首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We present the case of a maternal heterodisomy for chromosome 7 in the daughter of a t(7;16)(q21;q24) reciprocal translocation carrier. The proband was referred to the hospital for growth retardation and minor facial dysmorphism without mental retardation. A diagnosis of Silver-Russell syndrome was suspected. Chromosomal analysis documented a 46,XX,t(7;16)(q21;q24)mat chromosome pattern. Microsatellite analysis showed a normal biparental inheritance of chromosome 16 but a maternal heterodisomy of chromosome 7. Occurrence of uniparental disomy (UPD) is a well-recognized consequence of chromosomal abnormalities that increase the rate of meiotic nondisjunction, mainly Robertsonian translocations and supernumerary chromosomes. Although reciprocal translocations should, theoretically, be also at increased risk of UPD, only three cases have been reported so far. However, because the association between uniparental disomy and reciprocal translocation may exist with an underestimated frequency, prenatal diagnosis is recommended when clinically relevant chromosomes for UPD are involved.  相似文献   

2.
Aberrant methylation at different imprinted loci has been reported for several congenital imprinting disorders, that is, Silver-Russell syndrome (SRS), but the coincidental occurrence of aberrant methylation and uniparental disomy (UPD) has not yet been described. We report on a patient initially diagnosed with SRS carrying a segmental maternal UPD of chromosome 7 [upd(7q)mat]. By further screening the patient's DNA for methylation defects on other chromosomes we identified a hypomethylation of the paternally methylated DLK1/GTL2 locus in 14q32, an epigenotype typically associated with the upd(14)mat phenotype. Detailed clinical analysis confirmed the molecular finding in the patient indicating that the 14q32 epimutation was clinically preponderant. The parallel occurrence of upd(7q)mat and a DLK1/GTL2 hypomethylation in the same patient is a unique finding. Indeed, both disturbances might have occurred coincidentally, but it can also be hypothesized that the upd(7q)mat as the initial genomic mutation represents a trans-acting mutation causing an aberrant methylation in 14q32.  相似文献   

3.
We present the case of a maternal heterodisomy for chromosome 7 in the daughter of a t(7;16)(q21;q24) reciprocal translocation carrier. The proband was referred to the hospital for growth retardation and minor facial dysmorphism without mental retardation. A diagnosis of Silver‐Russell syndrome was suspected. Chromosomal analysis documented a 46,XX,t(7;16)(q21;q24)mat chromosome pattern. Microsatellite analysis showed a normal biparental inheritance of chromosome 16 but a maternal heterodisomy of chromosome 7. Occurrence of uniparental disomy (UPD) is a well‐recognized consequence of chromosomal abnormalities that increase the rate of meiotic nondisjunction, mainly Robertsonian translocations and supernumerary chromosomes. Although reciprocal translocations should, theoretically, be also at increased risk of UPD, only three cases have been reported so far. However, because the association between uniparental disomy and reciprocal translocation may exist with an underestimated frequency, prenatal diagnosis is recommended when clinically relevant chromosomes for UPD are involved. © 2002 Wiley‐Liss, Inc.  相似文献   

4.
Maternal uniparental disomy for chromosome 7 (UPD7) may present with a characteristic phenotype reminiscent of Silver-Russell syndrome (SRS). Previous studies have suggested that approximately 10% of SRS patients have maternal UPD7. We describe a girl with a mos47,XX,+mar/46,XX karyotype associated with the features of SRS. Chromosome painting using a chromosome 7 specific probe pool showed that the small marker was a ring chromosome 7 (r(7)). PCR based microsatellite marker analysis of the patient detected only one maternal allele at each of 16 telomeric loci examined on chromosome 7, but showed both paternal and maternal alleles at four centromeric loci. Considering her mosaic karyotype composed ofdiploid cells and cells with partial trisomy for 7p13-q11, the allele types obtained at the telomeric loci may reflect the transmission of one maternal allele in duplicate, that is, maternal UPD7 (complete isodisomy or homodisomy 7), whereas those at the centromeric loci were consistent with biparental contribution to the trisomic region. It is most likely that the patient originated in a 46,XX,r(7) zygote, followed by duplication of the maternally derived whole chromosome 7 in an early mitosis, and subsequent loss of the paternally derived ring chromosome 7 in a subset of somatic cells. The cell with 46,XX,r(7) did not survive thereafter because of the monosomy for most of chromosome 7. If the putative SRS gene is imprinted, it can be ruled out from the 7p11-q11 region, because biparental alleles contribute to the region in our patient.  相似文献   

5.
Maternal uniparental disomy for chromosome 14 [upd(14)mat] is associated with a characteristic phenotype including pre- and postnatal growth retardation, muscular hypotonia, feeding problems, motor delay, small hands and feet, precocious puberty and truncal obesity. Patients with upd(14)mat show features overlapping with Prader-Willi syndrome (PWS) and are probably underdiagnosed. Maternal upd(14) is frequently described in carriers of a Robertsonian translocation involving chromosome 14, but is also found in patients with a normal karyotype. Based on the above mentioned criteria we have identified six patients with upd(14)mat including two patients with a normal karyotype, one patient with a de novo Robertsonian translocation (14;21), one patient with a familial Robertsonian translocation (13;14) and two patients with a marker chromosome. In addition, we analyzed a cohort of 33 patients with low birth weight, feeding difficulties and consecutive obesity in whom PWS had been excluded by methylation analysis of SNRPN. In four of these patients (12%) we detected upd(14)mat. For rapid testing of upd(14)mat we analyzed the methylation status of the imprinted MEG3 locus. In conclusion, we recommend considering upd(14)mat in patients with low birth weight, growth retardation, neonatal feeding problems, muscular hypotonia, motor delay, precocious puberty and truncal obesity as well as in patients with a PWS like phenotype presenting with low birth weight, feeding difficulties and obesity.  相似文献   

6.
Maternal uniparental disomy 7 in Silver-Russell syndrome.   总被引:4,自引:2,他引:4       下载免费PDF全文
Silver-Russell syndrome (SRS) is characterised by intrauterine and postnatal growth failure accompanied by a variable number of dysmorphic features. It is usually sporadic although a few familial cases have been described. In a prospective study of 33 patients with sporadic SRS, we have studied the parent of origin of chromosome 7 using variable number tandem repeat (VNTR) or microsatellite repeat markers and have identified two patients with maternal uniparental disomy of chromosome 7 (mUPD7). In one family, inconsistent inheritance of paternal alleles of markers on chromosomes other than 7 led to their exclusion from further study. The probands were clinically mild and symmetrical, but showed no gross clinical differences from the 30 patients with chromosome 7 derived from both parents.  相似文献   

7.
Silver-Russell syndrome (SRS MIM180860) is a disorder characterised by intrauterine and/or postnatal growth restriction and typical facies. However, the clinical picture is extremely diverse due to numerous diagnostic features reflecting a heterogeneous genetic disorder. The mode of inheritance is variable with sporadic cases also being described. Maternal uniparental disomy (mUPD) of chromosome 7 accounts for 10% of SRS cases and many candidate imprinted genes on 7 have been investigated. Chromosome 11 has moved to the forefront as the key chromosome in the aetiology, with reports of methylation defects in the H19 imprinted domain associated with the phenotype in 35-65% of SRS patients. Methylation aberrations have been described in a number of other imprinted growth related disorders such as Beckwith-Wiedmann syndrome. This review discusses these recent developments as well as the previous work on chromosome 7. Other candidate genes/chromosomal regions previously investigated are tabled.  相似文献   

8.
9.
Maternal uniparental disomy for the entire chromosome 7 hasso far been reported in three patients with intrauterine andpostnatal growth retardation. Two were detected because theywere homozygous for a cystic fibrosis mutation for which onlythe mother was heterozygous, and one because he was homozygousfor a rare COL1A2 mutation. We investigated 35 patients witheither the Silver-Russell syndrome or primordial growth retardationand their parents with PCR markers to search for uniparentaldisomy 7. Four of 35 patients were found to have maternal disomy,including three with isodisomy and one with heterodisomy. Thedata confirm the hypothetical localization of a maternally imprintedgene (or more than one such gene) on chromosome 7. It is suggestedto search for UPD 7 in families with an offspring with sporadicSilver-Russell syndrome or primordial growth retardation.  相似文献   

10.
Intrauterine growth retardation (IUGR) is defined as length and/or weight below the 10th percentile. Etiology and, consequently, long-term outcome are extremely heterogeneous with chromosomal abnormalities found in up to 7%. Recently, uniparental disomy (UPD), i.e. the inheritance of both homologues of one pair of chromosomes from only one parent, was found in an increasing number of children with IUGR. Particularly, UPD of chromosome 7 was found in up to 10% of patients with IUGR and/or a phenotype of primordial growth retardation or Silver-Russell syndrome (SRS), but also UPD of chromosomes 2, 6, 14, 16, 20, and 22 was reported in single cases with IUGR. To evaluate impact and relevance of UPD in children with IUGR we investigated 23 sporadic cases with IUGR subsequently diagnosed as primordial growth retardation (n = 13) or SRS (n = 10) by molecular methods for UPD of chromosomes 2, 6, 14, 16, 20, and 22. No instance of UPD was found. Inheritance of all chromosomes investigated was biparental in all cases. Therefore, we conclude that UPD of these chromosomes is not a major cause of IUGR.  相似文献   

11.
Human PEG1/MEST, an imprinted gene on chromosome 7   总被引:10,自引:3,他引:10  
The mouse Peg1/Mest gene is an imprinted gene that is expressed particularly in mesodermal tissues in early embryonic stages. It was the most abundant imprinted gene among eight paternally expressed genes (Peg 1-8) isolated by a subtraction-hybridization method from a mouse embryonal cDNA library. It has been mapped to proximal mouse chromosome 6, maternal duplication of which causes early embryonic lethality. The human chromosomal region that shares syntenic homology with this is 7q21-qter, and human maternal uniparental disomy 7 (UPD 7) causes apparent growth deficiency and slight morphological abnormalities. Therefore, at least one paternally expressed imprinted gene seems to be present in this region. In this report, we demonstrate that human PEG1/MEST is an imprinted gene expressed from a paternal allele and located on chromosome 7q31-34, near D7S649. It is the first imprinted gene mapped to human chromosome 7 and a candidate for a gene responsible for primordial growth retardation including Silver-Russell syndrome (SRS).   相似文献   

12.
Many patients with maternal uniparental disomy of chromosome 7 (UPD7) have been described, mainly with intrauterine and postnatal growth retardation or with Silver-Russell syndrome. In contrast, only three cases of paternal UPD7 have been reported, all associated with recessive disorders. Here, we report on the clinical and molecular data of the third patient with paternal UPD7 and cystic fibrosis. Pre- and postnatal growth were normal. These findings support the hypothesis that paternal isodisomy for human chromosome 7 may have no phenotypic effect on growth.  相似文献   

13.
Silver-Russell syndrome (SRS) shares common features of intrauterine growth retardation (IUGR) and a number of dysmorphic features including lateral asymmetry in about 50% of subjects. Its genetic aetiology is complex and most probably heterogeneous. Approximately 7% of patients with SRS have been found to have maternal uniparental disomy of chromosome 7 (mUPD7). Genomic DNA samples from five SRS patients with mUPD7 have been analysed for common regions of isodisomy using 40 polymorphic markers distributed along the length of chromosome 7. No regions of common isodisomy were found among the five patients. It is most likely that imprinted gene(s) rather than recessive mutations cause the common phenotype. Heterodisomy of markers around the centromere indicated that the underlying cause of the mUPD7 is a maternal meiosis I non-disjunction error in these five subjects.  相似文献   

14.
To date, uniparental disomy (UPD) with phenotypic relevance is described for different chromosomes and it is likely that additional as yet unidentified UPD phenotypes exist. Due to technical difficulties and limitations of time and resources, molecular analyses for UPD using microsatellite markers are only performed in cases with specific phenotypic features. In this study, we carried out a whole genome UPD screening based on a microarray genotyping technique. Six patients with the diagnosis of both complete or segmental UPD including Prader-Willi syndrome (PWS; matUPD15), Angelman syndrome (AS; patUPD15), Silver-Russell syndrome (SRS; matUPD7), Beckwith-Wiedemann syndrome (BWS; patUPD11p), pseudohypoparathyroidism (PHP; patUPD20q) and a rare chromosomal rearrangement (patUPD2p, matUPD2q), were genotyped using the GeneChip Human Mapping 10K Array. Our results demonstrate the presence of UPD in the patients with high efficiency and reveal clues about the mechanisms of UPD formation. We thus conclude that array based SNP genotyping is a fast, cost-effective, and reliable approach for whole genome UPD screening.  相似文献   

15.
Maternal uniparental disomy 14 (UPD(14)mat) and related (epi)genetic aberrations affecting the 14q32.2 imprinted region result in a clinically recognizable condition which is recently referred to as Temple Syndrome (TS). Phenotypic features in TS include pre- and post-natal growth failure, prominent forehead, and feeding difficulties that are also found in Silver–Russell Syndrome (SRS). Thus, we examined the relevance of UPD(14)mat and related (epi)genetic aberrations to the development of SRS in 85 Japanese patients who satisfied the SRS diagnostic criteria proposed by Netchine et al and had neither epimutation of the H19-DMR nor maternal uniparental disomy 7. Pyrosequencing identified hypomethylation of the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the MEG3-DMR in two cases. In both cases, microsatellite analysis showed biparental transmission of the homologs of chromosome 14, with no evidence for somatic mosaicism with full or segmental maternal isodisomy involving the imprinted region. FISH and array comparative genomic hybridization revealed neither deletion of the two DMRs nor discernible copy number alteration in the 14q32.2 imprinted region. Methylation patterns were apparently normal in other six disease-associated DMRs. In addition, a thorough literature review revealed a considerable degree of phenotypic overlap between SRS and TS, although body asymmetry was apparently characteristic of SRS. The results indicate the occurrence of epimutation affecting the IG-DMR and the MEG3-DMR in the two cases, and imply that UPD(14)mat and related (epi)genetic aberrations constitute a rare but important underlying factor for SRS.  相似文献   

16.
Silver-Russell syndrome (SRS) is a clinically heterogeneous disorder characterised mainly by intrauterine and postnatal growth retardation. While maternal uniparental disomy of chromosome 7 is found in 5-10% of SRS patients, recently genetic and epigenetic mutations affecting the imprinting centres on chromosome 11p15 have been reported in up to 64% of patients. Chromosome 11p15 abnormalities reported in SRS include methylation defects in the imprinting centre 1 (ICR1) and maternally inherited duplications involving all or part of the imprinted region of 11p15. Here we report the first published case of SRS with mosaic maternal uniparental disomy of chromosome 11.  相似文献   

17.
Silver-Russell syndrome and exclusion of uniparental disomy   总被引:2,自引:0,他引:2  
Recently, maternal uniparental disomy for the entire chromosome 7 was described in three of 25 Silver-Russell syndrome sporadic cases, yet the etiology of the remaining cases is unclear. Two cases with Silver-Russell syndrome and a balanced translocation involving the 17q25 had been reported. We looked for evidence of genomic imprinting due to uniparental disomy 17 in seven patients with sporadic Silver-Russell syndrome and their parents. Additionally, chromosomes 7, 8, 11 and 20 were studied. Uniparental disomy was ruled out for all these chromosomes in six of seven families; one family was informative only for chromosome 17. Notwithstanding our negative results, it is still possible that uniparental disomy plays a part in this syndrome. A mutation in a Mendelian gene in 17q25 could also account for the Silver-Russell syndrome etiology.  相似文献   

18.
All systematic searches for uniparental disomy (UPD) so far published and comprising clinically defined populations (Silver-Russell syndrome/primordial growth retardation (SRS/PGR) (n = 14), multiple malformations (n = 2), or rare syndromes (n = 12)) or situations at risk (confined placental mosaicism (CPM) (n = 13), spontaneous abortions (n = 6), additional marker chromosomes (n = 15), balanced non-Robertsonian translocations (n = 3), or balanced Robertsonian translocations (n = 15)) were reviewed. In many studies clinical and/or cytogenetic information on fluorescent in situ hybridization (FISH) results was very scarce. Meta-analysis concerning an adequate number of cases was possible for SRS/PGR, CPM, additional marker chromosomes, and balanced Robertsonian translocations only. As expected, the highest risk for UPD was found in cases with translocations between homologous acrocentric chromosomes (11 cases with UPD of 15 investigated) and in CPM due to a meiotic error (25 of 51 cases).In prenatal investigations or in cases with a normal phenotype, translocations between nonhomologous acrocentric chromosomes implied a risk for UPD of less than 0.5%. The risks for maternal UPD 7 in cases with SRS/PGR, for UPD 15 in cases with an additional inv dup(15) marker chromosome, and for UPD of any chromosome in cases with multiple malformation/mental retardation were approximately 5.5%, and approximately 1.3%, respectively. Searches for UPD in well-defined syndromes (Brachmann-De Lange syndrome, Sotos syndrome, Rett syndrome, Weaver syndrome, or XX true hermaphroditism) were disappointing. Not a single case was found.  相似文献   

19.
Maternal uniparental disomy of chromosome 21 [upd(21)mat] was found previously in a normal female and in 2 cases of early embryonic failure. We present a phenotypically normal child with upd(21)mat due to a de novo der(21;21)(q10;10). This finding suggests that chromosome 21 is not imprinted in the maternal germline.  相似文献   

20.
The clinical presentation of prenatal and postnatal growth deficiency, triangular face, relative macrocephaly, and body asymmetry is frequently diagnosed as Russell-Silver syndrome (RSS). Maternal uniparental disomy (UPD) of chromosome 7 was reported previously in a small subset of individuals with RSS phenotype or primordial growth retardation. The primary purpose of this study was to identify RSS patients with UPD7 and determine whether or not they present phenotypic findings that distinguish them from RSS patients without UPD7. UPD7 testing was performed in 40 patients with unexplained growth retardation, including 21 patients with a diagnosis of RSS. In addition, a subset of patients was screened with markers spanning chromosome 7 to detect potential microdeletions or segmental uniparental disomy. Two of the RSS cases were identified to have maternal UPD7; no cases with deletion or partial UPD were detected. Together with previously published studies, UPD7 was identified in 11/120 (9%) of individuals with classical RSS phenotype. Our patients with UPD7 and those previously published had a classical RSS phenotype and were not clinically distinguishable from other children diagnosed with RSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号