首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
Using brain mitochondria isolated from 20-month-old diabetic Goto-Kakizaki rats, we evaluated the efficacy of CoQ10 treatment against mitochondrial dysfunction induced by Abeta1-40. For that purpose, several mitochondrial parameters were evaluated: respiratory indexes (RCR and ADP/O ratio), transmembrane potential (DeltaPsim), repolarization lag phase, repolarization and ATP levels and the capacity of mitochondria to produce hydrogen peroxide. We observed that 4 microM Abeta1-40 induced a significant decrease in the RCR and ATP content and a significant increase in hydrogen peroxide production. CoQ10 treatment attenuated the decrease in oxidative phosphorylation efficiency and avoided the increase in hydrogen peroxide production induced by the neurotoxic peptide. These results indicate that CoQ10 treatment counteracts brain mitochondrial alterations induced by Abeta1-40 suggesting that CoQ10 therapy can help to avoid a drastic energy deficiency that characterizes diabetes and Alzheimer's disease pathophysiology.  相似文献   

2.
Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer's disease   总被引:1,自引:0,他引:1  
Increasing evidence suggests that Alzheimer's disease (AD) is associated with oxidative damage that is caused in part by mitochondrial dysfunction. Here we investigated the feasibility of modifying Alzheimer pathology with the mitochondrial antioxidant coenzyme Q (CoQ). Exogenous CoQ protected MC65 neuroblastoma cells from amyloid-beta protein precursor C-terminal fragment (APP CTF)-induced neurotoxicity in a concentration dependent manner, with concentrations of 6.25 microM and higher providing near complete protection. Dietary supplementation with CoQ at a dose of 10 g/kg diet to C65/Bl6 mice for one month significantly suppressed brain protein carbonyl levels, which are markers of oxidative damage. Treatment for one month with 2 g lovastatin/kg diet, which interferes with CoQ synthesis, resulted in a significant lowering of brain CoQ10 levels. Mitochondrial energetics (brain ATP levels and mitochondrial membrane potential) were unaffected by either CoQ or lovastatin treatment. Our results suggest that oral CoQ may be a viable antioxidant strategy for neurodegenerative disease. Our data supports a trial of CoQ in an animal model of AD in order to determine whether a clinical trial is warranted.  相似文献   

3.
Increased oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD). A large body of evidence suggests that mitochondrial dysfunction and increased reactive oxygen species occur prior to amyloid-β (Aβ) deposition. Coenzyme Q10 (CoQ10), a component of the mitochondrial electron transport chain, is well characterized as a neuroprotective antioxidant in animal models and human trials of Huntington's disease and Parkinson's disease, and reduces plaque burden in AβPP/PS1 mice. We now show that CoQ10 reduces oxidative stress and amyloid pathology and improves behavioral performance in the Tg19959 mouse model of AD. CoQ10 treatment decreased brain levels of protein carbonyls, a marker of oxidative stress. CoQ10 treatment resulted in decreased plaque area and number in hippocampus and in overlying cortex immunostained with an Aβ42-specific antibody. Brain Aβ42 levels were also decreased by CoQ10 supplementation. Levels of amyloid-β protein precursor (AβPP) β-carboxyterminal fragments were decreased. Importantly, CoQ10-treated mice showed improved cognitive performance during Morris water maze testing. Our results show decreased pathology and improved behavior in transgenic AD mice treated with the naturally occurring antioxidant compound CoQ10. CoQ10 is well tolerated in humans and may be promising for therapeutic trials in AD.  相似文献   

4.
Mitochondrial DNA mutations are an important cause of human disease for which there is no effective treatment. Myoclonic epilepsy with ragged-red fibers (MERRF) is a mitochondrial disease usually caused by point mutations in transfer RNA genes encoded by mitochondrial DNA. The most common mutation associated with MERRF syndrome, m.8344A?>?G in the gene MT-TK, which encodes transfer RNALysine, affects the translation of all mitochondrial DNA encoded proteins. This impairs the assembly of the electron transport chain complexes leading to decreased mitochondrial respiratory function. Here we report on how this mutation affects mitochondrial function in primary fibroblast cultures established from patients harboring the A8344G mutation. Coenzyme Q10 (CoQ) levels, as well as mitochondrial respiratory chain activity, and mitochondrial protein expression levels were significantly decreased in MERRF fibroblasts. Mitotracker staining and imaging analysis of individual mitochondria indicated the presence of small, rounded, depolarized mitochondria in MERRF fibroblasts. Mitochondrial dysfunction was associated with increased oxidative stress and increased degradation of impaired mitochondria by mitophagy. Transmitochondrial cybrids harboring the A8344G mutation also showed CoQ deficiency, mitochondrial dysfunction, and increased mitophagy activity. All these abnormalities in patient-derived fibroblasts and cybrids were partially restored by CoQ supplementation, indicating that these cell culture models may be suitable for screening and validation of novel drug candidates for MERRF disease.  相似文献   

5.
Case reports and open-label studies suggest that coenzyme Q(10) (CoQ(10)) treatment may have beneficial effects in mitochondrial disease patients; however, controlled trials are warranted to clinically prove its effectiveness. Thirty patients with mitochondrial cytopathy received 1200 mg/day CoQ(10) for 60 days in a randomized, double-blind, cross-over trial. Blood lactate, urinary markers of oxidative stress, body composition, activities of daily living, quality of life, forearm handgrip strength and oxygen desaturation, cycle exercise cardiorespiratory variables, and brain metabolites were measured. CoQ(10) treatment attenuated the rise in lactate after cycle ergometry, increased (∽1.93 ml) VO(2)/kg lean mass after 5 minutes of cycling (P < 0.005), and decreased gray matter choline-containing compounds (P < 0.05). Sixty days of moderate- to high-dose CoQ(10) treatment had minor effects on cycle exercise aerobic capacity and post-exercise lactate but did not affect other clinically relevant variables such as strength or resting lactate.  相似文献   

6.
Storch A 《Der Nervenarzt》2007,78(12):1378-1382
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons within the substantia nigra pars compacta. Experimental and clinical data point to a defect of the mitochondrial respiratory chain as a major pathogenetic factor in PD. Although the restoration of mitochondrial respiration and reduction of oxidative stress by coenzyme Q(10) (CoQ10) could induce neuroprotective effects against the dopaminergic cell death in PD, these effects of CoQ10 could also improve the dopaminergic dysfunction. Thus CoQ10 might theoretically exert both neuroprotective and symptomatic effects in PD. Current data from controlled clinical trials are not sufficient to answer conclusively whether CoQ10 is neuroprotective in PD. Moreover, several open and controlled pilot studies on symptomatic effects of CoQ10 revealed inconsistent results. A recent randomized, double-blind, placebo-controlled trial showed no symptomatic effects in PD. CoQ10 is well tolerated and safe as both monotherapy and add-on medication in PD patients. The present review discusses the current knowledge on neuroprotective and symptomatic actions of CoQ10 in PD.  相似文献   

7.
Coenzyme Q10 (CoQ10), a peculiar lipophilic antioxidant, is an essential component of the mitochondrial electron-transport chain. It is involved in the manufacturing of adenosine triphosphate (ATP) and has been linked with improving cognitive functions. The present study shows the neuroprotective effect of CoQ10 on cognitive impairments and oxidative damage in hippocampus and cerebral cortex of intracerebroventricular-streptozotocin (ICV-STZ) infused rats. Male Wistar rats (1-year old) were infused bilaterally with an ICV injection of STZ (1.5 mg/kg b.wt., in normal saline), while sham group received vehicle only. After 24 h, the rats were supplemented with CoQ10 (10 mg/kg b.wt. i.p.) for 3 weeks. The learning and memory tests were monitored 2 weeks after the lesioning. STZ-infused rats showed the loss of cognitive performance in Morris water maze and passive avoidance tests. Three weeks after the lesioning, the rats were sacrificed for estimating the contents of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), protein carbonyl (PC), ATP and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), cholineacetyltransferase (ChAT) and acetylcholinesterase (AChE). Significant alteration in the markers of oxidative damage (TBARS, GSH, PC, GPx and GR) and a decline in the level of ATP were observed in the hippocampus and cerebral cortex of ICV-STZ rat. A significant decrease in ChAT activity and a concomitant increase in AChE activity were observed in the hippocampus. However, supplementation with CoQ10 in STZ-infused rats reversed all the parameters significantly. Thus, the study demonstrates that CoQ10 may have a therapeutic importance in the treatment of Alzheimer's type dementia.  相似文献   

8.
For 2 years we administered high doses of coenzyme Q10 (CoQ) to a patient having mitochondrial encephalomyopathy with cytochrome c oxidase deficiency. Abnormal elevation of the serum lactate per pyruvate ratio and the increased concentration of serum lactate plus pyruvate induced by exercise decreased with CoQ treatment. This therapeutic effect continued for 2 years. 31P nuclear magnetic resonance spectroscopy showed acceleration of the postexercise recovery of the ratio of phosphocreatine to inorganic phosphate in muscle during CoQ treatment. These observations support the beneficial effect of CoQ on the impaired mitochondrial oxidative metabolism in muscle. Also, impaired central and peripheral nerve conductivities consistently improved during CoQ treatment. These results indicate that CoQ has clinical value in the long-term management of patients with mitochondrial encephalomyopathies, even though there are clinical limitations to the effects of this therapy.  相似文献   

9.
Steinert's myotonic dystrophy (DM) is a genetic autosomal dominant disease and the most frequent muscular dystrophy in adulthood. Although causative mutation is recognized as a CTG trinucleotide expansion on 19q13.3, pathogenic mechanisms of multisystem involvement of DM are still under debate. It has been suggested that mitochondrial abnormalities can occur in this disease and deficiency of coenzyme Q 10 (CoQ10) has been considered one possible cause for this. The aim of this investigation was to evaluate, in 35 DM patients, CoQ10 blood levels and relate them to the degree of CTG expansion as well as to the amount of lactate production in exercising muscle as indicator of mitochondrial dysfunction. CoQ10 concentrations appeared significantly reduced with respect to normal controls: 0.85 +/- 0.25 vs. 1.58 +/- 0.28 microg/ml (p < 0.05). Mean values of blood lactate were significantly higher in DM patients than controls (p < 0.05) both in resting conditions (2.9 +/- 0.55 vs. 1.44 +/- 1.11 mmol/L) and at the exercise peak (6.77 +/- 1.79 vs. 4.90 +/- 0.59 mmol/L), while exercise lactate threshold was anticipated (30-50% vs. 60-70% of the predicted normal maximal power output, p < 0.05). Statistical analysis showed that serum CoQ10 levels were significantly (p < 0.05) inversely correlated with both CTG expansion degree and lactate values at exercise lactate threshold level. Our data indicates the occurrence of reduced CoQ10 levels in DM, possibly related to disease pathogenic mechanisms associated with abnormal CTG trinucleotide amplification.  相似文献   

10.
Mitochondrial dysfunction contributes to the neurodegenerative process in Huntington's disease (HD). Coenzyme Q10 (CoQ10) enhances mitochondrial complex I activity and may therefore provide a therapeutic benefit in HD. We compared serum CoQ10 levels of previously untreated-and treated HD patients with those of healthy controls. CoQ10 did not significantly (ANCOVA F(dF 2, dF 55) = 2.57; p=0.086) differ between all three groups. However, the post hoc analysis showed no significant (p = 0.4) difference between treated HD patients ([CoQ10]: 88.12 [mean]+/-24.44 [SD], [range] 48.75-146.32 [pg/million platelets]) and controls (93.71+/-20.72, 65.31-157.94), however previously untreated HD patients (70.10+/-21.12, 38.67-106.14) had marked (p = 0.051) lower CoQ10 results than treated HD patients and controls (p = 0.017). Our results support that CoQ10 supplementation in HD patients may reduce impaired mitochondrial function in HD.  相似文献   

11.
BACKGROUND: Major hallmarks in the pathophysiology of Parkinson disease are cellular energy depletion and oxidative stress leading to cellular dysfunction and death. Coenzyme Q(10) (CoQ(10)) is an electron acceptor bridging mitochondrial complexes I and II/III and a potent antioxidant that consistently partially recovers the function of dopaminergic neurons. OBJECTIVE: To determine whether nanoparticular CoQ(10) is safe and displays symptomatic effects in patients with midstage Parkinson disease without motor fluctuations. DESIGN: Multicenter, randomized, double-blind, placebo-controlled, stratified, parallel-group, single-dose trial. SETTING: Academic and nonacademic movement disorder clinics. PATIENTS: One hundred thirty-one patients with Parkinson disease without motor fluctuations and a stable antiparkinsonian treatment. Intervention Random assignment to placebo or nanoparticular CoQ(10) (100 mg 3 times a day) for a treatment period of 3 months. Stratification criterion was levodopa treatment. MAIN OUTCOME MEASURE: The subjects underwent evaluation with the Unified Parkinson's Disease Rating Scale (UPDRS) at each visit on a monthly basis. The primary outcome variable was the change of the sum score of the UPDRS parts II and III between the baseline and 3-month visits. RESULTS: One hundred thirty-one subjects were randomized according to the protocol. The mean changes of the sum UPDRS parts II/III score were -3.69 for the placebo group and -3.33 for the CoQ(10) group (P = .82). Statistical analysis according to the stratification did not result in significant changes of the primary outcome variable. No secondary outcome measure showed a significant change between the placebo group and the CoQ(10) group. The frequency and quality of adverse events were similar in both treatment groups. CONCLUSIONS: Nanoparticular CoQ(10) at a dosage of 300 mg/d is safe and well tolerated and leads to plasma levels similar to 1200 mg/d of standard formulations. Add-on CoQ(10) does not display symptomatic effects in midstage Parkinson disease.  相似文献   

12.
13.
We tested the efficacy of coenzyme Q10 (ubidecarenone, CoQ10) therapy in patients with Kearns-Sayre syndrome and other mitochondrial myopathies with chronic progressive external ophthalmoplegia (CPEO). We treated seven patients for 1 year with daily oral administration of 120 mg of CoQ10. Throughout the treatment most of our patients showed a progressive reduction of serum lactate and pyruvate levels following standard muscle exercise and generally improved neurologic functions. The ECG and echocardiogram showed no significant changes in our patients. None of our patients showed any improvement in ptosis and CPEO.  相似文献   

14.
Muscle coenzyme Q10 level in statin-related myopathy   总被引:3,自引:0,他引:3  
BACKGROUND: Statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) reduce the level of cholesterol by inhibiting the synthesis of mevalonate, an intermediary in the cholesterol biosynthetic pathway. Use of statin drugs has been associated with a variety of skeletal muscle-related complaints. Coenzyme Q10 (CoQ10), a component of the mitochondrial respiratory chain, is also synthesized from mevalonate, and decreased muscle CoQ10 concentration may have a role in the pathogenesis of statin drug-related myopathy. OBJECTIVES: To measure the CoQ10 concentration and respiratory chain enzyme activities in muscle biopsy specimens from 18 patients with statin drug-related myopathy and to look for evidence of apoptosis using the TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling) assay. DESIGN: An open-labeled study of CoQ10 concentration in muscle from patients with increased serum creatine kinase concentrations while receiving standard statin drug therapy. SETTING: Neuromuscular centers at 2 academic tertiary care hospitals. RESULTS: Muscle structure was essentially normal in 14 patients and showed evidence of mitochondrial dysfunction and nonspecific myopathic changes in 2 patients each. Muscle CoQ10 concentration was not statistically different between patients and control subjects, but it was more than 2 SDs below the normal mean in 3 patients and more than 1 SD below normal in 7 patients. There was no TUNEL positivity in any patients. CONCLUSION: These data suggest that statin drug-related myopathy is associated with a mild decrease in muscle CoQ10 concentration, which does not cause histochemical or biochemical evidence of mitochondrial myopathy or morphologic evidence of apoptosis in most patients.  相似文献   

15.
Familial cerebellar ataxia with muscle coenzyme Q10 deficiency   总被引:10,自引:0,他引:10  
OBJECTIVE: To describe a clinical syndrome of cerebellar ataxia associated with muscle coenzyme Q10 (CoQ10) deficiency. BACKGROUND: Muscle CoQ10 deficiency has been reported only in a few patients with a mitochondrial encephalomyopathy characterized by 1) recurrent myoglobinuria; 2) brain involvement (seizures, ataxia, mental retardation), and 3) ragged-red fibers and lipid storage in the muscle biopsy. METHODS: Having found decreased CoQ10 levels in muscle from a patient with unclassified familial cerebellar ataxia, the authors measured CoQ10 in muscle biopsies from other patients in whom cerebellar ataxia could not be attributed to known genetic causes. RESULTS: The authors found muscle CoQ10 deficiency (26 to 35% of normal) in six patients with cerebellar ataxia, pyramidal signs, and seizures. All six patients responded to CoQ10 supplementation; strength increased, ataxia improved, and seizures became less frequent. CONCLUSIONS: Primary CoQ10 deficiency is a potentially important cause of familial ataxia and should be considered in the differential diagnosis of this condition because CoQ10 administration seems to improve the clinical picture.  相似文献   

16.
An open-label dose-escalation trial was performed to assess the safety and tolerability of high doses of coenzyme Q10 (CoQ10) in ALS. CoQ10, a cofactor in mitochondrial electron transfer, may improve the mitochondrial dysfunction in ALS. In this study, CoQ10 was safe and well tolerated in 31 subjects treated with doses as high as 3,000 mg/day for 8 months.  相似文献   

17.
To investigate whether mitochondrial oxidative damage contributes to the pathogenesis of sporadic amyotrophic lateral sclerosis (sALS), we used high-performance liquid chromatography with an electrochemical detector to measure the concentrations of the reduced and oxidized forms of coenzyme Q10 (CoQ10) in the cerebrospinal fluid (CSF) of 30 patients with sALS and 17 age-matched controls with no neurological diseases. The percentage of oxidized CoQ10 in the CSF of sALS patients were significantly greater than those in the CSF of controls (P<0.002) and were negatively correlated with duration of illness (rho=-0.64, P<0.001). These results suggest that mitochondrial oxidative damage contributes to the pathogenesis of sporadic amyotrophic lateral sclerosis.  相似文献   

18.
Complex I is the largest of the mitochondrial respiratory chain proteins, and contains subunits encoded by both mitochondrial and nuclear genomes. Leber's hereditary optic neuropathy has been clearly linked to mutations of mitochondrial DNA complex I genes, and variable complex I functional defects have been reported. We have confirmed an approximate 60% defect in mitochondrial NADH CoQ1 reductase activity in cultured fibroblasts bearing the 3460-bp G to A mutation within the ND1 gene. However complex I-linked ATP synthesis was found to be normal in these fibroblasts. A 60% rotenone-induced decrease in complex I activity was shown to reduce ATP synthesis in normal fibroblasts, indicating that this level of complex I activity was below the threshold required to affect ATP synthesis. Although 3460 LHON mitochondria were less sensitive to rotenone inhibition, this did not explain the decreased complex I activity as the rotenone insensitive activity was not increased, nor did the inhibitor diphenyleneiodonium inhibit the NADH CoQ1 reductase activity to a greater extent. Decreased NADH cytochrome c reductase activity in cybrids homoplasmic for the 3460 LHON mtDNA mutation confirmed that the decrease in complex I activity was not specific to the assay used and was not caused by inhibitory effects of ubiquinone analogues used in the NADH CoQ1 reductase assay. These findings have important implications for our understanding of complex I dysfunction in the pathogenesis of 3460 Leber's hereditary optic neuropathy.  相似文献   

19.
A proposed mechanism of neuronal death associated with a variety of neurodegenerative diseases is the response of neurons to oxidative stress and consequent cytosolic Ca(2+) overload. One hypothesis is that cytosolic Ca(2+) overload leads to mitochondrial Ca(2+) overload and prolonged opening of the permeability transition pore (PTP), resulting in mitochondrial dysfunction. Elimination of cyclophilin D (CyPD), a key regulator of the PTP, results in neuroprotection in a number of murine models of neurodegeneration in which oxidative stress and high cytosolic Ca(2+) have been implicated. However, the effects of oxidative stress on the interplay between cytosolic and mitochondrial Ca(2+) in adult neurons and the role of the CyPD-dependent PTP in these dynamic processes have not been examined. Here, using primary cultured cerebral cortical neurons from adult wild-type (WT) mice and mice missing cyclophilin D (CyPD-KO), we directly assess cytosolic and mitochondrial Ca(2+) , as well as ATP levels, during oxidative stress. Our data demonstrate that during acute oxidative stress mitochondria contribute to neuronal Ca(2+) overload by release of their Ca(2+) stores. This result contrasts with the prevailing view of mitochondria as a buffer of cytosolic Ca(2+) under stress conditions. In addition, we show that CyPD deficiency reverses the release of mitochondrial Ca(2+) , leading to lower of cytosolic Ca(2+) levels, attenuation of the decrease in cytosolic and mitochondrial ATP, and a significantly higher viability of adult CyPD-knockout neurons following exposure of neurons oxidative stress. The study offers a first insight into the mechanism underlying CyPD-dependent neuroprotection during oxidative stress.  相似文献   

20.
Disruption of prooxidant-antioxidant balance may lead to oxidative stress which is known as a mechanism contributing to ischemic stroke. Coenzyme Q10 (CoQ10) is an endogenous antioxidant that could be effective in preventing oxidative stress. However, the contribution of serum levels of CoQ10 in clinical neurological outcomes following ischemic stroke has not been clearly established. This study aims at measuring serum concentration of CoQ10 along with major indicators of antioxidant and oxidant among patients within 24 h after onset of the stroke symptoms, and investigating their relation with the clinical status of patients. Serum levels of CoQ10, superoxide dismutase (SOD), and malondialdehyde (MDA) were measured in 76 patients and 34 healthy individuals. Severity of the neurological deficit, functional disability, and cognitive status in ischemic subjects were respectively studied with the National Institutes of Health stroke scale (NIHSS), modified Rankin Scale (MRS), and Mini-Mental State Examination (MMSE). Stroke patients had significantly lower serum level of CoQ10 and SOD as compared to controls (27.34?±?35.40 ng/ml, 18.58?±?0.76 μ/ml, respectively; p?<?0.05), whereas the serum MDA level was significantly higher (38.02?±?2.61 μm, p?<?0.05). A significant negative correlation was detected between the serum CoQ10 level and scores of NIHSS and MRS. A similar association was discerned between the SOD level and the neurological deficit score. The serum MDA level was also found to be strongly correlated with all three neurological scales. These findings suggest that the serum level of CoQ10 like other antioxidant and oxidant markers can significantly change early after ischemic stroke and they are substantially associated with clinical neurological outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号