首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibitory collagen receptor LAIR-1 (CD305)   总被引:1,自引:0,他引:1  
The immune system protects the body from invaders such as viruses and bacteria. Immune cells must be activated in the correct context to function properly. It is critical that the receptors, costimulatory molecules, and cytokines that orchestrate this activation are carefully regulated to prevent uncontrolled inflammation and autoimmunity. Inhibitory receptors play an important role in regulation of immune cell function, usually upon interaction with ligands present on other cells. In contrast, the function of the inhibitory leukocyte-associated Ig-like receptor (LAIR)-1 can be regulated by extracellular matrix collagens. LAIR-1 is expressed on most cells of the immune system, and its function has been studied on multiple cell types. This review summarizes current literature about LAIR-1, a receptor that potentially is able to regulate multiple steps of an immune response.  相似文献   

2.
目的 研究抑制性受体LAIR-1在巨核谱系细胞的表达及其对巨核细胞分化的调节作用.方法 采用流式细胞术和激光共聚焦显微镜检测LAIR-1在巨核谱系细胞的表达;免疫磁珠法纯化脐血CD34+细胞,体外无血清培养系统诱导CD34+细胞向巨核细胞分化,观察LAIR-1被抗体或配体交联激活后对巨核细胞分化的影响.结果 LAIR-1表达于人骨髓CD34+ CD41a+和CD41a+ CD42b+细胞以及脐血CD34+ CD41a -和CD34+ CD41a+细胞;脐血CD34+细胞向巨核细胞分化过程中,LAIR-1表达在倍性为2N和4N的不成熟CD41a+细胞上;交联激活LAIR-1分子能够抑制脐血CD34+细胞向巨核细胞的分化.结论 LAIR-1可能是参与巨核细胞早期分化发育的一种新的负调控分子.  相似文献   

3.
 目的 研究抑制性受体LAIR-1在巨核谱系细胞的表达及其对巨核细胞分化的调节作用。方法 采用流式细胞术和激光共聚焦显微镜检测LAIR-1在巨核谱系细胞的表达;免疫磁珠法纯化脐血CD34+细胞,体外无血清培养系统诱导CD34+细胞向巨核细胞分化,观察LAIR-1被抗体或配体交联激活后对巨核细胞分化的影响。结果 LAIR-1表达于人骨髓CD34+CD41a+和CD41a+CD42b+细胞以及脐血CD34+CD41a-和CD34+CD41a+细胞;脐血CD34+细胞向巨核细胞分化过程中,LAIR-1表达在倍性为2N和4N的不成熟CD41a+细胞上;交联激活LAIR-1分子能够抑制脐血CD34+细胞向巨核细胞的分化。结论 LAIR-1可能是参与巨核细胞早期分化发育的一种新的负调控分子。  相似文献   

4.
The leukocyte-associated Ig-like receptor-1 (LAIR-1) is capable of inhibiting immune cell function through interaction with collagens. LAIR is expressed on the majority of peripheral blood mononuclear cells. The abundant expression of both receptor and ligand calls for regulatory mechanisms to relieve the continuous interaction between collagens and LAIR-1. This regulation may occur at the expression level of the receptor. Here, we report that LAIR-1 is indeed differentially expressed during human T cell differentiation. Naive CD4(+) and CD8(+) T cells as well as CD8(+) T cells of the effector phenotype express higher levels of LAIR-1 compared to memory T cells. In vitro stimulation revealed a decrease in LAIR-1 expression upon activation, and the lower LAIR-1 expression on CD127(-) T cells suggests that activation-induced down-modulation of LAIR-1 may also occur in vivo. Furthermore, crosslinking of LAIR-1 on primary T cells results in an inhibition of T cell function. Our data suggest that regulated expression of LAIR-1 and the subsequent change in the threshold for activation may be a mechanism to modulate inhibition of the immune system.  相似文献   

5.
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.  相似文献   

6.
The molecular bases responsible for the loss of T cell tolerance to myelin antigens leading to the onset of multiple sclerosis remain obscure. It has been shown that balanced signaling through activating and inhibitory receptors is critical for the maintenance of tolerance to self antigens in autoimmune disorders. However, although FcgammaR have been shown to influence experimental autoimmune encephalomyelitis (EAE) development, their role during pathogenesis remains controversial. Here we have evaluated whether relative expression of activating (FcgammaRIII) and inhibitory (FcgammaRIIb) FcgammaR can modulate myelin-specific T cell response, as well as the susceptibility to develop EAE in mice. While FcgammaRIIb(-/-) mice showed a significant increase in EAE severity, an FcgammaRIII deficiency protected mice from disease. In addition, FcgammaRIIb(-/-) mice showed enhanced activation of myelin-specific effector T cells, which were significantly more effective at causing EAE in adoptive transfer experiments than were T cells from wild-type mice. In contrast, FcgammaRIII(-/-) mice showed a significantly reduced activation of myelin-specific T cells and these cells failed to adoptively transfer EAE. Consistently, increased expansion of regulatory T cells (Treg) during EAE was observed only for FcgammaRIII(-/-) mice, which were able to suppress disease when adoptively transferred to recipient mice. These findings suggest that the balance between activating and inhibitory FcgammaR signaling can contribute to the maintenance of T cell tolerance to myelin antigens and modulate EAE progression.  相似文献   

7.
Aseptic loosening remains the major problem facing arthroplasty longevity with particulates from component materials touted as the cause of periprosthetic osteolysis. Proposed mechanisms in aseptic bone loss include: increased resorption, increased differentiation of osteoclasts (and/or macrophages locally), and decreased osteoblastic bone formation. Leukotrienes participate in osteoclastic bone resorption. We investigated inhibiting leukotrienes synthesis, using ICI 230487, to ameliorate the effects of particulates on osteoclast pit formation and also assessed the effects of alendronate, a bisphosphonate, on pit formation. Three particulates were used: ultra high molecular weight polyethylene (UHMWPE), polymethylmethacrylate (PMMA) and hydroxyapatite (HA). Osteoclast resorption was increased with UHMWPE, PMMA, and HA particles. Interventions with alendronate and ICI 230487 reduced particulate-induced osteoclast resorption. Both ICI 230487 and alendronate reduced osteoclast numbers at higher doses. To assess the effect of particulates on osteoclast and macrophage differentiation, mouse bone marrow was cultured and stained for tartrate resistant acid phosphatase colonies (TRAP+, osteoclasts) and nonspecific esterase positive colonies (NSE+, macrophage precursors). Particulates increased both TRAP+ and NSE+ colony formation. These increases were inhibited by ICI 230487. Particulates also inhibited osteoblast function assessed by the development of mineralized nodules and alkaline phosphatase positive (AP+) colony area. ICI 230487 partly protected osteoblast function from this particulate effect. Blockade of leukotriene production may prove a useful therapeutic intervention for particulate-induced aseptic loosening by inhibiting resorptive activity, reducing the pro-inflammatory cell populations induced and recruited by these particulates, as well as ameliorating the negative effects of inflammatory mediators on osteoblast function.Copyright 2001 John Wiley & Sons, Inc.  相似文献   

8.
9.
10.
Monocytic cells exposed to Borrelia burgdorferi, through unknown receptors, overexpress the urokinase receptor (uPAR), a key mediator of the plasminogen activation system. We show that combined blockade of CD14 and TLR2 causes a significant inhibition of B. burgdorferi-induced uPAR in Mono Mac 6 (MM6) cells. Other pattern recognition receptors tested (CD11b/CD18, the mannose receptor, and the N-formyl-methionyl-leucyl-phenylalanine receptor) did not have demonstrated roles in B. burgdorferi-mediated uPAR induction. We dissected the result for CD14 andTLR2 by investigating the singular contributions of each. Independent functional blockade of CD14 or TLR2 failed to inhibit B. burgdorferi-mediated uPAR induction. 1,25-Dihydroxyvitamin D(3) differentiation of MM6 cells increased CD14 expression 12-fold but did not augment B. burgdorferi-mediated uPAR expression. Peritoneal exudate macrophages (PEM) from CD14- or TLR2-deficient mice were not defective in B. burgdorferi-mediated synthesis of uPAR mRNA and protein. Increased uPAR mRNA or protein or both were apparent in PEM from transgenic and control mice, even at a ratio of one Borrelia spirochete per cell. We conclude that signaling for the uPAR response, as mediated by B. burgdorferi, proceeds with CD14 and TLR2 as partial contributors. That part under control of CD14 and TLR2 represents a new link between the host plasminogen activation and innate immunity systems.  相似文献   

11.
Nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced by the use of molecular adjuvants. For example, coadministration of costimulatory molecules (CD80 and CD86), proinflammatory cytokines (interleukin-1alpha [IL-1alpha], tumor necrosis factor-alpha [TNF-alpha, and TNF-beta), Th1 cytokines (interleukin-2 [IL-2], IL-12, IL-15, and IL-18), Th2 cytokines (IL-4, IL-5, and IL-10), and granulocytes-macrophage colony-stimulating factor (GM-CSF) with DNA vaccine constructs leads to modulation of the magnitude and direction (humoral or cellular) of the immune responses. To further engineer the immune response in vivo, we compared the induction and regulation of immune responses from the codelivery of chemokine (IL-8, interferon-gamma-inducible protein-10 [gammaIP-10], macrophage inhibitory protein-1alpha [MIP-1alpha], and RANTES) genes with codelivery of cytokine genes. We found that as in cytokine gene codelivery, coimmunization with chemokine genes along with DNA immunogen constructs can modulate the direction and magnitude of induced immune responses. We observed that coimmunization with IL-8, gammaIP-10, and MIP-1alpha genes increased the antibody response. We also found that coinjection with IL-8, gammaIP-10, and RANTES resulted in a dramatic enhancement of T helper (Th) proliferation response. Furthermore, among all coinjection combinations, we found that RANTES coinjection caused a high level of cytotoxic lymphocyte (CTL) enhancement. This enhancement of CTL responses observed from the coinjection with RANTES was CD8+ T cell dependent. Together with earlier reports on the utility of coimmunizing immunologically important molecules with DNA immunogens, we demonstrate the potential of this strategy as an important tool for the development of more rationally designed vaccines.  相似文献   

12.
This study focuses on the development of single dose vaccines based on biodegradable polyanhydride microspheres that have the unique capability to modulate the immune response mechanism. The polymer system employed consists of copolymers of 1,6-bis(p-carboxyphenoxy)hexane and sebacic acid. Two copolymer formulations that have been shown to provide extended release kinetics and protein stability were investigated. Using tetanus toxoid (TT) as a model antigen, in vivo studies in C3H/HeOuJ mice demonstrated that the encapsulation procedure preserves the immunogenicity of the TT. The polymer itself exhibited an adjuvant effect, enhancing the immune response to a small dose of TT. The microspheres provided a prolonged exposure to TT sufficient to induce both a primary and a secondary immune response (i.e., high antibody titers) with high-avidity antibody production, without requiring an additional administration. Antigen-specific proliferation 28 weeks after a single immunization indicated that immunization with the polyanhydride microspheres generated long-lived memory cells and plasma cells (antibody-secreting B cells) that generally do not occur without maturation signals from T helper cells. Furthermore, by altering the vaccine formulation, the overall strength of the T helper type 2 immune response was selectively diminished, resulting in a balanced immune response, without reducing the overall titer. This result is striking, considering free TT induces a T helper type 2 immune response, and has important implications for developing vaccines to intracellular pathogens. The ability to selectively tune the immune response without the administration of additional cytokines or noxious adjuvants is a unique feature of this delivery vehicle that may make it an excellent candidate for vaccine development.  相似文献   

13.
G protein-coupled receptor 154 (GPR154) is a recently discovered asthma susceptibility gene upregulated in the airways of asthma patients. We previously observed increased pulmonary mRNA expression of the murine ortholog Gpr154 in a mouse model of ovalbumin (OVA)-induced inflammation. However, the expression profile of GPR154 in leukocytes and the cellular functions of the receptor and its endogenous agonist neuropeptide S (NPS) have remained unidentified. Here, we characterized the mRNA expression of NPS and GPR154 by using real-time RT-PCR in fractionated human blood cells and in peripheral blood mononuclear cells (PBMCs) with monocyte or T cell activation. The expression of GPR154 in leukocytes was further confirmed by immunoblotting experiments and immunohistochemical staining of human sputum samples. Additionally, we characterized the expression of GPR154 in the lung tissue samples and in the bronchoalveolar lavage (BAL) fluid of OVA sensitized and challenged BALB/c mice. In human blood and sputum cells, monocyte/macrophages and eosinophils were identified as GPR154-positive cells. In PBMCs, monocyte activation with LPS but not T cell activation with anti-CD3/CD28 antibodies resulted in increased NPS and GPR154 expression. In the lung tissue samples and in the BAL fluid of OVA-challenged mice, GPR154 expression was upregulated in alveolar macrophages in comparison to controls. In the mouse macrophage RAW 264.7 cell line, NPS-stimulated Galphas- and Galphaq-dependent phagocytosis of Escherichia coli. The results show that GPR154 is upregulated in macrophages after antigen challenge and that NPS is capable of inducing phagocytosis of unopsonized bacteria.  相似文献   

14.
LAIR-1/LAIR-2(CD305/CD306)推定配体分布的研究   总被引:1,自引:1,他引:1  
目的:研究LAIR-1(CD305)及LAIR-2(CD306)推定配体在多种细胞系上的分布,为鉴定LAIR-1/LAIR-2推定配体提供了实验依据。方法:建立稳定表达LAIR-1-Fc和LAIR-2-Fc融合蛋白的细胞系。以纯化的融合蛋白进行活细胞免疫荧光染色,用流式细胞仪检测LAIR-1及LAIR-2推定配体在多种细胞系膜表面的表达,并比较LAIR-1和LAIR-2推定配体的分布及可能结合的位点。结果:LAIR-1推定配体及LAIR-2推定配体均在人羊膜来源的上皮细胞系WISH上高表达,在人黑色素瘤细胞系C32、人胚肾上皮细胞系293T及人脐静脉内皮细胞系ECV304上有一定程度的表达。LAIR-1-Fc和LAIR-2-Fc融合蛋白与推定配体的结合,可分别被可同时识别LAIR-2和LAIR-1的单克隆抗体(mAb)FMU-LAIR-2.2和FMU-LAIR-2.1阻断。结论:LAIR-1推定配体及LAIR-2推定配体的分布基本一致,主要表达于WISH、C32、293T和ECV304细胞系。LAIR-1和LAIR-2可能拥有共同的配体。  相似文献   

15.
16.
Leukocyte-associated Ig-like receptor-1 (LAIR-1) is a cell-surface molecule that functions as an inhibitory receptor on various immune cells. We developed mAbs to study the expression of mouse leukocyte-associated Ig-like receptor-1 (mLAIR-1) on primary immune cells and established that it is expressed on the majority of cells of the immune system, including T cells, NK cells, monocytes and dendritic cells. Furthermore, mLAIR-1 is inducibly expressed on blood granulocytes in vivo and is differentially expressed upon T cell activation in vitro. Unexpectedly, mLAIR-1 was not expressed on splenic and blood B220(+) B cells. Similar to its human homolog, mLAIR-1 interacted with high affinity with a wide range of collagen molecules. Furthermore, mLAIR-1 specifically interacted in a hydroxyproline-dependent manner with synthetic collagen Gly-Pro-Hyp peptides. We show, for the first time, that mLAIR-1 cross-linking with its ligands inhibits CD3-induced T cell stimulation in vitro. Given the similarities between the mouse and human receptors, mLAIR-1 may serve as a good model to assess the role of the LAIR-1 receptors in regulation of immune responses.  相似文献   

17.
SP is a potent neuroimmunomodulator that functions through ligating members of the neurokinin receptor family, one of which, NK1R, is widely expressed in immune cells. As in humans, circulating SP levels are increased in pathologic states associated with impairment of NK cell functions, such as depression and HIV infection, we hypothesized that SP has a direct, inhibitory effect upon NK cells. We have studied a clonal human NK cell line (YTS) as well as ex vivo human NK cells and have determined that truncated and full-length NK1R isoforms are expressed in and SP bound by ex vivo NK cells and the YTS NK cell line. Incubation of YTS cells with 10?? M SP and ex vivo NK cells with 10?? M SP inhibited cytotoxic ability by ~20% and reduced degranulation. This inhibitory effect upon cytotoxicity was partially prevented by the NK1R antagonist CP96,345. The treatment of YTS or ex vivo NK cells with SP neither down-modulated NCR expression nor affected triggering receptor-induced NF-κB activation. Preincubation of YTS cells with SP, however, did abbreviate the typically prolonged intracellular calcium increase induced by target cell engagement and reduced triggering receptor-induced pERK. Thus, SP has the potential to regulate NK cell functions and acts downstream from neurokinin receptors to modulate NK cell activation signaling. This mechanism may contribute to impairment of NK cell function in certain disease states associated with increased circulating SP. Antagonism of this system may present an opportunity to augment NK cell function therapeutically in selected human diseases.  相似文献   

18.
TWEAK can induce cell death via endogenous TNF and TNF receptor 1.   总被引:8,自引:0,他引:8  
TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.  相似文献   

19.
20.
The peptidyl prolyl isomerase (PPIase) Pin1 has been recently implicated in cell cycle control and neuropathologies. There is now growing evidence that Pin1 plays an important role in the immune system and does so differentially from the related PPIases, cyclophilinA and FKBP. This review describes how Pin1 modulates cytokine expression by activated T cells and eosinophils and participates in T-cell and eosinophil apoptotic decisions both in vitro and in vivo. We highlight several possible immunologic diseases, including asthma, as well as organ transplant rejection, where anti-Pin1 therapeutics maybe of value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号