首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The slope of the linear relationship between ventilation and carbon dioxide production has been thought to indicate that is one of the major stimuli to . A group of 15 normal subjects undertook different incremental treadmill exercise protocols to explore the relationship between and . An incremental protocol using 1 instead of 3-min stages of exercise resulted in an increase in the to ratio [26.84 (SEM 1.23) vs 31.08 (SEM 1.36) (P < 0.008) for the first stage, 25.24 (SEM 0.86) vs 27.83 (SEM 0.91) (P < 0.005) for the second stage and 23.90 (SEM 0.86) vs 26.34 (SEM 0.81) (P = 0.001) for the third stage]. Voluntary hyperventilation to double the control level of during exercise resulted in an increase in the to slope [from 21.3 (SEM 0.71) for the control run to 35.1 (SEM 1.2) for the hyperventilation run (P < 0.001)]. Prolonged hyperventilation (5 min) during exercise at stage 2 of the Bruce protocol resulted in a continuted elevation of and the slope. A steady state of and metabolic gas exchange can only be said to have been present after at least 3 min of exercise. Voluntary hyperventilation increased the slope of the relationship between and . End-tidal carbon dioxide fell, but remained within the normal range. These results would suggest that a non-carbon dioxide factor may have been responsible for the increase we found in during exercise, and that factors other than increased dead space ventilation can cause an increased ventilation to slope, such as that seen in some pathophysiological conditions, such as chronic heart failure.  相似文献   

2.
Summary To determine the cardiorespiratory response to maximal exercise before, during and after the pubescent growth spurt, thirty boys were tested at yearly intervals over a period of six consecutive years. For each individual, peak height velocity (PHV) was determined. The age at PHV (¯X= 13.6 years) was taken as a standard of maturation. The results from all subjects at 1.5 and 0.5 years before and 0.5 and 1.5 years after PHV are presented. The highest oxygen uptake ( ) obtained during an incremental bicycle ergometer test to voluntary exhaustion was taken as peak oxygen uptake ( peak). Across each of the four years studied, mean peak (min=49.6; max=52.5 ml·kg–1·min–1) and mean heart rate (HR) at peak (min=190; max=192) did not change significantly as a function of PHV. On the other hand, the respiratory quotient at peak increased considerably from mean minima and maxima of 0.99 and 1.01 before PHV to 1.07 and 1.10 after PHV. Ventilatory equivalent for ( ), taken as an indicator of ventilatory economy, seemed to be unaffected by the maturation process. The steepest increase in circumpubertal oxygen pulse was found one year after PHV. Average stability coefficients (¯r), calculated from the inter-years correlations were high for height (¯r=0.95), weight (¯r=0.92), HR at peak (¯r=0.74), peak in 1/min (¯r=0.71), oxygen pulse (¯r=0.68) and tidal volume (¯r=0.64).  相似文献   

3.
Summary The effect of a progressively increasing work rate (15 W·min–1) up to exhaustion on the time course of O2 uptake ( ), ventilation ( ) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). and were measured as average value of 30-s intervals by a semiautomatic open circuit method. was 2.55±0.33; 4.29±0.53 and 2.86±0.19·min–1 in WL, Cycl and Sed respectively. With time and work rate, while and HR increased linearly, changed its slope at two levels. The 1st change occured at a work load corresponding to a mean (± SD) of 1.50±0.26; 1.93±0.34; and 1.23±0.14 l·min–1 in WL, Cycl, and Sed respectively. values corresponding to the second change of slope were 2.18±0.32 in WL; 3.48±0.53 in Cycl and 2.17±0.28 l·min–1 in Sed. The first change of slope might be the consequence of the different readjustment of on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when vs time slope is 7–10 l·min–1/min of exercise.This work has been supported in part by a grant from the Italian National Research Council (CNR)  相似文献   

4.
Summary An attempt has been made to evolve some simple multiple linear regression equations for the prediction of max from body weight, time for 3.2 km run and exercise dyspnoeic index (DIstd Ex%). The predictor variables have been selected by examining the product moment correlations of body weight, relative body weight indices, time for 3.2 km run, chest expansion, height, and DIstd Ex% with max, based on data collected on 320 healthy Indian males (17–22 years). It has been observed that body weight, time for 3.2 km run and DIstd Ex% attained maximum correlations with max. Thus, two regression equations with two and three predictor variables have been established in this paper to predict max. The first regression equation yielded a multiple correlation of 0.608 (P<0.001) with a standard error of 0.214 l·min–1. In this equation, body weight and time for 3.2 km run were considered as significant predictors. To increase the precision of this equation, another multiple linear regression equation based on body weight, time for 3.2 km run and DIstd Ex% as predictors has been developed. This equation yielded a multiple correlation of 0.658 (P<0.001) with a standard error of 0.204 l·min–1. Applications of these regression equations will be of practical importance to biomedical scientists engaged in the development of a simple procedure for indirect assessment of max, and may serve well as preliminary screening procedures for personnel selection.  相似文献   

5.
Summary Anaerobic threshold has been defined as the oxygen uptake ( ) at which blood lactate (La) begins to rise systematically during graded exercise (Davis et al. 1982). It has become common practice in the literature to estimate the anaerobic threshold by using ventilatory and/or gas exchange alterations. However, confusion exists as to the validity of this practice. The purpose of this study was to examine the precision with which ventilatory and gas exchange techniques for determining anaerobic threshold predicted the anaerobic threshold resolved by La criteria. The anaerobic threshold was chosen using three criteria: (1) systematic increase in blood La (ATLa), (2) systematic increase in ventilatory equivalent for O2 with no change in the ventilatory equivalent for CO2 ( ), and (3) non-linear increase in expired ventilation graphed as a function of ( ). Thirteen trained male subjects performed an incremental cycle ergometer test to exhaustion in which the load was increased by 30 W every 3 minutes. Ventilation, gas exchange measures, and blood samples for La analysis were obtained every 3rd min throughout the test. In five of the thirteen subjects tested the anaerobic threshold determined by ventilatory and gas exchange alterations did not occur at the same as the ATLa. The highest correlation between a gas exchange anaerobic threshold and ATLa was found for and was r=0.63 (P<0.05). These data provide evidence that the ATLa and do not always occur simultaneously and suggest limitations in using ventilatory or gas exchange measures to estimate the ATla.  相似文献   

6.
Hypoxic-hypercapnic interaction in mild hypoxia was studied in 12 healthy males. Steady state ventilatory responses to hypercapnic-hypoxia were obtained as the difference in ventilation between hypoxia (mean values ± S.D. of =7.36±0.20 kPa or of 7.10 ±0.41 kPa) and hyperoxia ( >26.7 kPa) with the same degree of hypercapnia ( 6.12±0.22 kPa). On the other band, withdrawal responses were obtained as the magnitude of depression in ventilation caused by two bicaths of O2 from the above mentioned hypoxic hypercapnia. Averaged and were 9.57±5.45 and 6.45 ±4.90l/min, respectively, the difference being statistically significant (P<0.01). Furthermore, if we assume the presence of ventilatory depression to be due to tissue fall resulting from an increase in cerebral blood flow caused by hypoxia, the magnitude of central hypoxic-hypercapnic interaction was estimated to be as great as the value of .  相似文献   

7.
Summary Our purpose was to study the possible role of a pulmonary chemoreceptor in the control of ventilation during exercise. Respiratory gas exchange was measured breath-by-breath at two intensities of exercise with circulatory occlusion of the legs. Eight male subjects exercised on a cycle ergometer at 49 and 98 W for 12 min; circulation to the legs was occluded by thigh cuffs (26.7 kPa) for two min after six min of unoccluded exercise. PETCO2 and decreased and PETO2 increased significantly during occlusion at both workloads. Occlusion elicited marked hyperventilation, as evidenced by sharp increases in , and . A sudden sharp increase in PETCO2 was seen 12.3±0.5 and 6.5±1.2 s after cuff release in all subjects during exercise at 49 and 98 W, respectively. At 49 W a post-occlusion inflection in was seen in 7 subjects 21.1±5.8 s after the PETCO2 inflection. Three subjects showed an inflection in at 98 W 23.3±7.5 s after the PETCO2 inflection. There were significant increases in PETCO2, and after cuff release. mirrored better than , post occlusion. On the basis of a significant lag time between inflections in PETCO2 and following cuff release, it is concluded that the influences of a pulmonary CO2 receptor were not seen.  相似文献   

8.
Summary Seven male subjects performed progressive exercises with a light work load on an upper limb or bicycle ergometer in the sitting position. At any comparable work load above zero, arm exercise induced higher oxygen uptake, ventilation, heart rate, oxygen pulse, respiratory rate and tidal volume than leg exercise. At similar levels of above 0.45 1 · min–1, heart rate and ventilation were higher during arm exercise. A close linear relationship between carbon dioxide output and oxygen uptake was observed during both arm and leg exercises, the slope for arm work being steeper. The ventilatory equivalent for gradually decreased during both types of exercise. The ventilatory equivalent for remained constant (arm) while it rose (leg) to a peak at 9.8 W and then gradually decreased. Ventilation in relation to tidal volume had a linear relationship with leg exercise, but became curvilinear with arm exercise after tidal volume exceeded 1100ml. The observed differences in response between arm and leg exercises at a given work load appear to be influenced by differences in sympathetic outflow due to the greater level of static contraction of the relatively small muscle groups required by arm exercise.  相似文献   

9.
Summary Oxygen consumption [( ) in ml·kg–1·min–1], blood lactate concentration ([La] in mM) and dynamic friction of the skis on snow [(F) inN] were measured in six athletes skiing on a level track at different speeds [(v) in m·min–1] and using different methods of propulsion. The increased withv andF, the latter depending mostly on snow temperature, as did [La]. The was very much affected by the skiing technique. Multiple regression equations gave the following results: with diagonal stride (DS), =–23.09+0.189v+0.62N; with double pole (DP), =–30.95+0.192v+0.51N; and with the new skating technique (S), =–32.63 +0.171+0.68N. In terms of DS is the most expensive technique, while S is the least expensive; however, asF increases, S, at the highest speed, tends to cost as much as DP. At speeds from 18 to 22 km·h–1, the speeds measured in the competitions, theF for DS and DP can represent from 10% to 50% of the energy expenditure, withF ranging from 10 to 60N; with S this range increases to 20%–70%. This seems to depend on the interface between the skis and the snow and on the different ways the poles are used.  相似文献   

10.
Summary Although many studies indicate that the spontaneous breathing frequency minimizes breathing work, the consequences of this for exercise energetics have never been investigated. To see if the spontaneous exercise breathing frequency minimizes oxygen uptake, we compared during treadmill walking (2/3 max) at several alternative frequencies. The alternative frequencies ranged from the lowest sustainable to a frequency twice the spontaneous value. All eight subjects adjusted tidal volume to comfort. Exercise oxygen uptake was constant, independent of breathing frequency. At the same time, minute ventilation rose to be 65% greater at the highest frequency than at the lowest (P<0.01). We then reproduced the various exercise frequencies, tidal volumes, and ventilations during seated isocapnic hyperpnea to measure with locomotory muscles at rest. Once again, oxygen uptake was constant, independent of breathing frequency. We conclude that the spontaneous exercise breathing frequency fails to minimize during either exercise or resting reproduction of exercise ventilation.Supported in part by NIH Grant HL 26351  相似文献   

11.
Summary The energy cost of a giant slalom event was measured in eight skiers of national level. The lap lasted on average 82 s. was measured during the first, the second and the last third of the lap in different trials and also during recovery from a complete lap. Blood lactate was measured at the end of a lap. From the data obtained it was possible to calculate that: a) , as measured during the lap, would correspond at steady state to 80% of the of the subjects; b) the total metabolic power delivered during the lap should be equal to about 72ml O2·kg–1·min–1, corresponding to 120% of of the subjects. Considering the short duration of the trial and the power output delivered during maximal efforts on a bicycle ergometer, it appears that the giant slalom is not a very high energy demanding event.Preliminary results of this work have been presented at the XXII. World Congress on Sport Medicine, Vienna 1982  相似文献   

12.
Summary The relationship between plasma renin activity (PRA) at rest and physical fitness was studied in 40 normal young subjects on a liberal sodium intake.Plasma renin activity was measured in arterial blood withdrawn at the end of a 30-min period of rest in recumbency, while physical fitness was expressed by the highest oxygen uptake achieved during an uninterrupted graded exercise test performed in the sitting position on an electromagnetically braked ergometer bicycle (peak ).Log PRA correlated significantly and inversely with peak adjusted for body weight (r=–0.34; P<0.05) in single regression analysis. Using multiple regression analysis with log PRA as dependent variable and adjusted peak , age, urinary sodium excretion and mean intra-arterial pressure as independent variables, no combination of two or more independent variables yielded significant partial correlation coefficients with log PRA.This correlation suggests that PRA at rest is inversely related to the subject's physical fitness.  相似文献   

13.
Increase in atrial natriuretic peptide in response to physical exercise   总被引:3,自引:0,他引:3  
Summary Circulating atrial natriuretic peptide (ANP) level was determined during physical exercise to investigate the correlation between changes in ANP level and heart rate increases.Six subjects exercised at a work level of 75% for 30 min, two also performed two successive exercises at 75% while two more exercised for longer at 55% · Plasma ANP levels and heart rate increased in all the exercising subjects. At the end of the exercise, the ANP level fell immediately, suggesting an immediate reduction in ANP secretion by the heart. Pre-exercise values were reached after 30 min. Successive exercises gave the same heart rate related ANP patterns without previous secretory episodes having any effect. These results lead to the conclusion that ANP intervenes in the cardiovascular adjustments to exercise.  相似文献   

14.
Summary Thirteen male volunteers performed cycle ergometer maximal oxygen uptake ( tests) in moderate (21 C, 30% rh) and hot (49 C, 20% rh) environments, before and after a 9-day heat acclimation program. This program resulted in significantly decreased (P<0.01) final heart rate (24 bt·min–1) and rectal temperature (0.4 C) from the first to last day of acclimation. The was lower (P<0.01) in the hot environment relative to the moderate environment both before (8%) and after (7%) acclimation with no significant difference (P>0.05) shown for maximal power output (PO max, watts) between environments either before or after acclimation. The was higher (P<0.01) by 4% after acclimation in both environments. Also, PO max was higher (P<0.05) after acclimation in both the moderate (4%) and hot (2%) environments. The reduction in in the hot compared to moderate environment was not related to the difference in core temperature at between moderate and hot trials, nor was it strongly related with aerobic fitness level. These findings indicate that heat stress, per se, reduced the . Further, the reduction in due to heat was not affect be state of heat acclimation, the degree of elevation in core temperature, or level of aerobic fitness.  相似文献   

15.
Summary The transmission of muscle oxygen uptake patterns to the pulmonary site is a basically nonlinear process during unsteady state exercise. We were mainly interested in three questions concerning the dynamic relationship between power input and pulmonary output: 1. To what extent can linear system analysis be applied? 2. What is the relative influence of muscle on pulmonary as compared to other parameters such as muscle perfusion kinetics? 3. To what extent does pulmonary reflect muscle ? Investigations were performed by means of a mathematical model including a muscle compartment and two serial, flow-varying time delays. The non-exercising parts of the body were. incorporated as one term for perfusion and one for . Parameters were adjusted so as to represent a reference state of aerobic exercise while monofrequent sinusoidal changes in aerobic metabolism were used as forcing signals. The following answers were derived from the simulations: 1. Non-linear distortions of the signals are negligible provided that analyses are not driven too far into the higher frequency range (periods shorter than about 1 min). 2. Variations of muscle kinetics have greater effects on pulmonary than changes of perfusion kinetics or venous volume. This finding applies irrespective of whether or not pulmonary closely reflects muscle 3. Small differences in the time constants for muscle perfusion and muscle are a major prerequisite if pulmonary , kinetics are to be taken as correct estimates of muscle kinetics. High basal muscle perfusion, small perfusion changes and small venous volumes between muscle and lungs are further factors reducing dynamic distortions of the muscle signal.  相似文献   

16.
The relationship between change in hypoxic sensitivity in respiration, defined as increment in ventilation per drop of arterial O2 saturation , with the phase change from follicular to luteal and those in resting pulmonary ventilation , mean inspiratory flow (V T/T I), alveolar partial pressures of CO2 and O2 ( and , respectively) and body temperature was studied in 10 women. There was a significant relationship between % increase in hypoxic sensitivity and decrement of resting that occurred in the luteal phase. However, no significant relationships were observed between change in hypoxic sensitivity and those in the remaining parameters studied. The intersubject variation in % increase in resting during the luteal phase was not associated with that in % increase in hypoxic sensitivity. The results indicate that the contribution of increased hypoxic sensitivity to increasing during the luteal phase is variable among subjects. Reasons for the increase in hypoxic sensitivity with hypocapnia are discussed.  相似文献   

17.
Summary Twenty-seven children (age 7–17 years) with varying degrees of blindness but with no other known disorder were assessed for physical fitness. Twenty-seven randomly selected children with normal eyesight were also assessed. Maximum oxygen uptake ( ) was measured directly during a progressive exercise test on a treadmill. There was a significant and substantial reduction in in totally blind children (mean ± standard deviation 35.0±7.5 ml · min–1 · kg–1) compared with normal children (45.9±6.6 ml · min–1 · kg–1). Partially sighted children had a significant but smaller reduction in . Fitness assessed by a step-test was significantly reduced in the visually impaired children, and skin-fold thickness was also significantly greater in totally blind children.The level of habitual physical activity for each child, as assessed by a questionnaire, correlated with (r=0.53,p<0.0001). Blind children were significantly less active than normal children, and the difference between mean for blind and normal children became non-significant when their different activity levels were taken into account. It is concluded that totally blind children are less fit than other children at least partly because of their lower level of habitual activity.  相似文献   

18.
The ratio of alveolar ventilations of He and SF6 ( ) was determined in 7 healthy male subjects at rest and at three different levels of exercise on a bicycle ergometer (75, 150 and 225 W). This ratio was calculated from the ratio of the specific ventilations for these gases which were obtained from the decay of the end-tidal partial pressures of He and SF6 during a simultaneous, multiple-breath washout. In all experiments, for He was larger than for SF6. On the average, was equal to 1.09, and the mean values of this ratio at rest and at the three levels of exercise were not significantly different. Therefore, the difference in for He and SF6 increased with increasing work load. Further, we used the mean value obtained for , to calculate the ratio of excretion values (E1/E2) for pairs of hypothetical tracer gases with equal blood-gas partition coefficients and with different diffusivities in the gas phase. E1/E2 ranged from anity for =0 to about 1.08 for =10. At a given , E1/E2 decreased with increasing ventilation-perfusion ratio of the lung. Thus, the difference between the excretion values of light and heavy tracer gases will be most pronounced under rest conditions and for gases that are well soluble in blood.  相似文献   

19.
Summary The purpose of this investigation was to examine the cardiovascular and metabolic effects of a 5 wk arm crank (AC) training program on submaximal wheelchair (WC) ergometry in ablebodied women. The 6 subjects in the training group (TG) and 4 in the control group (CG) performed a 10 min WC exercise prior to and following the training period at a power output (PO) that elicited 70% of the pre-training peak oxygen uptake ( ). Steady state , heart rate (HR), cardiac output and stroke volume (V s) were measured. Resting and post-exercise blood lactate concentrations (LA) were measured, the difference was recorded as net LA. The TG exercised on the AC 3 d · wk–1 at a PO that elicited 85% of each subject's recorded peak HR. Each session consisted of four 4 min exercise bouts preceded by a 2 min warm-up and interspersed with 2 min rest periods. After training, the TG had a significantly (p<0.05) lower HR, largerV s and lower LA in response to the WC exercise. and were not significantly altered. The results demonstrate that the AC exercise program used in this study produced a physiological training effect which was observed during submaximal WC exercise of an intensity frequently encountered during daily WC ambulation. It appears that short-term, moderate intensity AC training offers an adequate stimulus to reduce the stress imposed by wheelchair locomotion.  相似文献   

20.
Are indices of free radical damage related to exercise intensity   总被引:11,自引:0,他引:11  
Summary The possibility that plasma levels of malonaldehyde (MDA) are altered by exercise has been examined. The presence of MDA has been recognized to reflect peroxidation of lipids resulting from reactions with free radicals. Maximal exercise, eliciting 100% of maximal oxygen consumption ( ) resulted in a 26% increase in plasma MDA (P<0.005). Short periods of intermittent exercise, the intensity of which was varied, indicated a correlation between lactate and MDA (r 2=0.51) (p<0.001). Blood lactate concentrations increased throughout this exercise regimen. A significant decrease (10.3%) in plasma MDA occurred at 40% . At 70% plasma MDA was still below resting values, however the trend to an increase in MDA with exercise intensity was evident. At exhaustion, plasma MDA and lactate were significantly greater than at rest. These results suggest, that exhaustive maximal exercise induces free radical generation while short periods of submaximal exercise (i.e. <70% ) may inhibit it and lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号