首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.  相似文献   

2.
Two-dimensional spatially-selective RF (2DRF) excitation pulses were developed for single-shot echo-planar imaging (EPI) with reduced field of view (FOV) in the phase-encoding direction. The decreased number of k-space lines significantly shortens the length of the EPI echo train. Thus, both gradient-echo and spin-echo 2DRF-EPI images of the human brain at 2.0 T exhibit markedly reduced susceptibility artifacts in regions close to major air cavities. Based on a blipped-planar trajectory, implementation of a typical 2DRF pulse resulted in a 26-ms pulse duration, a 5-mm section thickness, a 40-mm FOV along the phase-encoding direction, and a 200-mm distance of the unavoidable side excitations from the center of the FOV. For the above conditions and at 2 x 2 mm(2) resolution, 2DRF-EPI yielded an echo train length of only 21 ms, as opposed to 102 ms for conventional EPI. This gain in time may be used to achieve higher spatial resolution. For example, spin-echo 2DRF-EPI of a 40-mm FOV at 1 x 1 mm(2) resolution led to an echo train of 66 ms. Although the current implementation still lacks user-friendliness, 2DRF pulses are likely to become a useful addition to the arsenal of advanced MRI tools. .  相似文献   

3.
A spin-echo single-shot echo-planar imaging (SS-EPI) technique with a reduced field of view (FOV) in the phase-encoding direction is presented that simultaneously reduces susceptibility effects and motion artifacts in diffusion-weighted (DW) imaging (DWI) of the spinal cord at a high field strength (3T). To minimize aliasing, an outer volume suppression (OVS) sequence was implemented. Effective fat suppression was achieved with the use of a slice-selection gradient-reversal technique. The OVS was optimized by numerical simulations with respect to T(1) relaxation times and B(1) variations. The optimized sequence was evaluated in vitro and in vivo. In simulations the optimized OVS showed suppression to <0.25% and approximately 3% in an optimal and worst-case scenario, respectively. In vitro measurements showed a mean residual signal of <0.95% +/- 0.42 for all suppressed areas. In vivo acquisition with 0.9 x 1.05 mm(2) in-plane resolution resulted in artifact-free images. The short imaging time of this technique makes it promising for clinical studies.  相似文献   

4.

Purpose

To describe and demonstrate a new technique that allows diffusion tensor imaging of small structures such as the spinal cord (SC) and optic nerve (ON) with contiguous slices and reduced image distortions using a narrow field of view (FOV).

Materials and Methods

Images were acquired with a modified single‐shot echo‐planar imaging (EPI) sequence that contains a refocusing radio frequency (RF) pulse in the presence of the phase‐encoding (rather than slice‐select) gradient. As a result, only a narrow volume may be both excited and refocused, removing the problem of signal aliasing for narrow FOVs. Two variants of this technique were developed: cardiac gating is included in the study of the SC to reduce pulsation artifacts, whereas inversion‐recovery (IR) cerebrospinal fluid (CSF) suppression is utilized in the study of the ON to eliminate partial volume effects. The technique was evaluated with phantoms, and mean diffusivity (MD) and fractional anisotropy (FA) measurements were made in the SC and ON of two healthy volunteers.

Results

The technique provides contiguous‐slice, reduced‐FOV images that do not suffer from aliasing and have reduced magnetic susceptibility artifacts. MD and FA values determined here lie within the ranges quoted in the literature.

Conclusion

Contiguous‐slice zonally orthogonal multislice (CO‐ZOOM‐EPI is a new technique for diffusion‐weighted imaging of small structures such as the ON and SC with high resolution and reduced distortions due to susceptibility variations. This technique is able to acquire contiguous slices that may allow further nerve‐tracking analyses. J. Magn. Reson. Imaging 2009;29:454–460. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
This paper describes a method for correcting eddy-current (EC)-induced distortions in diffusion-weighted echo-planar imaging (DW-EPI). First, reference measurements of EC fields within the EPI acquisition window are performed for DW gradient pulses applied separately along each physical axis of the gradient set and for a range of gradient amplitudes. EC fields caused by the DW gradients of the DW-MRI protocol are then calculated using the reference EC measurements. Finally, these calculated fields are used to correct the respective DW-EPI raw (k-space) data during image reconstruction. The technique was implemented in a small-bore MRI scanner with no digital preemphasis. It corrected EC-induced image distortions in both phantom and in vivo brain diffusion tensor imaging (DTI) data more effectively than commonly used image-based techniques. The method did not increase imaging time, since the same reference EC measurements were used to correct data acquired from different phantoms, subjects, and DTI protocols. Because of the simplicity of the reference EC measurements, the method can easily be implemented in clinical scanners.  相似文献   

6.
A method to encode multiple two-dimensional Fourier transform (2D FT) images within a single echo train is presented. This new method, simultaneous echo refocusing (SER), is a departure from prior echo planar image (EPI) sequences which use repeated single-shot echo trains for multislice imaging. SER simultaneously acquires multiple slices in a single-shot echo train utilizing a shared refocusing process. The SER technique acquires data faster than conventional multislice EPI since it uses fewer gradient switchings and fewer preparation pulses such as diffusion gradients. SER introduces a new capability to simultaneously record multiple spatially separated sources of physiologic information in subsecond image acquisitions, which enables several applications that are dependent on temporal coherence in MRI data including velocity vector field mapping and brain activation mapping.  相似文献   

7.
Rapid MR imaging using the stimulated echo acquisition mode (STEAM) technique yields single-shot images without any sensitivity to resonance offset effects. However, the absence of susceptibility-induced signal voids or geometric distortions is at the expense of a somewhat lower signal-to-noise ratio than EPI. As a consequence, the achievable spatial resolution is limited when using conventional Fourier encoding. To overcome the problem, this study combined single-shot STEAM MRI with radial encoding. This approach exploits the efficient undersampling properties of radial trajectories with use of a previously developed iterative image reconstruction method that compensates for the incomplete data by incorporating a priori knowledge. Experimental results for a phantom and human brain in vivo demonstrate that radial single-shot STEAM MRI may exceed the resolution obtainable by a comparable Cartesian acquisition by a factor of four.  相似文献   

8.
Spatial resolution in single-shot imaging is limited by signal attenuation due to relaxation of transverse magnetization. This effect can be reduced by minimizing acquisition times through the use of short interecho spacings. However, the minimum interecho spacing is constrained by limits on gradient switching rates, radiofrequency (RF) power deposition and RF pulse length. Recently, simultaneous acquisition of spatial harmonics (SMASH) has been introduced as a method to acquire magnetic resonance images at increased speeds using a reduced number of phase-encoding gradient steps by extracting spatial information contained in an RF coil array. In this study, it is shown that SMASH can be used to reduce the effects of relaxation, resulting in single-shot images with increased spatial resolution without increasing imaging time. After a brief theoretical discussion, two strategies to reduce signal attenuation and increase spatial resolution in single-shot imaging are introduced and their performance is evaluated in phantom studies. In vivo single-shot echoplanar imaging (EPI), BURST, and half-Fourier single-shot turbo spin-echo (HASTE) images are then presented demonstrating the practical implementation of these resolution enhancement strategies. Images acquired with SMASH show increased spatial resolution and improved image quality when compared with images obtained with the conventional acquisitions. The general principles presented for imaging with SMASH can also be applied to other partially parallel imaging techniques.  相似文献   

9.
Motion sensitivity in diffusion-weighted imaging (DWI) can be effectively suppressed using single-shot echo-planar imaging (EPI). However, segmented (multishot) EPI is often used to increase resolution and reduce spatial distortions, which in turn increases susceptibility to brain motion. The sources of these residual motion artifacts in navigator-echo-corrected segmented EPI images of the brain were investigated. The results indicate that the dominant source of these artifacts is cardiac pulsation with occasional involuntary movement of the subject. The relationship between the cardiac cycle and motion artifacts shows that optimum timing for the data acquisition is possible. In addition it is shown that the effects of involuntary motion can be removed by swapping k-space data between redundant datasets.  相似文献   

10.
Single‐shot echo‐planar imaging (ss‐EPI) has not been used widely for diffusion‐weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross‐sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss‐EPI method. Reduced field‐of‐view (FOV) methods decrease the required readout duration for ss‐EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single‐shot diffusion‐weighted echo‐planar imaging (ss‐DWEPI) method is proposed, in which a 2D spatially selective echo‐planar RF excitation pulse and a 180° refocusing pulse reduce the FOV in the phase‐encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in‐plane resolutions (0.94 × 0.94 mm2 for sagittal and 0.62 × 0.62 mm2 for axial images) are achieved at 1.5 T, without the need for a longer readout. Magn Reson Med 60:468–473, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.

Purpose:

To improve the performance and flexibility of diffusion‐weighted inner field‐of‐view (FOV) echo‐planar imaging (EPI) based on 2D‐selective radiofrequency (RF) excitations by 1) using higher gradient amplitudes for outer excitation lines, and 2) tilting the excitation plane such that the unwanted side excitations do not overlap with the current image slice or other slices to be acquired.

Materials and Methods:

Acquisitions with a conventional (untilted) and the improved setup were compared and inner FOV diffusion tensor measurements were performed in the human brain and spinal cord with voxel sizes of 1.0 × 1.0 × 5.0 mm3 and 0.6 × 0.6 × 5.0 mm3 on a 3 T whole‐body magnetic resonance imaging (MRI) system.

Results:

With the modified setup, the 2D‐selective RF excitations can be considerably shortened (e.g., from 26 msec to 6 msec) which 1) avoids profile distortions in the presence of magnetic field inhomogeneities, and 2) reduces the required echo time and increases the signal‐to‐noise ratio accordingly, e.g., by about 20% in the spinal cord.

Conclusion:

Tilting the excitation plane and applying variable gradient amplitudes improves the applicability of inner FOV EPI based on 2D‐selective RF excitations. J. Magn. Reson. Imaging 2012;35:984–992. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The benefits of sensitivity-encoded (SENSE) echo-planar imaging (EPI) for functional MRI (fMRI) based on blood oxygen level-dependent (BOLD) contrast were quantitatively investigated at 1.5 T. For experiments with 3.4 x 3.4 x 4.0 mm(3) resolution, SENSE allowed the single-shot EPI image acquisition duration to be shortened from 24.1 to 12.4 ms, resulting in a reduced sensitivity to geometric distortions and T(*)(2) blurring. Finger-tapping fMRI experiments, performed on eight normal volunteers, showed an overall 18% loss in t-score in the activated area, which was substantially smaller than expected based on the image signal-to-noise ratio (SNR) and g-factor, but similar to the loss predicted by a model that takes physiologic noise into account.  相似文献   

13.
A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice.  相似文献   

14.
Diffusion tensor imaging (DTI) of the optic nerve (ON) was acquired in normal controls using zonally oblique multislice (ZOOM) DTI, which excites a small field of view (FOV) using a fast sequence with a shortened EPI echo train. This combines the benefit of low sensitivity to motion (due to the single-shot acquisition used), with the additional advantage of reduced sensitivity to magnetic field susceptibility artifacts. Reducing the bright signal from the fat and cerebrospinal fluid (CSF) surrounding the nerve are key requirements for the success of the presented method. Measurements of mean diffusivity (MD) and fractional anisotropy (FA) indices were made in a coronal section of the middle portion of the optic nerve (ON) in the right (rON) and left (lON) ONs. The average values across 10 healthy volunteers were FArON = 0.64 +/- 0.09 and FAlON = 0.57 +/- 0.10, and MDrON = (1173 +/- 227) x 10(-6) mm2 s(-1) and MDlON = (1266 +/- 170) x 10(-6) mm2 s(-1). Measurements of the principal eigenvalue of the DT and its orthogonal component were also in agreement with those expected from a highly directional structural organization.  相似文献   

15.
BACKGROUND AND PURPOSE: The aim of this study was to characterize the diffusion properties of the entire human spinal cord in vivo. These data are essential for comparisons to pathologic conditions as well as for comparisons of different pulse sequence design parameters aimed to reduce scan time and more accurately determine diffusion coefficients.MATERIALS AND METHODS: A total of 13 neurologically intact subjects were enrolled in this study. A single-shot, twice-refocused, spin-echo, diffusion-weighted, echo-planar imaging (EPI) pulse sequence was used to obtain axial images throughout the entire spinal cord (C1–L1) in 45 minutes.RESULTS: Diffusion images indicated slight geometric distortions; however, gray and white matter contrast was observed. All measurements varied across the length of the cord. Whole cord diffusion coefficients averaged 0.5–1.3 × 10−3 mm2/s depending on orientation, mean diffusivity (MD) averaged 0.83 ± 0.06 × 10−3 mm2/s, fractional anisotropy (FA) averaged 0.49 ± 0.05, and volume ratio (VR) averaged 0.73 ± 0.05.CONCLUSION: This study provided normative diffusion values for the entire spinal cord for use in comparisons with pathologic conditions as well as improvements in pulse sequence design.

Despite the potential of diffusion tensor imaging (DTI) for providing anatomic and histologic information about the spinal cord, DTI is not yet routinely performed for identifying and characterizing pathologic changes. One important limitation to the application of DTI to spinal cord pathologic disorders is the absence of normative data for comparison. For example, diffusion changes in the spinal cord have been reported after spinal artery stroke,1 multiple sclerosis,2 cervical spondylotic myelopathy,3 spinal cord compression,4 acute spinal cord injury,5 and chronic spinal cord injury,6,7 yet detailed baseline data with use of common imaging sequences are lacking for comparison. Some diffusion measurements have been documented in targeted regions of the neurologically intact human spinal cord,812 and these values have been used for comparison to pathologic conditions; however, a comprehensive study of diffusion parameters throughout the entire spinal cord has not been reported. As a result, the primary purpose of this study was to characterize the normative diffusion values of the entire human spinal cord with use of a clinically available pulse sequence for comparison with pathologic conditions and new pulse sequence designs.Current DTI research in the human spinal cord is primarily devoted to the development of pulse sequences aimed at obtaining artifact-free diffusion measurements. Single-shot echo-planar imaging (EPI) is relatively fast but is typically not used in the spinal cord because of the small size of the cord and the perceived risk for susceptibility-related distortions. Unfortunately, the main alternative to EPI, pulsed-gradient, spin-echo DTI, is highly sensitive to motion and has very long imaging times, requiring approximately 15 minutes to image a single diffusion axis.9 A few pulse sequences focus on a compromise between these 2 methods, including line scan diffusion imaging,13 multishot echo-planar imaging,10 and fast single-shot EPI with use of sensitivitiy encoding (SENSE).14 Although these new techniques have established a reputation for accurate diffusion measurements with minimal artifacts, they typically have low signal-to-noise ratio (SNR). A novel technique, presented by Bammer et al,12,15 uses a phase-navigated interleaved EPI method to overcome SNR challenges; however, the technique is currently not available on MR scanners and thus has limited clinical usefulness.In contrast to recently developed DTI pulse sequences, single-shot EPI is widely available on clinical MR scanners; thus, diffusion-tensor (DT) EPI could serve as a standard for comparison of new pulse sequences. Previous studies involving single-shot DT EPI of the spinal cord have demonstrated its usefulness in estimating diffusion parameters within the spinal cord,1,4,11,16 though a systematic study of the entire spinal cord has not been conducted. To establish baseline diffusion parameters for comparing new DTI sequences, we aimed to measure the DTI parameters and SNR of the entire spinal cord by using a single-shot, twice-refocused, spin-echo EPI diffusion sequence17 in the axial plane, with no respiratory or cardiac gating to image the entire spinal cord (C1–L1). We then compared the diffusion parameters from this DT EPI sequence with reported diffusion measurements that were obtained with a variety of recently developed pulse sequences to determine the agreement in diffusion parameters.Thus, the primary aim of this study was to characterize the diffusion properties of the human spinal cord in vivo with a single-shot DT EPI sequence to establish a baseline for clinicians to compare with measurements made in pathologic conditions. The secondary goal was to characterize the diffusion measurements from the current literature and determine if differences exist in mean diffusion characteristics across various pulse sequences and imaging platforms.  相似文献   

16.
扩散加权成像对诊断前列腺癌的初步研究   总被引:1,自引:1,他引:0  
目的 探讨基于多次激发回波平面成像(EPI)和二维空间选择激发EPI的快速高分辨扩散加权成像(DWI)对前列腺癌诊断的临床应用价值.资料与方法 对6例健康志愿者和13例经穿刺活检证实的前列腺癌患者进行常规和多序列DWI成像,分别测量各DWI序列扫描图像的信噪比(SNR)和表观扩散系数(ADC)值并进行比较分析.另将5例行前列腺癌根治术的整体前列腺病理标本与DWI显示病灶的部位、范围和数量进行对照分析.结果 与单次激发EPI相比,多次激发EPI提高了图像的空间分辨率和SNR (P<0.05),二维空间选择激发EPI减少了扫描时间分辨率(P<0.05).单次激发、多次激发和二维空间选择激发EPI-DWI序列采集的前列腺癌患者的ADC值与健康志愿者的ADC值差异均有统计学意义(P<0.01).结论 基于多次激发和二维空间选择激发EPI的DWI技术可以提高前列腺图像的空间分辨率和SNR,有助于改善前列腺癌的诊断准确性.  相似文献   

17.
Single-shot techniques have preferentially been adopted for diffusion-weighted imaging due to their reduced sensitivity to bulk motion. However, the limited spatial resolution achievable results in orientational signal averaging within voxels containing a distribution of fibers. This leads to impaired performance of tracking algorithms. To combat partial volume effects, high-resolution multishot techniques can be used but, being more sensitive to motion, require phase correction to obtain artifact-free images. While separately acquiring 2D navigator echoes is an effective approach, it is not very efficient as the navigators do not contribute signal to the final image. Here a self-navigated interleaved echo planar imaging (EPI) sequence based on EPI with keyhole (EPIK) is proposed. The refocusing reconstruction method is successfully adapted to EPIK and compared to the standard linear approach. The resultant improvement in resolution is shown to lead to a significant increase in anisotropy in fiber-branching areas and can potentially offer a superior ability to detect fine tract splits.  相似文献   

18.
RASER: a new ultrafast magnetic resonance imaging method.   总被引:1,自引:0,他引:1  
A new MRI method is described to acquire a T(2)-weighted image from a single slice in a single shot. The technique is based on rapid acquisition by sequential excitation and refocusing (RASER). RASER avoids relaxation-related blurring because the magnetization is sequentially refocused in a manner that effectively creates a series of spin echoes with a constant echo time. RASER uses the quadratic phase produced by a frequency-swept chirp pulse to time-encode one dimension of the image. In another implementation the pulse can be used to excite multiple slices with phase-encoding and frequency-encoding in the other two dimensions. The RASER imaging sequence is presented along with single-shot and multislice images, and is compared to conventional spin-echo and echo-planar imaging sequences. A theoretical and empirical analysis of the spatial resolution is presented, and factors in choosing the spatial resolution for different applications are discussed. RASER produces high-quality single-shot images that are expected to be advantageous for a wide range of applications.  相似文献   

19.
When the region of interest (ROI) is smaller than the object, one can increase MRI speed by reducing the imaging field of view (FOV). However, when such an approach is used, features outside the reduced FOV will alias into the reduced-FOV image along the phase-encoding direction. Reduced-FOV methods are designed to correct this aliasing problem. In the present study, we propose a combination of two different approaches to reduce the acquired FOV: 1) two-dimensional (2D) spatially-selective RF excitation, and 2) the unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD) technique. While 2D spatially-selective RF excitation can restrict the spins excited within a reduced FOV, the UNFOLD technique can help to eliminate any residual aliased signals and thus relaxes the requirement for a long RF excitation pulse. This hybrid method was implemented for MR-based temperature mapping, and resulted in artifact-free images with a fourfold improvement in temporal resolution.  相似文献   

20.
单次激发EPI序列行颈髓磁共振功能成像的初步研究   总被引:5,自引:1,他引:4  
目的 探讨颈髓磁共振功能成像的可行性和研究意义。方法 对 7例健康右利手进行握拳、屈腕及穴位按压试验 ,采用1.5TPhilipsGyroscan磁共振系统 ,运用单次激发EPI扫描序列进行颈髓功能成像并进行BOLD法功能分析。结果  7例均不同程度激活相应脊髓兴奋区 ,握拳试验和屈腕试验主要激活C4 ~T1 支配区 ,信号增加强度一般在 10 %~ 2 0 %之间 ,穴位按压试验显示兴奋点分布较散在 ,信号增加强度略低。结论  1.5T磁共振系统可以通过快速扫描序列进行颈髓功能磁共振成像的研究 ,有望对脊髓疾病的机理研究和治疗指导、疗效监测提供帮助  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号