首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The molecular events responsible for impairments in cognition following mild traumatic brain injury are poorly understood. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), have been identified as having a role in learning and memory. We have previously demonstrated that following experimental brain trauma of moderate severity (2.0-2.1 atm), mRNA levels of BDNF and its high-affinity receptor, trkB, are increased bilaterally in the hippocampus for several hours, whereas NT-3 mRNA expression is decreased. In the present study, we used in situ hybridization to compare BDNF, trkB, NT-3, and trkC mRNA expression in rat hippocampus at 3 or 6 h after a lateral fluid percussion brain injury (FPI) of mild severity (1.0 atm) to sham-injured controls at equivalent time points. Mild FPI induced significant increases in hybridization levels for BDNF and trkB mRNAs, and a decrease in NT-3 mRNA in the hippocampus. However, in contrast to the bilateral effects of moderate experimental brain injury, the present changes with mild injury were restricted to the injured side. These findings demonstrate that even a mild traumatic brain injury differentially alters neurotrophin and neurotrophin receptor levels in the hippocampus. Such alterations may have important implications for neural plasticity and recovery of function in people who sustain a mild head injury.  相似文献   

2.
Hippocampal levels of mRNA encoding nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are rapidly induced by enhanced neuronal activity following seizures and glutamate or muscarinic receptor activation. However, the levels of neurotrophin-3 (NT-3) mRNA acutely decrease after limbic seizures suggesting that a different mode of regulation may exist for these neurotrophins. Here we show that BDNF and neurotrophin-4 (NT-4), but not NT-3 itself, up-regulate NT-3 mRNA in cultured hippocampal neurons. In the rat hippocampus, the muscarinic receptor agonist, pilocarpine increased BDNF mRNA levels rapidly and those of NT-3 with a delay of several hours. Injection of BDNF into neonatal rats elevated NT-3 mRNA in the hippocampus which demonstrates that BDNF is able to enhance NT-3 expression in vivo. The regulation of NT-3 by BDNF and NT-4 enlargens the neurotrophic spectrum of these neurotrophins to include neuron populations responsive primarily to NT-3.  相似文献   

3.
Abdel-Rahman A  Rao MS  Shetty AK 《Glia》2004,47(4):299-313
Analysis of the expression of nestin in reactive astrocytes facilitates quantification of the extent of activation of astrocytes after injury in the mature CNS. We hypothesize that the capability of astrocytes for re-expressing nestin in response to CNS injury diminishes as a function of age. We quantified astrocytes positive for S-100beta protein, glial fibrillary acidic protein (GFAP) and nestin in the hippocampus of young adult, middle-aged, and aged Fischer 344 rats after an intracerebroventricular kainic acid (KA) administration. In all age groups, KA administration induced degeneration of CA3 pyramidal neurons, which led to a significant deafferentation in the CA1 region. The KA-induced neurodegeneration and deafferentation resulted in an increased population of astrocytes positive for S-100beta and glial fibrillary acidic protein (GFAP) in all age groups. Interestingly, these increases were highly comparable across the three age groups. However, in areas of both neurodegeneration and deafferentation, the overall numerical density of nestin-positive reactive astrocytes varied depending on the age at the time of injury with noticeably decreased numerical density in the injured middle-aged and aged hippocampus. In contrast, nestin-immunoreactive radial glia framework after lesion is not impaired with aging in the ependymal lining of the CA3 region.  相似文献   

4.
Protein levels for brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were measured in the striatum and ventral midbrain of young and aged Brown Norway/F344 F1 (F344BNF(1)) hybrid rats following a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. At 2 weeks post-lesion, protein levels of BDNF and GDNF were higher in the denervated striatum when compared to the intact striatum for young (4-5 months old) but not old (31-33 months old) rats. Interestingly, in old rats BDNF protein in the denervated striatum was significantly lower than that measured in the intact striatum. At the same time point BDNF protein levels in the ventral midbrain were higher on the lesioned versus intact side for both young and old rats while no significant side differences were detected for GDNF protein in the ventral midbrain of young or old rats. No significant differences in NT-3 protein levels were detected between the lesioned and intact sides for striatal or ventral midbrain regions in either young or old brain. While no significant age effects were detected for BDNF or NT-3 protein, young rats showed higher GDNF protein levels in both the striatum (lesioned or intact) and ventral midbrain (lesioned or intact) than old rats. These data show that two endogenous neurotrophic factors, BDNF and GDNF, are differentially affected by a 6-OHDA lesion in the aging nigrostriatal system with young brain showing a significant compensatory increase of these two factors in the denervated striatum while no compensatory increase is observed in aged brain.  相似文献   

5.
The present study tested whether individual differences in anxiety- and fear-related behaviour are associated with between-subjects variation in postmortem brain levels of selected neurotrophic factors. Na?ve C57BL6/J mice of both sexes were subjected either to an elevated plus maze test or to a Pavlovian fear conditioning paradigm. Two days after behavioural assays, the mice were sacrificed for postmortem quantification of the protein levels of brain derived neurotrophic factors (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the hippocampus and amygdala. Significant correlations between behavioural measures and postmortem regional neurotrophic factor contents were revealed. The magnitude of anxiety-like behaviour in the elevated plus maze was positively related to dorsal hippocampal BDNF levels, but negatively related to NGF levels in dorsal hippocampus and in the amygdala. On the other hand, the expression of conditioned fear is positively related to amygdala BDNF and NGF levels, and to dorsal hippocampal NGF levels. Our results add to existing reports in human as well as in animals of correlation between anxiety trait and gross measures of hippocampal volume or activation levels. Moreover, a distinction between spontaneous and learned (or conditioned) anxiety/fear would be relevant to the identification of neurotrophin signalling mechanisms in the hippocampus and amygdala implicated in anxiety and related psychopathology.  相似文献   

6.
The effects of peripherally administered thyroid hormone (TH; 500 micrograms/kg; i.p.; q.d.) on the relative abundances of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) RNA were determined by rtPCR in the cortex and hippocampus of young adult rats. Corresponding changes in choline acetyltransferase (ChAT) activity were measured since NGF and BDNF have been shown to enhance the expression of this marker enzyme of central cholinergic pathways. Abundance levels of NGF and NT-3, relative to cyclophilin (cycl), were increased significantly (+50%, P < 0.05) in the hippocampus following TH treatment. Despite enhanced abundance of NGF in the hippocampus, ChAT activity was unchanged, whereas ChAT activity was modestly increased by 28% in the cortex without corresponding changes in NGF, NT-3 or BDNF. These results demonstrate that TH administration is capable of inducing the accumulation of NT-3, in addition to NGF but that the induction levels of RNA cannot be directly correlated with responsivity of the cholinergic system as measured by ChAT activity.  相似文献   

7.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

8.
Several groups have suggested that transplantation of marrow stromal cells (MSCs) promotes functional recovery in animal models of brain trauma. Recent studies indicate that tissue replacement by this method may not be the main source of therapeutic benefit, as transplanted MSCs have only limited ability to replace injured central nervous system (CNS) tissue. To gain insight into the mechanisms responsible for such effects, we systematically investigated the therapeutic potential of MSCs for treatment of brain injury. Using in vitro studies, we detected the synthesis of various growth factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT-3). Enzyme-linked immunosorbent assay (ELISA) demonstrated that MSCs cultured in Dulbecco's modified Eagle medium (DMEM) produced substantial amounts of NGF for at least 7 weeks, whereas the levels of BDNF, GDNF and NT-3 remained unchanged. In studies in mice, after intraventricular injection of MSCs, NGF levels were increased significantly in cerebrospinal fluid by ELISA, confirming our cell culture results. Further studies showed that treatment of traumatic brain injury with MSCs could attenuate the loss of cholinergic neuronal immunostaining in the medial septum of mice. These studies demonstrate for the first time that by increasing the brain concentration of NGF, intraventricularly transplanted MSCs might play an important role in the treatment of traumatic brain injury.  相似文献   

9.
Neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), have repeatedly been shown to be involved in the pathophysiology of Alzheimer's disease (AD). Recent studies have claimed that these neurotrophic factors are important tools for therapeutic intervention in neurodegenerative diseases. So far, little is known about the age- and disease-modulated time course of cerebral neurotrophins. Therefore, we have studied protein concentrations of BDNF, NGF, and NT-3 in different brain areas and sciatic nerve, a neurotrophin-transporting peripheral nerve, in a well-characterized AD model of amyloid precursor protein-overexpressing rodents (APP23 mice) at the ages of 5.0, 10.5, and 20.0 months. In APP23 mice, there was a significant increase of BDNF and NGF in the frontal and occipital cortices (for BDNF also in the striatum) of old 20.0-month-old mice (with respect to median values up to 8.2-fold), which was highly correlated with amyloid concentrations of these brain areas. Median values of NGF and NT-3 showed up to a 6.0-fold age-dependent increase in the septum that was not detectable in APP23 mice. Hippocampus, olfactory bulb, and cerebellum (except NT-3) did not show substantial age- or genotype-related regulation of neurotrophins. In the sciatic nerve, BDNF and NGF levels are increased in5-month-old APP23 mice and decrease with age to control levels. In conclusion, APP23 mice show a genotype-dependent increase of cortical BDNF and NGF that is highly correlated with amyloid concentrations and may reflect an amyloid-related glia-derived neurotrophin secretion or an altered axonal transport of these neurotrophic factors.  相似文献   

10.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the neurotrophin family, bind to and activate TrkA, TrkB and TrkC, respectively, members of the Trk receptor tyrosine kinase family, to exert various effects including promotion of differentiation and survival, and regulation of synaptic plasticity in neuronal cells. Many reports have suggested that different neurotrophins show distinct biological functions, although molecular mechanisms by which neurotrophins exert their different functions remain unclear. In the present study, we found distinct usages of phospholipase Cgamma (PLCgamma) and Shc in intracellular signaling stimulated by neurotrophins. BDNF stimulated much stronger interactions of PLCgamma with Trk than NGF and NT-3 in PC12 cells stably expressing TrkB and cultured cerebral cortical neurons, respectively, although BDNF, NGF and NT-3 induced similar levels of tyrosine phosphorylation of Trk. Furthermore, the cultured cortical neurons showed large PLCgamma-dependent increases in intracellular Ca(2+) levels in response to BDNF compared with NT-3. In Shc signaling, NGF, but not BDNF, displayed interactions between Trk and Shc in a phenylarsine oxide (PAO; an inhibitor of tyrosine phosphatase)-dependent manner in TrkB-expressing PC12 cells. These results indicated that neurotrophins stimulate distinct kinds of interactions between Trk and PLCgamma and between Trk and Shc. These differences may lead to the distinct biological functions of neurotrophins.  相似文献   

11.
Cell transplants that successfully replace the lost neurons and facilitate the reconstruction of the disrupted circuitry in the injured aging hippocampus are invaluable for treating acute head injury, stroke and status epilepticus in the elderly. This is because apt graft integration has the potential to prevent the progression of the acute injury into chronic epilepsy in the elderly. However, neural transplants into the injured middle-aged or aged hippocampus exhibit poor cell survival, suggesting that apt graft augmentation strategies are critical for robust integration of grafted cells into the injured aging hippocampus. We examined the efficacy of pre-treatment and grafting of donor fetal CA3 cells with a blend of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) for lasting survival and integration of grafted cells in the injured middle-aged (12 months old) hippocampus of F344 rats. Grafts were placed at 4 days after the kainic-acid-induced hippocampal injury and were analyzed at 6 months post-grafting. We demonstrate that 80% of grafted cells exhibit prolonged survival and 71% of grafted cells differentiate into CA3 pyramidal neurons. Grafts also receive a robust afferent input from the host mossy fibers and project efferent axons into the denervated zones of the dentate gyrus and the CA1 subfield. Consequently, the aberrant sprouting of the dentate mossy fibers, an epileptogenic change that typically ensues after the hippocampal injury, was suppressed. Thus, grafts of fetal CA3 cells enriched with FGF-2 and BDNF exhibit robust integration and dampen the abnormal mossy fiber sprouting in the injured middle-aged hippocampus. Because the aberrantly sprouted mossy fibers contribute to the generation of seizures, the results suggest that the grafting intervention using FGF-2 and BDNF is efficacious for suppressing epileptogenesis in the injured middle-aged hippocampus.  相似文献   

12.
Li XL  Zhang W  Zhou X  Wang XY  Zhang HT  Qin DX  Zhang H  Li Q  Li M  Wang TH 《Neuropeptides》2007,41(3):135-143
Functional recovery of neurons in the spinal cord after physical injury is essentially abortive in clinical cases. As neurotrophins had been reported to be responsible, at least partially, for the lesion-induced recovery of spinal cord, it is not surprising that they have become the focus of numerous studies. Studies on endogenous neurotrophins, especially the three more important ones, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in injured spinal cord might provide some important clues in clinical treatment. Here we investigate the immunohistological expression of the above three factors at lower thoracic levels of the spinal cord as well as changes in the motor functions of the adult rat hindlimbs after cord transection. The injured rats were allowed to survive 3, 7, 14 and 21 days post operation (dpo). Flaccid paralysis was seen at 3 dpo following cord transection, however, hindlimb function showed partial recovery from 7 dpo to 21 dpo. The numbers of NGF, BDNF and NT-3 immunopositive neurons and their optical densities all increased in the lesion-induced cord. The immuno-expression of NGF and BDNF peaked at 7 dpo, while that of NT-3 peaked at 7 dpo and remained so at least up to 14 dpo. These results suggested that neurotrophins might play essential roles in functional recovery of after spinal cord injury, but the time points for the expression of the three factors differed somewhat.  相似文献   

13.
We reported recently that overexpression of neurotrophin-3 (NT-3) by motoneurons in the spinal cord of rats will induce sprouting of corticospinal tract (CST) axons (Zhou et al. [2003] J. Neurosci. 23:1424-1431). We now report that overexpression of brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF) in the rat sensorimotor cortex near the CST neuronal cell bodies together with overexpression of NT-3 in the lumbar spinal cord significantly increases axonal sprouting compared to that induced by NT-3 alone. Two weeks after unilaterally lesioning the CST at the level of the pyramids, we injected rats with saline or adenoviral vectors (Adv) carrying genes coding for BDNF (Adv.BDNF), GDNF (Adv.GDNF) or enhanced green fluorescent protein (Adv.EGFP) at six sites in the sensorimotor cortex, while delivering Adv.NT3 to motoneurons in each of these four groups on the lesioned side of the spinal cord by retrograde transport from the sciatic nerve. Four days later, biotinylated dextran amine (BDA) was injected into the sensorimotor cortex on the unlesioned side to mark CST axons in the spinal cord. Morphometric analysis of axonal sprouting 3 weeks after BDA injection showed that the number of CST axons crossing the midline in rats treated with Adv.BDNF or Adv.GDNF were 46% and 52% greater, respectively, than in rats treated with Adv.EGFP or PBS (P < 0.05). These data demonstrate that sustained local expression of neurotrophic factors in the sensorimotor cortex and spinal cord will promote increased axonal sprouting after spinal cord injury, providing a basis for continued development of neurotrophic factor therapy for central nervous system damage.  相似文献   

14.
Basal forebrain cholinergic neurons respond in vitro and in vivo to nerve growth factor (NGF) and to brain-derived neurotrophic factor (BDNF). It is not clear to what extent the neurons that respond to these two factors, or to neurotrophin-3 or−45 (NT-3;NT-45) are identical or only partially overlapping populations. We have addressed this issue in cultures of basal forebrain neurons derived from 2-week-old postnatal rats, using choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) as cholinergic markers. Cholinergic neuron survival was enhanced in the presence of NGF, BDNF andNT-45.NT-45 was as effective as BDNF. NT-3 was without effect at this age, although in cultures derived from embryonic forebrain, cholinergic differentiation was induced by NT-3. Cotreatment with NGF and BDNF resulted in small, but consistent, increases in the number of ChAT-positive neurons, compared with either factor alone.NT-45 was also found to be additive with NGF, whereas cotreatment with BDNF andNT-45 showed no addivity. NT-3 had no additive effects with any other neurotrophin on any cholinergic parameters in postnatal cultures. Taken together, the results indicate the existence in postnatal rat brain of a large overlapping population of cholinergic neurons that are responsive to ligands for the neurotrophin receptors TrkA (NGF) and TrkB (BDNF andNT-45), but not TrkC (NT-3), and small distinct populations that show specificity for NGF or BDNF but not both. We hypothesize that cholinergic neurons projecting into different regions of the hippocampus may derive trophic support from distinct neurotrophins.  相似文献   

15.
One reason that the central nervous system of adult mammals does not regenerate after injury is that neurotrophic factors are present only in low concentrations in these tissues. Recent studies have shown that the application of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) acts to encourage the regrowth of motor and sensory fibers after spinal cord injury. Other studies have reported that the regrowth of axons after injury was enhanced by the implantation of Schwann cells, which normally secrete BDNF and NT-3. The purpose of the present study was to genetically modify Schwann cells to secrete increased amounts of BDNF or NT-3 by infection with a retroviral vector. Retroviral vectors were constructed by the ligation of BDNF or NT-3 cDNA to the LXSN vector. Viruses were generated from the plasmid forms of the vectors by transient transfection of PA317 amphotrophic retroviral packaging cells. Viruses were harvested and used to infect the human Schwann cell line designated NF-1T. Northern blot analysis of poly (A+) RNA prepared from Schwann cells that were infected with BDNF- or NT-3-containing virus showed the presence of BDNF or NT-3 mRNA. An enzyme-linked immunosorbent assay (ELISA) for BDNF and NT-3 was performed on media the cells were grown in, and on cellular extracts prepared from the BDNF- and NT-3-infected Schwann cells. The ELISA results demonstrated that the Schwann cells were secreting increased levels of immunologically active BDNF or NT-3. Immunocytochemical staining of these cells revealed the presence of these two neurotrophic factors located in perinuclear granules. These neurotrophic factor-secreting Schwann cells are currently being evaluated for their efficacy in the treatment of spinal cord injury.  相似文献   

16.
Ciliary neurotrophic factor (CNTF) is a pleiotropic molecule that acts as a neurotrophic factor for a wide range of embryonic neurons as well as a differentiation factor for sympathetic neuroblasts and O2A progenitor cells in culture. CNTF messenger RNA (mRNA) is present at very low levels in the normal adult rat central nervous system (CNS), but is dramatically up-regulated after an aspiration lesion of dorsal hippocampus and overlying cortex, in the area coincident with glial scar. The increased level of CNTF mRNA in lesioned hippocampus is maximal by 3 days and is sustained for up to 20 days, the longest time point examined. In contrast, mRNA levels for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were slightly decreased during the same period. In situ hybridization experiments revealed that cells expressing CNTF mRNA were concentrated at the margin of the wound, and also present within the gelfoam which filled the lesion cavity. This distribution of CNTF-expressing cells corresponded very closely to that of cells expressing high levels of glial fibrillary acidic protein mRNA at the wound site. Paralleling the observed increase in CNTF mRNA, increased levels of CNTF-like neurotrophic activity were apparent in soluble extracts of the lesioned tissues. This neurotrophic activity for ciliary ganglion neurons was completely blocked by the addition of neutralizing antiserum against CNTF. Basic fibroblast growth factor, which has been shown by others to increase after a similar lesion paradigm (Frautschy et al., Brain Res. , 553 , 291–299, 1991), does not contribute appreciably to this trophic activity. We conclude that CNTF is markedly increased as a function of injury to the CNS and that its expression is most likely restricted to reactive astrocytes in the glial scar.  相似文献   

17.
Lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, induces neuronal death, decreases neurogenesis, and impairs synaptic plasticity and memory, but the mechanisms for these effects are not well understood. We hypothesize that neurotrophin levels in the brain are influenced by LPS. To test this hypothesis, we determined effects of LPS on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and NT-3 levels in the brain after intraperitoneal injection of saline or LPS (0.1, 0.3 or 1.0mg/kg) in rats. LPS significantly decreased BDNF in the hippocampus (-20%), frontal cortex (-19%), parietal cortex (-63%), temporal cortex (-29%), and occipital cortex (-41%). LPS also significantly decreased NGF levels by 10-20% in the hippocampus and different cortical regions, except in the occipital cortex. Finally, LPS decreased NT-3 by 15-25% in the frontal cortex. These observations indicate that the neuroprotection mediated by neurotrophins in the brain are compromised by systemic immune activation induced by LPS.  相似文献   

18.
Northern blot analysis was used to examine the effects of glucocorticoids on neurotrophin mRNA expression in the rat cerebral cortex and hippocampus. The results show that 3 days after adrenalectomy the mRNA levels for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) decreased significantly in both these regions. In adrenalectomized animals given dexamethasone replacement the mRNA levels for the three neurotrophins were restored to control levels. The effect of a single dose of dexamethasone (5 mg/kg) administered i p. to intact animals on the expression of neurotrophins was also examined. NGF and NT-3 mRNAs showed a 2.5-fold and a 1.4-fold increase, respectively, during the first 4 h after the injection. The increase was followed by a decrease, with levels -50% of control 24 and 48 h after the injection. In contrast, the level of BDNF mRNA did not change during the first 10 h after the injection, but decreased to 70% of control 48 h after the injection. These data indicate that glucocorticoids regulate neurotrophin mRNA expression both in the cortex and in the hippocampus, and suggest further that the known effects of glucocorticoids on neuronal survival in the brain could be due to changes in the levels of neurotrophins in the brain.  相似文献   

19.
20.
We have conducted studies to determine the potential of exercise to benefit the injured spinal cord using neurotrophins. Adult rats were randomly assigned to one of three groups: (1) intact control (Con); (2) sedentary, hemisected at a mid-thoracic level (Sed-Hx), or (3) exercised, hemisected (Ex-Hx). One week after surgery, the Ex-Hx rats were exposed to voluntary running wheels for 3, 7, or 28 days. BDNF mRNA levels on the lesioned side of the spinal cord lumbar region of Sed-Hx rats were approximately 80% of Con values at all time points and BDNF protein levels were approximately 40% of Con at 28 days. Exercise compensated for the reductions in BDNF after hemisection, such that BDNF mRNA levels in the Ex-Hx rats were similar to Con after 3 days and higher than Con after 7 (17%) and 28 (27%) days of exercise. After 28 days of exercise, BDNF protein levels were 33% higher in Ex-Hx than Con rats and were highly correlated (r=0.86) to running distance. The levels of the downstream effectors for the action of BDNF on synaptic plasticity synapsin I and CREB were lower in Sed-Hx than Con rats at all time points. Synapsin I mRNA and protein levels were higher in Ex-Hx rats than Sed-Hx rats and similar to Con rats at 28 days. CREB mRNA values were higher in Ex-Hx than Sed-Hx rats at all time points. Hemisection had no significant effects on the levels of NT-3 mRNA or protein; however, voluntary exercise resulted in an increase in NT-3 mRNA levels after 28 days (145%). These results are consistent with the concept that synaptic pathways under the regulatory role of BDNF induced by exercise can play a role in facilitating recovery of locomotion following spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号