首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two inbred strains of mice C57BL/6 (alcohol-preferring) and DBA/2 (alcohol-avoiding) mice have been shown to differ significantly in their preference for alcohol (EtOH). We have previously demonstrated the differences in the density and the affinity of cannabinoid (CB1) receptors in the brains of the two inbred C57BL/6 and DBA/2 mouse strains. In the present study, we investigated the CB1 receptor agonist-stimulated guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding in plasma membranes (PM) from C57BL/6 and DBA/2 mice. The results indicate that the net CP55,940-stimulated [(35)S]GTPgammaS binding was increased with increasing concentrations of CB1 receptor agonists and GDP. The net CB1 receptor agonist (WIN55,212-2 or HU-210 or CP55,940)-stimulated [(35)S]GTPgammaS binding was reduced significantly (-10% to -12%, P < 0.05) in PM from DBA/2 mice; no significant differences were observed in basal [(35)S]GTPgammaS binding among these strains. Nonlinear regression analysis of net CP55,940-stimulated [(35)S]GTPgammaS binding showed that the B(max) of cannabinoid agonist-stimulated binding was significantly reduced (-24%) in DBA/2 mice (B(max) = 12.43 +/- 0.64 for C57BL/6 and 9.46 +/- 0.98 pmol/mg protein for DBA/2; P < 0.05) without any significant changes in the G protein affinity. The pharmacological specificity of CP55,940-stimulated [(35)S]GTPgammaS binding was examined with CB1 receptor antagonist SR141716A, and these studies indicated that CP55,940-stimulated [(35)S]GTPgammaS binding was blocked by SR141716A, with a decrease in the IC(50) values in the PM from the DBA/2 mouse strain. These results suggest that a signal transduction pathway(s) downstream from the CB1 receptor system may play an important role in controlling the voluntary EtOH consumption by these strains of mice.  相似文献   

2.
The objective of the present study was to determine the neurobehavioral effects of the putative endogenous cannabinoid ligand, anandamide, and its influence on cannabinoid (CB1) receptor gene expression. The effect of acute administration of anandamide to C57BL/6, DBA/2, and ICR mice were evaluated in motor function and emotionality tests. The C57BL/6 and ICR mouse strains were more sensitive than the DBA/2 strain to the depression of locomotor activity and stereotyped behavior caused by anandamide. Although anandamide produced catalepsy in all three strains, anandamide induced ataxia in the minus-maze test only in the C57BL/6 animals and only at the lowest dose used. In the plus-maze test system, anandamide produced a mild aversive response, and by the third day of treatment the mouse strains developed an intense aversion to the open arms of the plus-maze. Northern analysis data using the recently cloned mouse cannabinoid receptor cDNA as a probe indicated that there was abundant expression of CB1 gene in the whole brain of the ICR mouse than in the brains of the C57BL/6 and DBA/2 strains with or without pretreatment with anandamide. The anandamide induced neurobehavioral profile does not seem to correspond to the CB1 gene expression in the mouse strains. It is, therefore, unlikely that the CB1 receptor mediates all the cannabinomimetic effects of anandamide in the brain.  相似文献   

3.
C57BL/6 mice consistently outperform DBA/2 mice in a range of hippocampal-dependent spatial learning behaviors. We recorded evoked responses from the dentate gyrus of awake, freely-moving mice and measured synaptic plasticity (LTP) and performance in a hippocampal-dependent task in individual animals from these two inbred strains. Spatial alternation tasks confirmed the behavioral divergence between the two strains, with C57BL/6 mice demonstrating more robust alternation than DBA/2 mice. Recording changes in field potentials in the dentate gyrus following three different high-frequency stimulation paradigms in the same groups of animals revealed differences in neural plasticity: both strains were able to support long-term potentiation (LTP) at perforant path synapses, but brief high-frequency stimulation induced larger and longer potentiation of the population spike in C57BL/6 than in DBA/2 mice. This greater propensity for population-spike potentiation in the strain that performed better in a hippocampal-dependent task is in accord with the different neurochemical profiles of C57BL/6 and DBA/2 mice.  相似文献   

4.
A novel, non-CB1 cannabinoid receptor has been defined by the persistence of inhibition of glutamatergic EPSPs by the cannabinoid receptor agonist WIN55,212-2 in mice lacking the cloned CB1 receptor (CB1-/-) (Hajos et al., 2001). This novel receptor was also distinguished from CB1 by its sensitivity to the antagonist SR141716A and its insensitivity to the antagonist AM251 (Hajos & Freund, 2002). We have chosen to refer to this putative receptor as CBsc due to its identification on Schaffer collateral axon terminals in the hippocampus. We examined properties of CBsc receptors in Sprague Dawley (SD) rats and two strains of wild-type (WT) mice (C57BL/6J and CD1) used as backgrounds for two independent lines of CB1-/- mice (Ledent et al., 1999; Zimmer et al., 1999). The inhibition of synaptic glutamate release by WIN55,212-2 was observed in hippocampal slices from WT CD1 mice and SD rats but was absent in WT C57 mice. We also found that AM251 and SR141716A antagonized the effect of WIN55,212-2 in hippocampal slices from CD1 mice and SD rats demonstrating a lack of selectivity of these ligands for CB1 and CBsc receptors in these animals. The results indicate that the glutamate-modulating CBsc cannabinoid receptor is present in the hippocampi of CD1 mice and SD rats but not in C57BL/6J mice. Thus, we have identified animal models that may permit the study of cannabinoids independently of the novel CBsc receptor (C57CB1+/+), the CBsc receptor independently of the cloned CB1 receptor (CD1CB1-/-), or in the absence of both receptors (C57CB1-/-).  相似文献   

5.
There is growing agreement that genetic factors play an important role in the risk to develop heroin addiction, and comparisons of heroin addiction vulnerability in inbred strains of mice could provide useful information on the question of individual vulnerability to heroin addiction. This study examined the rewarding and locomotor‐stimulating effects of heroin in male C57BL/6J and DBA/2J mice. Heroin induced locomotion and sensitisation in C57BL/6J but not in DBA/2J mice. C57BL/6J mice developed conditioned place preference (CPP) to the highest doses of heroin, while DBA/2J showed CPP to only the lowest heroin doses, indicating a higher sensitivity of DBA/2J mice to the rewarding properties of heroin vs C57BL/6J mice. In order to investigate the neurobiological substrate underlying some of these differences, the effect of chronic ‘intermittent’ escalating dose heroin administration on the opioid, dopaminergic and stress systems was explored. Twofold higher μ‐opioid receptor (MOP‐r)‐stimulated [35S]GTPγS binding was observed in the nucleus accumbens and caudate of saline‐treated C57BL/6J mice compared with DBA/2J. Heroin decreased MOP‐r density in brain regions of C57BL/6J mice, but not in DBA/2J. A higher density of dopamine transporters (DAT) was observed in nucleus accumbens shell and caudate of heroin‐treated DBA/2J mice compared with heroin‐treated C57BL/6J. There were no effects on D1 and D2 binding. Chronic heroin administration decreased corticosterone levels in both strains with no effect of strain. These results suggest that genetic differences in MOP‐r activation and DAT expression may be responsible for individual differences in vulnerability to heroin addiction.  相似文献   

6.
GABAA receptors are multisubunit inhibitory chloride channels in the brain which open in response to binding of -γ-aminobutyric acid (GABA) and are thought to be involved in some forms of seizures. We compare the sequence and expression of the GABAA receptor δ subunit in audiogenic seizure prone (DBA/2J) and seizure resistant (C57BL/6J) inbred strains of mice and also report this subunit's postnatal developmental profile. We did not detect any unique features in the 6 subunits of DBA/2J mice which might explain their seizure susceptibility, but did detect in some clones from both DBA/2J mice and C57BL/6J mice an unusual substitution of His for a conserved Tyr in the δ subunit's first putative transmembrane region.  相似文献   

7.
Ishikawa M  Quock RM 《Brain research》2003,976(2):262-263
Exposure to 70% N(2)O produces a prominent antinociception in C57BL/6 mice but not DBA/2 mice. N(2)O exposure also increases conversion of [14C]L-arginine to [14C]L-citrulline in homogenates prepared from whole brains of C57BL/6 mice; there was no such increase in NOS activity in the DBA/2 whole brain. A differential N(2)O effect on brain NOS in these inbred strains might explain why the C57BL/6 but not DBA/2 mice are responsive to N(2)O antinociception.  相似文献   

8.
GABAA receptors are multisubunit inhibitory chloride channels in the brain which open in response to binding of gamma-aminobutyric acid (GABA) and are thought to be involved in some forms of seizures. We compare the sequence and expression of the GABAA receptor delta subunit in audiogenic seizure prone (DBA/2J) and seizure resistant (C57BL/6J) inbred strains of mice and also report this subunit's postnatal developmental profile. We did not detect any unique features in the delta subunits of DBA/2J mice which might explain their seizure susceptibility, but did detect in some clones from both DBA/2J mice and C57BL/6J mice an unusual substitution of His for a conserved Tyr in the delta subunit's first putative transmembrane region.  相似文献   

9.
Recent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB(1) receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (B6) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB(1) receptor significantly reduced the ethanol preference. Although the stimulation of the CB(1) receptor by CP-55,940 markedly increased the ethanol preference, this effect was found to be greater in B6 than in D2 mice. The antagonism of CB(1) receptor function by SR141716A led to a significant reduction in voluntary ethanol preference in B6 than D2 mice. A significant lower hypothermic and greater sedative response to acute ethanol administration was observed in both the strains of CB(1) -/- mice than wild-type mice. Interestingly, genetic deletion and pharmacological blockade of the CB(1) receptor produced a marked reduction in severity of handling-induced convulsion in both the strains. The radioligand binding studies revealed significantly higher levels of CB(1) receptor-stimulated G-protein activation in the striatum of B6 compared to D2 mice. Innate differences in the CB(1) receptor function might be one of the contributing factors for higher ethanol drinking behavior. The antagonists of the CB(1) receptor may have therapeutic potential in the treatment of ethanol dependence.  相似文献   

10.
There is a strong clinical relationship between stress and stress-related disorders and the incidence of alcohol abuse and alcoholism, and this relationship appears to be partly genetic in origin. There are marked strain differences in ethanol (EtOH)-related behaviors and reactivity to stress, but little investigation of the interaction between the two. The present study assessed the effects of chronic exposure to swim stress on EtOH-related behavior in three common inbred strains of mice, C57BL/6J, DBA/2J and BALB/cByJ. After establishing baseline (10%) EtOH self-administration in a two-bottle free choice test, mice were exposed to daily swim stress for 14 consecutive days and EtOH consumption was measured as a percent of baseline both during stress and for 10 days afterwards. A separate experiment examined the effects of 14 days of swim stress on sensitivity to the sedative/hypnotic effects of an acute injection of 4g/kg EtOH. Results showed that stress produced a significant decrease in EtOH consumption, relative to pre-stress baseline, in DBA/2J and BALB/cByJ, but not C57BL/6J mice. By contrast, stress increased sensitivity to the sedative/hypnotic effects of EtOH in all three strains. These findings demonstrate that chronic swim stress produces reductions in EtOH self-administration in a strain-dependent manner, and that these effects may be restricted to strains with a pre-existing aversion to EtOH. Present data also demonstrates a dissociation between effects of this stressor on EtOH self-administration and sensitivity to EtOH's sedative/hypnotic effects. In conclusion, strain differences, that are likely in large part genetic in nature, modify the effects of this stressor on EtOH's effects in a behavior-specific manner.  相似文献   

11.
Previous seizure models have demonstrated genetic differences in generalized seizure threshold (GST) in inbred mice, but the genetic control of epileptogenesis is relatively unexplored. The present study examined, through analysis of inbred strains of mice, whether the seizure characteristics observed in the flurothyl kindling model are under genetic control. Eight consecutive, daily generalized seizures were induced by flurothyl in mice from five inbred strains. Following a 28-day rest period, mice were retested with flurothyl. The five strains of mice demonstrated inter-strain differences in GST, decreases in GST across seizure trials, and differences in the behavioral seizure phenotypes expressed. Since many of the seizure characteristics that we examined in the flurothyl kindling model were dissociable between C57BL/6J and DBA/2J mice, we analyzed these strains in detail. Unlike C57BL/6J mice, DBA/2J mice had a lower GST on trial 1, did not demonstrate a decrease in GST across trials, nor did they show an alteration in seizure phenotype upon flurothyl retest. Surprisingly, [C57BL/6J × DBA/2J] F1-hybrids had initial GST on trial 1 and GST decreases across trials similar to what was found for C57BL/6J, but they did not undergo the alteration in behavioral seizure phenotype that had been observed for C57BL/6J mice. Our data establish the significance of the genetic background in flurothyl-induced epileptogenesis. The [C57BL/6J × DBA/2J] F1-hybrid data demonstrate that initial GST, the decrease in GST across trials, and the change in seizure phenotype differ from the characteristics of the parental strains, suggesting that these phenotypes are controlled by independent genetic loci.  相似文献   

12.
While a number of studies have examined the acquisition and expression of conditioned fear in inbred mice, very few have examined extinction of conditioned fear in inbred mice and few attempts have been made to compare extinction learning between inbred strains. Because inbred strains differ in a number of physiological and biochemical variables, differences in extinction learning may provide insight into the genetic influence of extinction learning. The purpose of this study was to examine extinction and renewal of conditioned fear in two common inbred strains of mice. C57BL/6J and DBA/2J mice were conditioned with pairings of either a tone or light and foot shock in a single session. On the following 4 days, mice were given extinction training, consisting of tone or light alone trials (Experiment 1A). C57 mice exhibited robust spontaneous recovery between sessions, but did extinguish both within and between sessions. DBA mice extinguished more quickly relative to C57 mice, and this extinction was stable between sessions (i.e., DBA mice did not exhibit spontaneous recovery). The rapid loss of fear in DBA relative to C57 mice was extinction-dependent and not merely due to poor long-term memory (Experiment 1B). Renewal testing (Experiment 2) replicated the strain difference in extinction and also showed that DBA mice have a deficit in the context specificity of extinction. C57 mice, but not DBA mice showed renewal of extinguished fear when tested in a context different from the one in which extinction training took place. These data suggest that the nature of extinction learning is influenced by characteristics of the inbred mouse strain.  相似文献   

13.
The study of genetic variance in opioid receptor antagonism of sucrose and other forms of sweet intake has been limited to reductions in sweet intake in mice that are opioid receptor-deficient or lacking either pre-pro-enkephalin or beta-endorphin. Marked genetic variance in inbred mouse strains has been observed for sucrose intake across a wide array of concentrations in terms of sensitivity, magnitude, percentages of kilocalories consumed as sucrose and compensatory chow intake. The present study examined potential genetic variance in systemic naltrexone's dose-dependent (0.01-5 mg/kg) and time-dependent (5-120 min) ability to decrease sucrose (10%) intake in eleven inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL/6J, C57BL/10J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) mouse strains. A minimum criterion sucrose intake (1 ml) under vehicle treatment, designed to avoid "floor effects" of antagonist treatment was not achieved in three (A/J, AKR/J, CBA/J) inbred mouse strains. Marked genetic variance in naltrexone's ability to inhibit sucrose intake was observed in the remaining strains with the greatest sensitivity observed in the C57BL/10J and C57BL/6J strains, intermediate sensitivity in BALB/cJ, C3H/HeJ, CD-1 and DBA/2J mice, and the least sensitivity in 129P3/J, SWR/J and SJL/J strains with a 7.5-36.5 fold range of greater effects in the ID(50) of naltrexone-induced inhibition in C57BL/10J relative to the three less-sensitive strains across the time course. Naltrexone primarily affected the maintenance, rather than the initiation of intake in BALB/cJ, CD-1, C3H/HeJ, DBA/2J and SJL/J mice, but significantly reduced sucrose intake at higher doses across the time course in C57BL/6J, C57BL/10J and 129P3/J mice. Whereas SWR/J mice failed to display any significant reduction in sucrose intake at any time point following any of the naltrexone doses, naltrexone's maximal magnitude of inhibitory effects was small (35-40%) in 129P3/J and SJL/J mice, moderate ( approximately 50%) in BALB/cJ, C3H/HeJ, CD-1 and DBA2/J mice, and profound (70-80%) in C57BL/6J and C57BL/10J mice. Indeed, the latter two strains displayed significantly greater percentages of naltrexone-induced inhibition of sucrose intake than virtually all other strains. These data indicate the importance of genetic variability in opioid modulation of sucrose intake.  相似文献   

14.
The inferior performance of DBA/2 mice when compared to C57BL/6 mice in hippocampus-dependent behavioral tasks including contextual fear conditioning has been attributed to impaired hippocampal function. However, DBA/2J mice have been reported to perform similarly or even better than C57BL/6J mice in the passive avoidance (PA) task that most likely also depends on hippocampal function. The apparent discrepancy in PA versus fear conditioning performance in these two strains of mice was investigated using an automated PA system. The aim was to determine whether these two mouse strains utilize different strategies involving a different contribution of hippocampal mechanisms to encode PA. C57BL/6J mice exhibited significantly longer retention latencies than DBA/2J mice when tested 24 h after training irrespective of the circadian cycle. Dorsohippocampal NMDA receptor inhibition by local injection of the selective antagonist DL-2-amino-5-phosphonovaleric acid (AP5, 3.2 microg/mouse) before training resulted in impaired PA retention in C57BL/6J but not in DBA/2J mice. Furthermore, nonreinforced pre-exposure to the PA system before training caused a latent inhibition-like reduction of retention latencies in C57BL/6J, whereas it improved PA retention in DBA/2J mice. These pre-exposure experiments facilitated the discrimination of hippocampal involvement without local pharmacological intervention. The results indicate differences in PA learning between these two strains based on a different NMDA receptor involvement in the dorsal hippocampus in this emotional learning task. We hypothesize that mouse strains can differ in their PA learning performance based on their relative ability to form associations on the basis of unisensory versus multisensory contextual/spatial cues that involve hippocampal processing.  相似文献   

15.
Modifier genes may account for the phenotypic variability observed in the late-onset forms of globoid cell leukodystrophy (GCL) in humans. In order to begin a search for modifier genes, the effect of genetic background on the clinical and pathological manifestations of GCL was investigated in twitcher mice. Twitcher mice on a C57BL/6 x CAST/Ei background had an increased life span (61.4 +/- 2.5 vs 37.0 +/- 0.6 days), a delayed onset of tremor (24 vs 21 days), and a delayed decline in walking ability compared to C57BL/6 twitcher mice. Pathologically, C57BL/6 x CAST/Ei twitcher mice had fewer lectin-positive globoid cells, less gliosis, and a greater preservation of myelin compared to C57BL/6 twitcher mice under moribund conditions. Similar concentrations of psychosine, the toxic species that accumulates in GCL, were measured by tandem mass spectrometry between moribund C57BL/6 twitcher mice (286.5 pmol/mg protein), 40-day C57BL/6 x CAST/Ei twitcher mice (276.5 pmol/mg), and moribund C57BL/6 x CAST/Ei twitcher mice (247.0 pmol/mg), suggesting that the milder phenotype in CAST/Ei x C57BL/6 twitcher mice did not correlate with less psychosine. In summary, the introduction of modifier genes from the wild, inbred CAST/Ei strain had a phenotypic effect resulting in a significantly slower disease course.  相似文献   

16.
To investigate the physiological role of novel genes and proteins in platelet activation, various knockout mice have been produced. A number of standard inbred mouse strains each possessing genetically unique characters such as high tumor generation, hyperglycemia or hyperlipidemia, have been bred. In breeding knockout mice for investigation of specific physiological functions, appropriate selection of parental or backcross strains is necessary. Thus, examination of strain-specific platelet characteristics is important. In the present study, platelet aggregation responses of 13 laboratory mouse strains, 129/Sv, A, AKR, BALB/c, C3H/He, C57BL/6J, CBA, DBA/1, DBA/2, ddY, FVB, ICR, and NZW, and the diabetic strain C57BL/KsJ db/db, were compared. Marked strain differences were observed in ADP- and collagen-induced platelet aggregation. The highest responses with both were seen in AKR/J and NZW/N, whereas the lowest were seen in DBA/2 and DBA/1. There was a 5-fold difference in the platelet aggregation threshold index (PATI) for ADP-induced PRP aggregation between AKR/J (0.6 microM) and DBA/2 (3.0 microM). With whole blood aggregation, the highest response was seen in AKR, whereas the lowest was seen in DBA/2 and DBA/1. The present study demonstrated that there is considerable strain difference in platelet aggregation among laboratory mice, which should be taken into account in backcrossing knockout strains.  相似文献   

17.
18.
Continuous twenty-four hour EEG recordings were conducted on freely-moving DBA/2 and C57BL/6 inbred mice. No brief spindle episodes (BSEs: 6-7 cps, 1-5 sec duration, high amplitude spindle bursts) were seen in the waking EEG of C57BL/6 mice. BSEs were a conspicuous element of the EEG during active waking (AW) and quiet waking (QW) in DBA/2 mice. BSEs occurred at a 10X faster rate in QW than in AW and had a longer duration. Sleep spindle bursts resembling BSEs were seen in both C57BL/6 and DBA/2 mice, and occasionally were observed to follow a K-complex. Rostropontine, but not midpontine, brainstem transection released spindles in both strains. Pentobarbital produced spindles in both strains. The waveforms of the waves comprising BSEs, sleep spindles, transection-induced spindles and barbiturate spindles were quite similar, though differing in frequencies and amplitude. Genetic factors may be critical for the lack of BSEs during AW and QW in C57BL/6 mice and for the occurrence of BSEs during AW in DBA/2 mice. In contrast, most other rodents whow a third pattern: BSEs only during QW. Since C57BL/6 mice can generate spindles under some circumstances, the absence of spindles during waking reflects some alteration in the mechanisms that control the initiation of BSEs rather than a lack of the circuits required to generate a BSE. These mechanisms are distinct from those processes of arousal that produce the background EEG desynchronization of waking. Following both rostropontine and midpontine transection, the background EEG is desynchronized, yet after rostropontine, but not midpontine transection, BSEs occur freely, at a rate over 200 per hour.  相似文献   

19.
C57BL/6 inbred mice lack the 1-5 sec bursts of 6-7 cps spindles characteristic of the neocortical EEG of DBA/2 mice during waking. C57BL/6 mice (1) may be unable to generate any synchronized cortical EEG activity, (2) may lack the thalamocortical circuitry required to generate these brief spindle episodes (BSEs), (3) may lack mechanisms that can activate this circuitry or (4) may possess a potent mechanism to suppress BSE initiation and generation. Possibilities 1 and 2 have been eliminated because C57BL/6 mice generate pentobarbital, rostropontine-induced and sleep spindles, and because certain C57BL/6 sleep spindles resembled the BSEs seen in DBA/2 mice. Possibilities 3 and 4 were examined in the experiments reported here. In DBA/2 mice, pentylenetetrazol activates BSEs at subconvulsant doses. In contrast, neither 20 nor 50 mg/kg, IP, pentylenetetrazol activated BSEs in C57BL/6 mice, although the higher dose provoked 4-5 cps slow waves and myoclonic jerks. In DBA/2 mice, the beta-noradrenergic antagonist propranolol has been reported to powerfully release BSEs. In C57BL/6 mice, 10 and 15 mg/kg propanolol weakly released BSEs; fewer than 3 per hour occurred. Hence neither possibilities 3 and 4 are sufficient in themselves to explain the lack of BSEs during waking in C57BL/6 mice. However, simultaneous administration of 10 mg/kg propranolol and 20 mg/kg pentylenetetrazol provoked numerous BSEs in C57BL/6 mice. This suggests that perhaps C57BL/6 mice, as compared to DBA/2 mice, possess both a more powerful noradrenergic mechanism to suppress spindles and a more weakly functioning mechanism to activate BSEs. Hence possibilities 3 and 4 may both be correct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
C57BL/6J and DBA/2J inbred mice differ in aspects of maternal behavior and in the morphology of the medial preoptic nucleus (MPO), suggesting a possible association. DBA/2J mice have a compact subnucleus in the MPO, the MPOpc, that is sexually dimorphic and absent in C57BL/6J mice. To determine whether MPOpc cells are activated by maternal behavior, FOS and FOSB immunohistochemistry was performed on brain sections of C57BL/6J and DBA/2J mothers following the return of their pups after a separation of 2 days. In both light and dark phases of the daily cycle, stimulation of DBA/2J mothers evoked an increase in FOS- and FOSB-immunoreactivity in the MPOpc. Stimulated C57BL/6J mice, which lack the MPOpc, did not show an increase in cellular activity in the corresponding MPO region. Cells immediately lateral to the MPOpc were activated by pup stimulation, in both strains. These results suggest that MPOpc cells are active during maternal behavior, and that strain differences in maternal behavior are related to anatomical differences in the MPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号