gelform) as a scaffold. Adipogenic potentials of human ADSCs were demonstrated by Oil-O-red staining and cellular morphology. After seeding human ADSCs in a density of 3 x 10(6) cells/ml on three-dimensional gelatin sponges, tissue-engineered constructs were exposed to adipogenic differentiation medium for in vitro studies and implanted in the backs of severe combined immunodeficient (SCID) mice for in vivo adipose regeneration. Adipogenesis of ADSC-seeded gelatin sponges was confirmed by Oil-O-red staining after 4 weeks of in vitro incubation. The optical density of the elution from Oil-O-red staining of adipogenic constructs is significantly higher than that of the control group (p < 0.05, n = 4). With short-term in vitro differentiation, adipogenic constructs turned into fat tissue 4 weeks after in vivo implantation, confirmed by biochemical and immunohistochemical examination. No adipogenic-morphological change or fat formation was observed in in vitro or in vivo studies when ADSCs were exposed to a control medium without adipogenic stimulation. These results indicate that engineered adipose tissue can be achieved using human ADSCs and biocompatible and degradable gelatin sponges.  相似文献   

18.
Adult mesenchymal stem cells (MSCs), found in the bone marrow, have the potential to differentiate into multiple connective tissue types, including cartilage. In this study, we examined the potential of a porous gelatin sponge, Gelfoam, for use as a delivery vehicle for MSCs in cartilage regeneration therapy. Adult human MSCs (hMSCs) were seeded throughout the gelatin sponge after a 2-h incubation period. When cultured for 21 days in vitro in a defined medium supplemented with 10 ng/mL of TGF-beta 3, hMSC/Gelfoam constructs produced a cartilage-like extracellular matrix containing sulfated glycosaminoglycans (s-GAGs) and type-II collagen, as evident upon histologic evaluation. Constructs loaded with a cell suspension of 12 x 10(6) cells/mL produced an extracellular matrix containing 21 microg of s-GAG/microg of DNA after 21 days of culture. This production was more efficient than constructs loaded at higher or lower cell densities, indicating that the initial seeding density influences the ability of cells to produce extracellular matrix. When implanted in an osteochondral defect in the rabbit femoral condyle, Gelfoam cylinders were observed to be very biocompatible, with no evidence of immune response or lymphocytic infiltration at the site. Based on these observations we conclude that Gelfoam resorbable gelatin sponge is a promising candidate as a carrier matrix for MSC-based cartilage regeneration therapies.  相似文献   

19.
We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin.  相似文献   

20.
Ozeki M  Tabata Y 《Biomaterials》2002,23(11):2367-2373
The objective of this study is to investigate whether or not the controlled release of vascular endothelial growth factor (VEGF) is effective in promoting the hair follicle growth of mice in second anagen of hair cycle. VEGF was incorporated into a biodegradable collagen hydrogel for its controlled release. Following implantation of the collagen hydrogel incorporating 0 or 2 microg of VEGF and injection of 0 or 2 microg of VEGF in the solution form into the back subcutis of mice, the hair follicle growth was evaluated photometrically and histologically in terms of the skin color of reverse side of the implanted or injected site, the skin thickness, and the area occupied by hair follicle tissue. Ten days later, the skin color of mice implanted with the collagen hydrogel incorporating 2 microg of VEGF was significantly darker than that injected with 2 pg of VEGF. The collagen hydrogel incorporating VEGF increased the hair follicle area at the implanted site to a significantly greater extent than other agents while significant angiogenetic effect in the skin tissue was observed. VEGF-free, empty collagen hydrogels did not affect the skin darkness, hair follicle growth, and the angiogenesis. Moreover, the hair shaft length was significantly elongated by the collagen hydrogel incorporating VEGF, in marked contrast to other agents. Immunohistolchemicalstaining with proliferating cell nuclear antigen revealed that the collagen hydrogel incorporating VEGF promoted the proliferation of cells around the hair follicle more frequently than free VEGF. We concluded that the controlled release of VEGF more positively acted on the hair growth cycle of mice for hair growth than the injection of free VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号