首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cellular mechanisms underlying intrinsic epileptogenesis in human hypothalamic hamartoma (HH) are unknown. We previously reported that HH tissue is composed predominantly of GABAergic neurons, but how GABAergic-neuron-rich HH tissue is intrinsically epileptogenic is unclear. Here, we tested the hypotheses that some HH neurons exhibit immature features and that GABA excites these neurons via activation of GABAA receptors (GABAARs). Gramicidin-perforated and cell-attached patch-clamp recordings were performed using freshly-dissociated HH neurons to evaluate GABAAR-mediated currents, Cl equilibrium potentials, and intracellular Cl concentrations. Single-cell RT-PCR and immunocytochemical techniques were used to examine cation-Cl co-transporter (NKCC1 and KCC2) gene and KCC2 protein expression and molecular markers of maturation. From a total of 93 acutely-dissociated HH neurons from 34 patients, 76% were small (soma: 6–9 μm) and 24% were large (soma: > 20 µm) in size. Under gramicidin-perforated patch recording conditions, GABAAR activation depolarized/excited large but hyperpolarized/inhibited small HH neurons in most cases. Compared to small HH neurons, large HH neurons exhibited more positive Cl equilibrium potentials, higher intracellular Cl concentrations, lower KCC2 expression, and an immature phenotype, consistent with GABAAR-mediated excitation. Taken collectively, we provide novel evidence for and mechanistic insights into HH epileptogenicity: GABAAR-mediated excitation.  相似文献   

3.
During pyrithiamine-induced thiamine deficiency (PTD), specific regions of the brain develop histological damage. The basis of this selective vulnerability is unknown but the mechanism may involve a glutamate-mediated excitotoxic process in affected structures, leading to alterations in membrane potential and disturbances in calcium homeostasis. In this study, we have examined the volume of distribution of [3H]nimodipine, an L-type voltage-sensitive calcium channel (VSCC) antagonist, in the brain of the PTD rat. An increase in specific binding of [3H]nimodipine was detected only in the posterior thalamus at the symptomatic stage, immediately following the loss of righting reflexes (P < 0.0001). There was also an increase in nonspecific binding in the medial geniculate and inferior colliculi. Replenishment with thiamine at the symptomatic stage returned [3H]nimodipine binding to normal levels. These findings provide evidence that depolarization and activation of L-type VSCCs occur in the posterior thalamus and may contribute to the appearance of histological lesions in this structure during experimental thiamine deficiency. J. Neurosci. Res. 52:742–749, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
In rodents, administration of the L-type calcium channel activators, +/-Bay K 8644 and FPL 64176, causes an unusual neurobehavioral syndrome that includes dystonia and self-injurious biting. To determine the regional influence of these drugs in the brain, the induction of c-FOS was mapped after administration of these drugs to mice. In situ hybridization with an antisense riboprobe directed to c-FOS mRNA revealed widespread induction, with the highest levels in the striatum, cortex, hippocampus, locus coeruleus, and cerebellum. The induction of c-FOS mRNA was dose dependent, reached maximal expression approximately 60 min after drug treatment, and could be blocked by pretreatment with the L-type calcium channel antagonist, nifedipine. Immunohistochemical stains with an antibody directed to c-FOS protein revealed a pattern of induction similar to that obtained with in situ hybridization in most brain regions. These results demonstrate a very heterogeneous influence of L-type calcium channel activation in different brain regions, despite the nearly universal expression of these channels implied by more classical anatomical methods.  相似文献   

5.
The L-type calcium channel activator +/-Bay K 8644 induces repetitive self-biting and self-injurious behavior in young mice. Since dopaminergic systems have been implicated in prior studies of these behaviors in both humans and animals, the present experiments were designed to test whether drugs influencing the dopaminergic systems could modify the behavioral responses to +/-Bay K 8644. The ability of +/-Bay K 8644 to provoke self-biting and self-injurious behavior was increased by amphetamine and GBR 12909, drugs that augment synaptic dopaminergic concentrations by blocking the reuptake and/or stimulating the release of dopamine. Conversely, self-biting and self-injurious behavior were decreased by tetrabenazine or reserpine, two drugs that deplete vesicular stores of dopamine. These results suggest that dopaminergic systems may play a role in the ability of +/-Bay K 8644 to provoke self-biting and self-injurious behavior.  相似文献   

6.
The L-type calcium channel activator +/-Bay K 8644 has recently been shown to provoke self-injurious biting in young mice. Since the serotonergic systems have been implicated in the expression of self-injurious behavior in both humans and animals, the present studies tested whether drugs influencing serotonin systems could modify the ability of +/-Bay K 8644 to cause this behavior. The ability of +/-Bay K 8644 to provoke self-biting behavior was increased by the serotonin uptake inhibitor fluoxetine or the monoamine oxidase inhibitor clorgyline. On the other hand, the ability of +/-Bay K 8644 to provoke self-biting was decreased by depletion of serotonin with p-chlorophenylalanine or 5,7-dihyroxytryptamine. These results suggest that the ability of +/-Bay K 8644 to provoke self-injurious behaviors may be mediated by serotonergic influences.  相似文献   

7.
The glucocorticoid hydrocortisone (HC), applied for up to 2 weeks to either aneurally or innervated cultured human muscle, produced 2-fold increase of the number of dihydropyridine ([3H]PN200-110) binding sites. The K+ -induced, nifedipine-inhibited Ca2+ uptake was increased 40%. The effect of HC was concentration- and time-dependent. [3H]PN200-110 affinity for its receptor was not affected by HC treatment. HC did not exert significant influence on the total amount of protein, CK activity, and the number of myotubes. These results indicate that voltage-dependent L-type Ca2+ channel expression in human muscle is regulated by glucocorticoid. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Otilonium bromide (OB) is used as an intestinal antispasmodic. The mechanism of action of OB is not completely understood. As Ca(2+) entry into intestinal smooth muscle is required to trigger contractile activity, our hypothesis was that OB blocked Ca(2+) entry through L-type Ca(2+) channels. Our aim was to determine the effects of OB on Ca(2+), Na(+) and K(+) ion channels in human jejunal circular smooth muscle cells and on L-type Ca(2+) channels expressed heterologously in HEK293 cells. Whole cell currents were recorded using standard patch clamp techniques. Otilonium bromide (0.09-9 micromol L(-1)) was used as this reproduced clinical intracellular concentrations. In human circular smooth muscle cells, OB inhibited L-type Ca(2+) current by 25% at 0.9 micromol L(-1) and 90% at 9 micromol L(-1). Otilonium bromide had no effect on Na(+) or K(+) currents. In HEK293 cells, 1 micromol L(-1) OB significantly inhibited the expressed L-type Ca(2+) channels. Truncation of the alpha(1C) subunit C and N termini did not block the inhibitory effects of OB. Otilonium bromide inhibited Ca(2+) entry through L-type Ca(2+) at concentrations similar to intestinal tissue levels. This effect may underlie the observed muscle relaxant effects of the drug.  相似文献   

9.
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons integrate the multiple internal and external cues that regulate sexual reproduction. In contrast to other neurons that exhibit extensive dendritic arbors, GnRH neurons usually have a single dendrite with relatively little branching. This largely precludes the integration strategy in which a single dendritic branch serves as a unit of integration. In the present study, we identify a gradient in L-type calcium channels in dendrites of mouse GnRH neurons and its interaction with GABAergic and glutamatergic inputs. Higher levels of L-type calcium channels are in somata/proximal dendrites (i.e., 0-26 μm) and distal dendrites (~130 μm dendrite length), but intervening midlengths of dendrite (~27-130 μm) have reduced L-type calcium channels. Using uncaging of GABA, there is a decreasing GABAergic influence along the dendrite and the impact of GABA(A) receptors is dependent on activation of L-type calcium channels. This results in amplification of proximal GABAergic signals and attenuation of distal dendritic signals. Most interestingly, the intervening dendritic regions create a filter through which only relatively high-amplitude, low-frequency GABAergic signaling to dendrites elicits action potentials. The findings of the present study suggest that GnRH dendrites adopt an integration strategy whereby segments of single nonbranching GnRH dendrites create functional microdomains and thus serve as units of integration.  相似文献   

10.
Whole-cell and cell-attached patch recording have been used to characterize multiple types of voltage-dependent calcium channels in neurons freshly dispersed from rabbit dorsal root ganglia. In whole-cell patch recordings, high-threshold current, strongly resistant to inactivation by depolarized holding potentials (L-type; V1/2 = -27.2 mV), was potently inhibited by nimodipine. Assuming 1:1 binding, the dissociation constant for nimodipine binding to the inactivated state of the L-type calcium channel (KI) was 5.3 nM (n = 8). In contrast, a second type of high-threshold current less resistant to inactivation by depolarized holding potentials (N-type; V1/2 = -56.9 mV) was not blocked by nimodipine. Nimodipine-resistant N-type calcium current was inhibited by omega-conotoxin (5 microM). Cell-attached patch recordings of single calcium channel currents demonstrated the existence of three different unitary conductances; 7.4 pS, 13.1 pS, and 24.1 pS. The 24.1 pS high-threshold channel was enhanced by (-) BAY K 8644 and inhibited by nimodipine in a concentration- and voltage-dependent manner. Hyperpolarization reversed this block. These results demonstrate that, as in cardiac and smooth muscle, there is a component of neuronal high-threshold current corresponding to the L-type calcium channel that can be blocked with high affinity by nimodipine.  相似文献   

11.
Transduction pathways of kappa receptor activation are not fully understood. Human placenta at term expresses only this type of opioid receptors and therefore offers a unique advantage for such investigations. It has previously been postulated that kappa receptors-mediated modulation of acetylcholine and placental lactogen release from human placentas require the influx of extracellular calcium and into the cells, possibly via voltage-dependent channels. We report here that another opioid-regulated placental function, the release of human chorionic gonadotropin (hCG), depends on extracellular calcium and the modality of its influx via L-type channels. Data presented demonstrated that the stimulation of hCG secretion by the kappa-selective agonist U69,593 was abolished in presence of either EGTA or the calcium channel blocker nifedipine. Results obtained on the combined effect of opioids and dihydropyridines indicated that placental kappa opioid receptors could be directly coupled to L-type calcium channels. The identification of the latter in villus membrane preparations, reported here for the first time, further contributes to the hypothesis that, in human placenta, kappa receptors-linked transduction mechanisms involve calcium and its conductance across villus membranes.  相似文献   

12.
In rodents, activation of L-type calcium channels with +/-BayK 8644 causes an unusual behavioral syndrome that includes dystonia and self-biting. Prior studies have linked both of these behaviors to dysfunction of dopaminergic transmission in the striatum. The current studies were designed to further elucidate the relationship between +/-BayK 8644 and dopaminergic transmission in the expression of the behavioral syndrome. The drug does not appear to release presynaptic dopamine stores, since microdialysis of the striatum revealed dopamine release was unaltered by +/-BayK 8644. In addition, the behaviors were preserved or even exaggerated in mice or rats with virtually complete dopamine depletion. On the other hand, pretreatment of mice with D(3) or D(1/5) dopamine receptor antagonists attenuated the behavioral effects of +/-BayK 8644, while pretreatment with D(2) or D(4) antagonists had no effect. In D(3) receptor knockout mice, +/-BayK 8644 elicited both dystonia and self-biting, but these behaviors were less severe than in matched controls. In D(1) receptor knockout mice, behavioral responses to +/-BayK 8644 appeared exaggerated. These results argue that the behavioral effects of +/-BayK 8644 are not mediated by a presynaptic influence. Instead, the behaviors appear to result from a postsynaptic activation of the drug, which does not require but can be modified by D(3) or D(1/5) receptors.  相似文献   

13.
Entry of calcium ions into the neuron is a triggering signal for initiation of several processes which may lead to modification of synaptic connectivity. The developmental changes of voltage-dependent L-type calcium channel (VDLCC) were studied using [3H]PN 200 110 nifedipine displaceable binding in the barrel cortex of mice, a model structure for studying cortical plasticity. In vitro binding autoradiography was used to examine quantitatively the pattern of [3H]PN 200 110 binding to brains of animals aged from 3 to 70 days. The binding values in the somatosensory cortex rose two-fold in the period examined, reaching a plateau in the 4th postnatal week. The laminar pattern of binding changed during development, with the locus of heaviest labeling shifting from layer IV to II/III in the third postnatal week and thin bands of labeling developing in layers IV and VI. A very faint barrel-like pattern of labeling in the barrel field was observed. Neither this pattern nor the binding values were altered by unilateral neonatal removal of all vibrissal follicles. Saturation studies of binding to crude synaptosomal fractions of cerebral cortex of mice aged 3, 15, 28 and 70 days revealed the presence of a single binding site, with Bmax increasing from 48.7 +/- 5.1 fmol/mg protein at postnatal day 3 to 191.7 +/- 9.6 fmol/mg protein at day 70. No developmental changes in KD values were found. No correlation was found between the critical period for cytoarchitectonic plasticity of the barrels and the time when high values of VDLCC binding were observed.  相似文献   

14.
Cerebellar granule cells (CGC) deprived of serum or trophic factors develop sensitivity to kainate neurotoxicity that is mediated by the alpha-amino-3-hydroxy-5-methyl-isoxazole proprionic acid (AMPA) subtypes of glutamate receptors (GluR). The L-type voltage-gated calcium channel (L-type VGCC) blocker nifedipine increases the potency of kainate 50-fold. Thus, one goal of this laboratory is to determine the underlying protective mechanism triggered by calcium influx through this channel. The cell-permeable heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine effected complete protection against kainate treatment in the presence of nifedipine, as did the iron chelator deferoxamine. The chelatable heavy metal pool decreased approximately 70% immediately following treatment with kainate, but did not change following kainate/nifedipine treatment. Tetramethylrhhodamine ethyl ester (TMRE) fluorescence, an indicator of mitochondrial membrane potential, decreased approximately 70% following kainate treatment but displayed a more modest decrease ( approximately 15%) when CGC were treated with kainate/nifedipine. Reactive oxygen species (ROS) formation decreased in CGC immediately following kainate treatment but was slightly elevated following kainate/nifedipine treatment. Electron microscopic examinations of the CGC indicated severe swelling and distortion of mitochondria immediately following kainate/nifedipine treatment and the appearance of mitochondrial herniations, whorls, and bridges 2 h later, features that were rarely observed following kainate treatment. These results support the hypothesis that calcium entry through L-type VGCCs protects CGC during kainate treatment by lowering the chelatable heavy metal pool and the mitochondrial membrane potential, thereby mitigating the formation of ROS.  相似文献   

15.
We have investigated the actions of the H1 receptor antagonist terfenadine on voltage sensitive calcium channels and calcium-mediated pathways. We found that terfenadine preventedN-methyl-d-aspartate (NMDA)-mediated excitotoxicity following stimulation of L-type voltage sensitive calcium channels by the specific agonist BayK8644. The neuroprotective effect of terfenadine was concentration-dependent, 10 and 100 nM terfenadine providing 50 and 100% neuroprotection, respectively. Neuroprotection was associated with a decrease in calcium influx via L-voltage sensitive calcium channels. Terfenadine fully reversed the increase in intracellular calcium induced by BayK8644, and delayed significantly the time necessary for this agonist to induce maximum intracellular calcium levels. Calciummediated biochemical pathways coupled to voltage sensitive calcium channels activation were also affected by terfenadine. This drug inhibited intracellular cGMP formation by BayK8644 in a concentration-dependent manner, 100 nM terfenadine reducing cGMP formation by 50% and 1 μM terfenadine fully inhibiting cGMP synthesis. Terfenadine reduced NMDA receptor-mediated cGMP formation due to the release of glutamate following activation of calcium channels by BayK8644. Finally, we also show that terfenadine effectively reduced steady-state concentrations of both intracellular calcium and cGMP in unstimulated cultures in their usual growing conditions.  相似文献   

16.
17.
In vitro binding autoradiography was used to examine the pattern and intensity of binding of [3H]glutamate to NMDA receptors, [3H]MK 801 to NMDA receptor associated channels in and [3H]PN-200 110 to L-type calcium channels in the hippocampus of mice aged 3–70 days. The distribution of NMDA receptors and NMDA receptor associated channels was similar but not identical at the tested ages. Beginning with postnatal day 8, high binding levels were confined mostly to the hippocampal strata: the oriens and radiatum (CA1 and CA3 with [3H]MK 801 labeling but only CA1 with NMDA displaced [3H]glutamate labeling), the moleculare (higher labeling with [3H]MK 801 than with NMDA displaced [3H]glutamate binding), and the lucidum. The binding values for NMDA receptor-channel complex rose in the examined period (especially within the second and third week), reaching a plateau at the end of the third postnatal week. Sharp growth of binding within the second and third week of life was about 50% greater with [3H]MK 801 than with NMDA displaced [3H]glutamate labeling. L-type calcium channels were found to be most abundant in the strata: the oriens of the CA3 field, the moleculare, and the lucidum. The time course of binding value changes for the calcium channel was similar to the time course found for the NMDA receptor-channel complex. © 1993 Wiley-Liss, Inc.  相似文献   

18.
GABAA receptor activation exerts trophic actions in immature neurons through depolarization of resting membrane potential. The switch to its classical hyperpolarizing role is developmentally regulated. Previous results suggest that a hormonally biased sex difference exists at the onset of the switch in hypothalamic neurons. The aim of this work was to evaluate sex differences in GABAA receptor function of hypothalamic neurons before brain masculinization by gonadal hormones. Hypothalamic cells were obtained from embryonic day 16 male and female rat foetuses, 2 days before the peak of testosterone production by the foetal testis, and grown in vitro for 9 days. Whole‐cell and perforated patch‐clamp recordings were carried out in order to measure several electrophysiological parameters. Our results show that there are more male than female neurons responding with depolarization to muscimol. Additionally, among cells with depolarizing responses, males have higher and longer lasting responses than females. These results highlight the relevance of differences in neural cell sex irrespective of exposure to sex hormones.  相似文献   

19.
20.
We have demonstrated the presence of both N- and L-type calcium channels in growth cone and other subcellular fractions of fetal rat brain, using the ligands omega-conotoxin GVIA for N-type channels and nitrendipine for L-type channels. The N-type channels seem to be distributed evenly throughout the perikaryon, neurite shaft and growing tip of the neurons. In contrast, the L-type channels appear to have a lower density in the growth cone than on the rest of the neuron. These observations apply at least within the limitations of cell fractionation technology. We have also studied both calcium channel subtypes in rat brain synaptosomal membranes. In both adult and fetal fractions there are approximately 6 times more N-type than L-type channels. Synaptosomal membranes contain more N- and L-type channels than any of the fetal subfractions, indicating that there is a substantial increase in calcium channel numbers upon synaptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号