首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To investigate differences in latency intervals during right ventricular (RV) pacing and left ventricular (LV) pacing from the (postero‐)lateral cardiac vein in cardiac resynchronization therapy (CRT) patients and their relationship to echo‐optimized interventricular (V‐V) intervals and paced QRS morphology. Methods: We recorded digital 12‐lead electrocardiograms in 40 CRT patients during RV, LV, and biventricular pacing at three output settings. Stimulus‐to‐earliest QRS deflection (latency) intervals were measured in all leads. Echocardiographic atrioventricular (AV) and V‐V optimization was performed using aortic velocity time integrals. Results: Latency intervals were longer during LV (34 ± 17, 29 ± 15, 28 ± 15 ms) versus RV apical pacing (17 ± 8, 15 ± 8, 13 ± 7 ms) for threshold, threshold ×3, and maximal output, respectively (P < 0.001), and shortened with increased stimulus strength (P < 0.05). The echo‐optimized V‐V interval was 58 ± 31 ms in five of 40 (12%) patients with LV latency ≥ 40 ms compared to 29 ± 20 ms in 35 patients with LV latency < 40 ms (P < 0.01). During simultaneous biventricular pacing, four of five (80%) patients with LV latency ≥ 40 ms exhibited a left bundle branch block (LBBB) pattern in lead V1 compared to three of 35 (9%) patients with LV latency < 40 ms (P < 0.01). After optimization, all five patients with LV latency ≥ 40 ms registered a dominant R wave in lead V1. Conclusions: LV pacing from the lateral cardiac vein is associated with longer latency intervals than endocardial RV pacing. LV latency causes delayed LV activation and requires V‐V interval adjustment to improve hemodynamic response to CRT. Patients with LV latency ≥ 40 ms most often display an LBBB pattern in lead V1 during simultaneous biventricular pacing, but a right bundle branch block after V‐V interval optimization. (PACE 2010; 1382–1391)  相似文献   

2.
Background: Effective cardiac resynchronization therapy (CRT) is more likely with widely separated left ventricular (LV) and right ventricular (RV) pacing leads tips. We hypothesized that lead separation is an important factor in determining the clinical response to CRT. Methods: A retrospective study of 86 consecutive patients age 71 ± 10 years, male (74%), coronary disease (71%), atrial fibrillation (23%), LV ejection fraction (22 ± 9%), QRS duration (160 ± 27 ms), New York Heart Association (NYHA) class III (81%), NYHA class IV (19%) undergoing CRT from January 2006 to September 2008. The median follow‐up was 12 months and clinical response to CRT was defined as reduction of NYHA class by one or more. The three‐dimensional separation between RV and LV pacing lead tips was calculated using measurements obtained from orthogonal posteroanterior and lateral chest radiographs performed the day after implantation. Results: Fifty‐nine patients (69%) responded to CRT. There was a statistically significant association between increased three‐dimensional lead separation and clinical response to CRT (P= 0.005). Stronger association was obtained when lead separation was corrected for cardiac size (P= 0.001). A significantly higher response rate of 88% was achieved in patients with QRS duration of 160 ms or more, and lead separation of 100 mm or more compared with 60% when lead separation was less than 100 mm and QRS duration remained the same (P = 0.027). Conclusions: Greater three‐dimensional separation of LV‐to‐RV leads is associated with improved response to CRT. A prospective multicenter trial is needed to assess lead separation as a predictor for response. (PACE 2010; 33:1490–1496)  相似文献   

3.
INTRODUCTION: Right ventricular (RV) anodal capture (AC) has been reported in cardiac resynchronization therapy (CRT), when left ventricular (LV) pacing uses pseudobipolar (LV tip to RV proximal electrode) configuration. The aim of the study was to analyze the prevalence of AC and its implications for device programming. METHODS AND RESULTS: When AC occurred, the resulting QRS morphology was evaluated with the following pacing modes: (1) LV tip pacing plus RV AC, (2) Biventricular (BiV) pacing (i.e., both LV and RV tip pacing), and (3) BiV pacing plus RV AC. Several interventricular pacing (VV) intervals from 50 ms of LV preactivation to 30 ms of RV preactivation were tested in modes 2 and 3. From 38 consecutive patients, AC was achieved in 14 (in 74% of the pacemakers and in none of the defibrillators). LV tip pacing plus RV AC obtained narrower QRS than BiV pacing at all VV intervals in seven of the patients with AC (50%). When BiV pacing is combined with RV AC, it produced a ventricular depolarization through two wave fronts (one from the LV tip and the second from either the ring or the tip of the RV lead depending on the VV interval programmed). CONCLUSIONS: AC obtained the narrowest QRS of all tested pacing modes in a significant proportion of patients undergoing CRT. Though the stimulus was delivered from three sites (BiV pacing plus RV AC mode), only two wave fronts of ventricular activation were seen by ECG.  相似文献   

4.
Background: Assessment of left ventricular (LV) capture is of paramount importance in patients with biventricular (BiV) pacing. Our goal was to identify electrocardiographic features that differentiate between BiV and right ventricular (RV)‐only pacing in patients with nonapical RV leads. Methods: The study enrolled 300 consecutive patients with BiV devices and nonapical RV leads, and obtained from them 558 electrocardiograms with either BiV pacing (n = 300) or RV‐only pacing (n = 258). RV pacing served as a surrogate for loss of LV capture. Electrocardiograms from the first 150 patients were used to identify BiV‐specific features, and to construct an algorithm to differentiate between BiV and RV‐only pacing. Electrocardiograms from the second 150 patients were used to validate the algorithm. Results: The following electrocardiographic features typical of BiV pacing were identified: QS in lead V6 (specificity = 98.7%, sensitivity = 54.7%), dominant R in lead V1 (specificity = 100%, sensitivity = 23.3%), q in lead V6 (specificity = 96%, sensitivity = 22.7%), and a QRS < 160 ms (specificity = 100%, sensitivity = 66.0%). The algorithm based on those features was found to have an overall diagnostic accuracy of 95.0%, a specificity of 96.0%, and a sensitivity of 93.5%. Conclusions: The study identified QRS features that were very specific for BiV pacing in patients with nonapical RV leads. Sequential arrangement of those features resulted in an algorithm that was very accurate for differentiating between BiV pacing and loss of LV capture. (PACE 2012; 35:1199–1208)  相似文献   

5.
Background: Optimization of cardiac resynchronization therapy (CRT) with respect to the interventricular (V‐V) interval is mainly limited to pacing at a resting heart rate. We studied the effect of higher stimulation rates with univentricular and biventricular (BiV) pacing modes including the effect of the V‐V interval optimization. Methods: In 36 patients with heart failure and chronic atrial fibrillation (AF), the effects of right ventricular (RV), left ventricular (LV), simultaneous BiV, and optimized sequential BiV (BiVopt) pacing were measured. The effect of the pacing mode and the optimal V‐V interval was determined at stimulation rates of 70, 90, and 110 ppm using invasive measurement of the maximum rate of left ventricular pressure rise (LV dP/dtmax). Results: The average LV dP/dt max for all pacing modalities at stimulation rates of 70, 90, and 110 ppm was 781 ± 176, 833 ± 197, and 884 ± 223 mmHg/s for RV pacing; 893 ± 178, 942 ± 186, and 981 ± 194 mmHg/s for LV pacing; 904 ± 179, 973 ± 187, and 1052 ± 206 mmHg/s for simultaneous BiV pacing; and 941 ± 186, 1010 ± 198, and 1081 ± 206 mmHg/s for BiVopt pacing, respectively. In BiVopt pacing, the corresponding optimal V‐V interval decreased from 34 ± 29, 28 ± 28, and 21 ± 27 ms at stimulation rates of 70, 90, and 110 ppm, respectively . In two individuals, LV dP/dtmax decreased when the pacing rate was increased from 90 to 110 ppm. Conclusion: In patients with AF and heart failure, LV dP/dtmax increases for all pacing modalities at increasing stimulation rates in most, but not all, patients. The rise in LV dP/dtmax with increasing stimulation rates is higher in biventricular (BiV and BiVopt) than in univentricular (LV and RV) pacing. The optimal V‐V interval at sequential biventricular pacing decreases with increasing stimulation rates.  相似文献   

6.
Background: In cardiac resynchronization therapy (CRT), the morphology of the QRS complex plays an important role in the determination of the pacing site and effectiveness of stimulation. Patients and Methods: Review of the electrocardiograms (ECGs) of 737 patients with a CRT device showed a negative QRS complex in lead I during right ventricular (RV) pacing and a positive QRS complex during left ventricular (LV) pacing in four patients. The RV lead was positioned in the high RV septum and the coronary sinus leads in a posterior or postero‐lateral basal level. Reversed ECG lead or pacemaker lead connection, anodal RV stimulation, and scar tissue‐related depolarization abnormalities were excluded as possible causes. Conclusion: Pacing from the high RV septum may rarely lead to a negative QRS complex and basal positions of the LV lead to a positive QRS complex in lead I during LV pacing. The lead I paradox becomes obvious when both phenomena, that are not interrelated, are present in the same patient.  相似文献   

7.
Background: Congestive heart failure negatively impacts the prognosis in patients after cardiac surgery. The aim of our study was to assess the value of targeted cardiac resynchronization therapy (CRT) within 72 hours after cardiac surgery in patients with mechanical dyssynchrony, who had an ejection fraction ≤ 35%, QRS ≥150 ms or between 120 and 150 ms. Methods: A prospective randomized trial based on three‐dimensional echocardiography (RT3DE) and optimized sequential dual‐chamber (DDD ) pacing in patients after cardiac surgery. DDD epicardial pacing (Medtronic coaxial epicardial leads 6495) was provided by a modified Medtronic INSYNC III Pacemaker (Medtronic Inc., Minneapolis, MN, USA). Summary of results: The study included 21 patients with ischemic heart disease (HD) or valvular HD (16 men, 5 women, average age 69 years) with left ventricle (LV) dysfunction after cardiac surgery . Patients with biventricular (BIV) (CO 6.7 ± 1.7 L/min, CI 3.5 ± 0.8 L/min/m2) and LV (CO 6.2 ± 1.5 L/min, CI 3.2 ± 0.7 L/min/m2) pacing had statistically significantly higher CO and CI than patients with right ventricular (RV) (CO 5.4 ± 1.4 L/min, CI 2.8 ± 0.6 L/min/m2) pacing (BIV vs RV P ≤ 0.001; LV vs RV P ≤ 0.05; BIV vs LV P ≤ 0.05). Conclusions: RT3DE targeted and optimized CRT in the early postperative period after cardiac surgery provided better hemodynamic results than RV pacing. (PACE 2011; 34:1231–1240)  相似文献   

8.
The effect of anodal stimulation on V-V timing at varying V-V intervals   总被引:1,自引:0,他引:1  
We studied the effect of anodal capture at the ring electrode of the right ventricular (RV) lead on interventricular (V-V) timing during biventricular (BiV) pacing, in which left ventricular (LV) pacing was preceding RV pacing. The V-V interval was programmed from 80 to 4 ms (LV first) in the LV unipolar (LV tip--generator can) followed by the LV tip-RV ring pacing configuration. In the LV unipolar configuration, V-V programming leads to a continuous change in morphology of the QRS complex according to a change in collision of both activation fronts. When using the LV tip-RV ring configuration with anodal capture at the RV ring electrode no change in QRS morphology was recorded varying the V-V interval from 80 to 60 and 40 ms. However, at V-V intervals between 20 and 4 ms a change in morphology of the QRS complex was recorded, which was due to additional cathodal stimulation of the RV tip electrode during RV stimulation.  相似文献   

9.
An infant with a congenital auriculoventricular block (CAVB) of immunological origin was diagnosed prenatally. The mother had Gougerot‐Sjögren disease with positive anti‐Sjogren's Syndrome A (SSA) and Sjogren's Syndrome B (SSB) serologies. Cardiac pacing was necessary and the epicardial route was chosen. Considering the left ventricular (LV) dilatation, biventricular (BiV) stimulation was preferred to the usual DDD mode, presumed to have a deleterious long‐term effect. Echographic parameters were better with BiV stimulation: the asynchronism induced by mono‐RV stimulation was corrected and the QRS complexes were narrower. BiV pacing of a CAVB with LV dilation looks clinically and echographically attractive but needs to be validated in the long term.  相似文献   

10.
Background: T‐wave alternans (TWA) is a useful method for identifying patients who are at risk for sudden cardiac death. We aimed to determine the effects of different pacing modes on test results and long‐term prognostic relevance of TWA in patients following a dual‐chamber (DDD) pacemaker implantation. Methods: Sixty‐three patients (mean age 68 ± 13 years) with structural heart disease and recently implanted DDD pacemakers were enrolled. Left ventricular (LV) function was normal or moderately impaired (mean LV ejection fraction 61 ± 13%). All patients underwent sequential TWA testing using atrial and ventricular pacing. Results: During atrial pacing requiring physiologic conduction to the ventricles, 21% of TWA tests were positive, 43% negative, and 36% indeterminate. When using right ventricular (RV) pacing in the same patients, 19% of tests were positive, 40% negative, and 41% indeterminate. When positive and indeterminate tests were grouped as nonnegative, the concordance between atrial and ventricular pacing was 62% (κ= 0.22). After a mean follow‐up of 5.9 ± 1.9 years, 18 (29%) patients had died. Improved survival was predicted by a negative TWA test using atrial pacing (P = 0.028), but not with ventricular pacing (P = 0.722). Conclusions: In patients with dual‐chamber pacemakers, there is a low concordance of TWA test results between atrial pacing with intrinsic conduction to the ventricles and apical RV pacing via pacemaker electrode. However, TWA during atrial pacing clearly exerts long‐term prognostic relevance in a patient group with preserved LV function and structural heart disease. (PACE 2011; 34:1054–1062)  相似文献   

11.
Background: Prolonged right ventricle (RV) apical pacing is associated with left ventricle (LV) dysfunction due to dysynchronous ventricular activation and contraction. Alternative RV pacing sites with a narrower QRS compared to RV pacing might reflect a more physiological and synchronous LV activation. The purpose of this study was to compare the QRS morphology, duration, and suitability of RV outflow tract (RVOT) septal and mid‐RV septal pacing. Methods: Seventeen consecutive patients with indication for dual‐chamber pacing were enrolled in the study. Two standard 58‐cm active fixation leads were passed to the RV and positioned in the RVOT septum and mid‐RV septum using a commercially available septal stylet (model 4140, St. Jude Medical, St. Paul, MN, USA). QRS duration, morphology, and pacing parameters were compared at the two sites. The RV lead with less‐satisfactory electrical parameters was withdrawn and deployed in the right atrium. Results: Successful positioning of the pacing leads at the RVOT septum and mid‐RV septum was achieved in 15 patients (88.2%). There were no significant differences in the mean stimulation threshold, R‐wave sensing, and lead impedance between the two sites. The QRS duration in the RVOT septum was 151 ± 14 ms and in the mid‐RV septum 145 ± 13 ms (P = 0.150). Conclusions: This prospective observational study shows that septal pacing can be reliably achieved both in the RVOT and mid‐RV with active fixation leads using a specifically shaped stylet. There are no preferences in regard to acute lead performance or paced QRS duration with either position. (PACE 2010; 33:1169–1173)  相似文献   

12.
Background: Biventricular (BiV) pacing and left ventricular (LV) pacing both improve LV function in patients with heart failure and LV dyssynchrony. We studied the hemodynamic effect of the atrioventricular (AV) interval and the associated changes in the right ventricular (RV) electrogram (EGM) during LV pacing and compared this with the hemodynamic effect of optimized sequential BiV pacing.
Methods: In 16 patients with New York Heart Association (NYHA) class II to IV, sinus rhythm with normal AV conduction, left bundle branch block (LBBB), QRS > 130 ms, and optimal medical therapy, the changes in RV EGM during LV pacing with varying AV intervals were studied. The hemodynamic effect associated with these changes was evaluated by invasive measurement of LVdP/dtmax and compared with the result of optimized sequential BiV pacing in the same patient.
Results: All patients showed electrocardiographic fusion during LV pacing. The morphology of the RV EGM showed changes in the RV activation that indicated a shift in the extent of fusion from LV pacing. These changes were associated with significant changes in LVdP/dtmax. Baseline LV dP/dtmax was 734 ± 177 mmHg/s, which increased to 927 ± 202 mmHg/s (P<0.0001) with optimized LV pacing and to 920 ± 209 mmHg/s (P<0.0001) with optimized sequential BiV pacing.
Conclusion: The RV EGM is a proper indicator for intrinsic activation over the right bundle during LV pacing and reveals the transition to fusion in the RV EGM that is associated with a decrease in LVdP/dtmax. The hemodynamic effect of optimized LV pacing is equal to optimized sequential BiV pacing.  相似文献   

13.
Background: Echocardiographic optimization of the atrioventricular delay (AV) may result in improvement in cardiac resynchronization therapy (CRT) outcome. Optimal AV has been shown to correlate with interatrial conduction time (IACT) during right atrial pacing. This study aimed to prospectively validate the correlation at different paced heart rates and examine it during sinus rhythm (Sinus). Methods: An electrophysiology catheter was placed in the coronary sinus (CS) during CRT implant (n = 33). IACT was measured during Sinus and atrial pacing at 5 beats per minute (bpm) and 20 bpm above the sinus rate as the interval from atrial sensing or pacing to the beginning of the left atrial activation in the CS electrogram. P‐wave duration (PWd) was measured from 12‐lead surface electrocardiogram, and the interval from the right atrial to intrinsic right ventricular activation (RA‐RV) was measured from device electrograms. Within 3 weeks after the implant patients underwent echocardiographic optimization of the sensed and paced AVs by the mitral inflow method. Results: Optimal sensed and paced AVs were 129 ± 19 ms and 175 ± 24 ms, respectively, and correlated with IACT during Sinus (R = 0.76, P < 0.0001) and atrial pacing (R = 0.75, P < 0.0001), respectively. They also moderately correlated with PWd (R = 0.60, P = 0.0003 during Sinus and R = 0.66, P < 0.0001 during atrial pacing) and RA‐RV interval (R = 0.47, P = 0.009 during Sinus and R = 0.66, P < 0.0001 during atrial pacing). The electrical intervals were prolonged by the increased atrial pacing rate. Conclusion: IACT is a critical determinant of the optimal AV for CRT programming. Heart rate‐dependent AV shortening may not be appropriate for CRT patients during atrial pacing. (PACE 2011; 34:443–449)  相似文献   

14.
Background: Biventricular (BiV) stimulation lowers morbidity and mortality in patients with drug-refractory congestive heart failure (CHF), depressed left ventricular (LV) function, and ventricular dyssynchrony in absence of indication for permanent cardiac pacing. This pilot, single-blind, randomized, cross-over study examined the safety and efficacy of upgrading conventional pacing systems to BiV stimulation in patients with advanced CHF .
Methods: We included 56 patients in New York Heart Association (NYHA) functional classes III or IV despite optimal drug treatment and ventricular dyssynchrony (interventriclar delay >40 ms or LV preejection delay >140 ms) in need of pacemaker replacement. We compared the patients' functional status, arrhythmias, and standard echocardiographic measurements during 3 months of conventional, single right ventricular (RV) versus 3 months of BiV stimulation .
Results: There were 44 patients in the cross-over phase. QRS duration was shortened by 23% and LV preejection delay by 16% with BiV stimulation. NYHA functional class, 6-minute hall walk and quality of life score were significantly improved with BiV stimulation compared with single RV pacing by 18%, 29%, and 19%, respectively. No significant difference was observed in the ventricular arrhythmia burden or LV reverse remodeling between the 2 periods .
Conclusions: This pilot study showed that upgrading from RV pacing to BiV pacing significantly improves symptoms and exercise tolerance in chronically paced patients with advanced CHF and mechanical dyssynchrony .  相似文献   

15.
Restoration of the atrioventricular (AVD) and interventricular (VVD) delays increases the hemodynamic benefit conferred by biventricular (BiV) stimulation. This study compared the effects of different AVD and VVD on cardiac output (CO) during three stimulation modes: BiV-LV = left ventricle (LV) preceding right ventricle (RV) by 4 ms; BiV-RV = RV preceding LV by 4 ms; LVP = single-site LV pacing. We studied 19 patients with chronic heart failure due to ischemic or idiopathic dilated cardiomyopathy, QRS ≥ 150 ms, mean LV end-diastolic diameter = 78 ± 7 mm, and mean LV ejection fraction = 21 ± 3%. CO was estimated by Doppler echocardiographic velocity time integral formula with sample volume placed in the LV outflow tract. Sets of sensed-AVDs (S-AVD) 90–160 ms, paced-AVDs (P-AVD) 120–160 ms, and VVDs 4–20 ms were used. BiV-RV resulted in lower CO than BiV-LV. S-AVD 120 ms and P-AVD 140 ms caused the most significant increase in CO for all three pacing modes. LVP produced a similar increase in CO as BiV stimulation; however, AV sequential pacing was associated with a nonsignificantly higher CO during LVP than with BiV stimulation. CO during BiV stimulation was the highest when LV preceded RV, and VVD ranged between 4 and 12 ms. The most negative effect on CO was observed when RV preceded LV by 4 ms. Hemodynamic improvement during BiV stimulation was dependent both on optimized AVD and VVD. LV preceding RV by 4–12 ms was the most optimal. Advancement of the RV was not beneficial in the majority of patients.  相似文献   

16.
BACKGROUND: Success of cardiac resynchronization therapy (CRT) depends on altering electrical ventricular activation (VA) to achieve mechanical benefit. That increases in stimulus strength (SS) can affect VA has been demonstrated previously in cardiomyopathy patients undergoing ablation. OBJECTIVE: To determine whether increasing SS can alter VA during CRT. METHODS: In 71 patients with CRT devices, left ventricle (LV) pacing was performed at escalating SS. Timing from pacing stimulus to right ventricular (RV) electrogram, ECG morphology, and maximal QRS duration on 12 lead ECG were recorded. RESULTS: Demographics: Baseline QRS duration 153 +/- 25 ms, ischemic cardiomyopathy 48%, ejection fraction 24%+/- 7%. With increased SS, conduction time from LV to right ventricle (RV) decreased from 125 +/- 56 ms to 111 +/- 59 ms (P = 0.006). QRS duration decreased from 212 +/- 46 ms to 194 +/- 42 ms (P = 0.0002). A marked change in QRS morphology occurred in 11/71 patients (15%). The RV ring was the anode in 6, while the RV coil was the anode in 5. Sites with change in QRS morphology showed decrease in conduction time from LV to RV from 110 +/- 60 ms to 64 +/- 68 ms (P = 0.04). Twelve patients (16%) had diaphragmatic stimulation with increased SS. CONCLUSIONS: Increasing LV SS reduces QRS duration and conduction time from LV to RV. Recognition of significant QRS morphology change is likely clinically important during LV threshold programming to avoid unintended VA change.  相似文献   

17.
Cardiac resynchronization therapy improves hemodynamics in selected patients with heart failure. Mechanic asynchrony parameters that may guide patient selection or therapy optimization are still being investigated. A biventricular (BiV) pacemaker was implanted in 34 patients with dilated ischemic, idiopathic, or valvular cardiomyopathy, and a QRS duration of > or =130 milliseconds. Two-dimensional standard and Doppler tissue echocardiography was performed during right ventricular (RV), left ventricular (LV), BiV, and no pacing in a random and blinded manner. LV and BiV pacing increased stroke volume (P <.02 for both) and ejection fraction (P <.001 for both). Regional contractility assessed by displacement, strain rate, and peak systolic strain was improved in some segments (P <.05) during LV and BiV pacing. A homogenization of segmental contractions was observed during LV and BiV pacing as evaluated by net systolic displacement and segmental myocardial performance index. LV and BiV pacing provides benefits that can be quantified by echocardiography.  相似文献   

18.
In patients needing a pacemaker (PM) for bradycardia indications, the amount of right ventricular (RV) apical pacing has been correlated with atrial fibrillation (AFib) and heart failure (HF) in both DDD and VVI mode. RV pacing was linked with left ventricular (LV) dyssynchrony in almost 50% of patients with PM implantation and atrioventricular (AV) node ablation for AFib. In patients with normal systolic function needing a PM, apical RV pacing resulted in LV ejection fraction (LVEF) reduction. These negative effects were prevented by cardiac resynchronization therapy (CRT). Algorithms favoring physiological AV conduction are possible useful tools able to maintain both atrial and ventricular support and limit RV pacing. However, when chronic RV pacing cannot be avoided, it appears necessary to reconsider the cut-off value of basic LVEF for CRT. In HF patients, RV pacing can induce greater LV dyssynchrony, enhanced by underlying conduction diseases. In this context, a more deleterious effect of RV pacing in implantable cardioverter-defibrillator (ICD) patients with low LVEF can be expected. In some major ICD trials, DDD mode was correlated with increased mortality/HF. This negative impact was attributed to unnecessary RV pacing >40-50%, virtually absent in VVI-40 mode. However, some data suggest that avoiding RV pacing may also not be the best option for patients requiring an ICD. In patients with impaired LV function, AV synchrony should therefore be ensured. The best pacing mode in ICD patients with HF should be defined on an individual basis.  相似文献   

19.
Abnormal electrical activation occurring during ventricular pacing reduces left ventricular (LV) pump function. Two strategies were compared to optimize LV function using ventricular pacing, minimal asynchrony and optimal sequence of electrical activation. ECG and hemodynamics aortic flowpmbe, thermodilution cardiac output, LV pressure and its maximal rates of rise (LVdP/dtpos) and fall (LVdP/dtneg) were measured in anesthetized open-chest dogs (n = 7) with healthy hearts. The QRS duration (a measure of asynchrony of activation) was 47 ± 5 ms during sinus rhythm and increased to 110 ± 12 ms during DDD pacing at the right ventricular (RV) apex with a short AV interval. During pacing at the LV apex and LV base, the QRS duration was 8%± 7% and 15%± 7% (P < 0.05) longer than during RV apex pacing, respectively. Stroke volumes, LVdP/dtpos and LVdP/dtneg, however, were higher during LV apex(15%± 16%, 10%± 12% [P<0.05], and 15%± 10%, respectively) and LV base pacing (11%± 12% [P<0.05], 3%± 12%, and 3%± 11%, respectively) than during RV apex pacing. Systolic LV pressure was not influenced significantly by the site of pacing. Biventricular pacing (RV apex together with one or two LV sites) decreased the QRS duration by approximately 20% as compared with RV apex pacing, however, it did not improve stroke volumes, LVdP/dtpos and LVdP/dtneg beyond those during pacing at the LV apex alone. In conclusion, the sequence of electrical activation is a stronger determinant of ventricular function than the synchrony of activation. For optimal LV function the selection of an optimal single pacing site, like the LV apex, is more important than pacing from multiple sites.  相似文献   

20.
Background: Echocardiographic (ECHO)‐guided pacemaker optimization (PMO) in cardiac resynchronization therapy (CRT) nonresponders acutely improves left ventricular (LV) function. However, the chronic results of LV pacing in this group are less understood. Methods: We retrospectively studied 28 CRT nonresponders optimized based on ECHO to LV pacing and compared them to 28 age‐ and gender‐matched patients optimized to biventricular (BiV) pacing. ECHOs with tissue Doppler imaging assessed LV hemodynamics before, immediately after, and 29 ± 16 months after PMO. Also, 56 age‐ and gender‐matched CRT responders were included for comparison of clinical outcomes. Results: PMO resulted in acute improvements in longitudinal LV systolic function and several measures of dyssynchrony, with greater improvements in the LV paced group. Chronic improvements in ejection fraction (EF) (3.2 ± 7.7%), and left ventricle end‐systolic volume (LVESV) (?11 ± 36 mL) and one dyssynchrony measure were seen in the combined group. Chronically, both LV and BiV paced patients improved some measures of systolic function and dyssynchrony although response varied between the groups. Survival at 3.5 years was similar (P = 0.973) between the PMO (58%) and nonoptimized groups (58%) but survival free of cardiovascular hospitalization was significantly (P = 0.037) better in the nonoptimized group. Conclusions : CRT nonresponders undergoing PMO to either LV or BiV pacing have acute improvements in longitudinal systolic function and some measures of dyssynchrony. Some benefits are sustained chronically, with improvements in EF, LVESV, and dyssynchrony. A strategy of ECHO‐guided PMO results in survival for CRT nonresponders similar to that of CRT patients not referred for PMO. (PACE 2012; 35:685–694))  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号