首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Retinal ganglion cells were recorded extracellularly in the intact eye of anesthetized adult cats. The effects of acetylcholine (ACh), the muscarinic antagonist scopolamine (Sco), the nicotinic antagonist dihydro-beta-erythroidine (DBE), and the acetylcholinesterase inhibitor physostigmine (Phy) on maintained and light-evoked ganglion cell discharge was examined using iontophoresis techniques. 2. A monoclonal antibody directed against the ACh synthesizing enzyme choline acetyltransferase (ChAT) was used to label cholinergic cells in retinal wholemounts. The topographical distribution of these cells was studied. 3. Intracellular filling with the fluorescent dye lucifer yellow (LY) was performed to identify the dendritic morphology of putative cholinergic neurons. 4. ACh increased and Sco decreased neuronal activity of all brisk ganglion cell types under all stimulus conditions tested in this study. The action of ACh was abolished during simultaneous application of Sco. 5. DBE raised the firing rate of ON-center brisk cells and decreased activity of OFF-center brisk cells. Again there was no difference under different stimulus conditions. During DBE application the ACh action on OFF-center cells was completely blocked. The ACh action on ON-center cells was diminished. 6. Phy prolonged and enhanced ACh action on all ganglion cell types. During simultaneous stimulation of the receptive-field center and the surround, Phy caused an activity shift in favor of the center response. 7. Immunocytochemical staining revealed two populations of amacrine cells, one in the inner nuclear layer, and the other in the ganglion cell layer. Their total density increased from 250 cells/mm2 in the periphery to 2,700 cells/mm2 in the central area. Analysis of the distribution pattern indicated a functional independence of the two subpopulations. 8. The dendritic morphology of putative cholinergic amacrine cells in the cat retina resembled that of rabbit and rat "starburst" amacrines, which are known to be cholinergic. 9. The possible function of cholinergic amacrine cells in the cat retina is discussed in view of the present findings and compared with results from other mammalian species.  相似文献   

2.
Although most CNS neurons require sodium action potentials (Na-APs) for normal stimulus-evoked release of classical neurotransmitters, many types of retinal and other sensory neurons instead use only graded potentials for neurotransmitter release. The physiological properties and information processing capacity of Na-AP-producing neurons appear significantly different from those of graded potential neurons. To classify amacrine cells in this dichotomy, we investigated whether Na-APs, which are often observed in these cells, are required for functional light-evoked release of inhibitory neurotransmitters from these cells. We recorded light-evoked inhibitory postsynaptic currents (IPSCs) from retinal ganglion cells, neurons directly postsynaptic to amacrine cells, and applied TTX to block Na-APs. In control solution, TTX application always led to partial suppression of the light-evoked IPSC. To isolate release from glycinergic amacrine cells, we used either bicuculline, a GABAA receptor antagonist, or picrotoxin, a GABAA and GABAC receptor antagonist. TTX application only partially suppressed the glycinergic IPSC. To isolate release from GABAergic amacrine cells, we used the glycine receptor blocker strychnine. TTX application only partially suppressed the light-evoked GABAergic IPSC. Glycinergic and GABAergic amacrine cells did not obviously differ in the usage of Na-APs for release. These observations, in conjunction with previous studies of other retinal neurons, indicate that amacrine cells, taken as a class, are the only type of retinal neuron that uses both Na-AP-dependent and -independent modes for light-evoked release of neurotransmitters. These results also provide evidence for another parallel between the properties of retinal amacrine cells and olfactory bulb granule cells.  相似文献   

3.
Summary Anatomical structures of the cat retina were related to functional changes induced by the application of dopaminergic and serotonergic substances. We report on the contribution of dopaminergic and serotonin accumulating retinal neurones to retinal activity as reflected by the electroretinogram. The effect of dopaminergic neurones was investigated by the application of the neurotoxin 6-hydroxydopamine (6-OHDA) which is known to destroy dopaminergic neurones, and injections of either serotonin (5-HT) or the analogue 5,6-dihydroxytryptamine (5,6-DHT) were used to monitor the effects of indoleamines. In control experiments aminophosphonobutyric acid (APB), an agonist of glutamate transmission, was injected. Conventional immunohistochemical methods identified dopaminergic and serotonin accumulating neurones, and the electrophysiological data obtained from the same animals were related to the anatomical structures influenced by the respective substances. Destruction of dopaminergic amacrine cells by 6-OHDA increased the ERG b-wave amplitude. Accumulation of indoleamines by certain amacrine cells also caused an increase of the ERG b-wave. However, intravitreal injection of APB completely blocked the bwave. The data show that ERG mass responses can be used to monitor transmitter-specific effects on retinal circuitry.  相似文献   

4.
In many vertebrate CNS synapses, the neurotransmitter glutamate activates postsynaptic non-N-methyl-D-aspartate (NMDA) and NMDA receptors. Since their biophysical properties are quite different, the time course of excitatory postsynaptic currents (EPSCs) depends largely on the relative contribution of their activation. To investigate whether the activation of the two receptor subtypes is affected by the synaptic interaction in the inner plexiform layer (IPL) of the mouse retina, we analyzed the properties of the light-evoked responses of ON-cone bipolar cells and ON-transient amacrine cells in a retinal slice preparation. ON-transient amacrine cells were whole cell voltage-clamped, and the glutamatergic synaptic input from bipolar cells was isolated by a cocktail of pharmacological agents (bicuculline, strychnine, curare, and atropine). Direct puff application of NMDA revealed the presence of functional NMDA receptors. However, the light-evoked EPSC was not significantly affected by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), but suppressed by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). These results indicate that the light-evoked EPSC is mediated mainly by AMPA receptors under this condition. Since bipolar cells have GABA(C) receptors at their terminals, it has been suggested that bipolar cells receive feedback inhibition from amacrine cells. Application of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific blocker of GABA(C) receptors, suppressed both the GABA-induced current and the light-evoked feedback inhibition observed in ON-cone bipolar cells and enhanced the light-evoked EPSC of ON-transient amacrine cells. In the presence of TPMPA, the light-evoked EPSC of amacrine cells was composed of AMPA and NMDA receptor-mediated components. Our results suggest that photoresponses of ON-transient amacrine cells in the mouse retina are modified by the activation of presynaptic GABA(C) receptors, which may control the extent of glutamate spillover.  相似文献   

5.
Intracellular recordings were obtained from amacrine and ganglion cells in the superfused, isolated retina-eyecup of the rabbit. The putative neurotransmitters aspartate, glutamate, and several of their analogues were added to the superfusate while the membrane potential and light-responsiveness of the retinal neurons were monitored. Both L-aspartate and L-glutamate displayed excitatory actions on the activity of the vast majority of amacrine and ganglion cells studied. However, these agents occasionally appeared to inhibit the responses of the inner retinal neurons by producing hyperpolarization of the membrane potential and blockage of the light-evoked responses. In either case, the effects of aspartate and glutamate were indistinguishable. The glutamate analogues kainate and quisqualate produced strong excitatory effects on the responses of amacrine and ganglion cells at concentrations some 200-fold less than those needed to obtain similar effects with aspartate or glutamate. The aspartate analogue, n-methyl DL-aspartate (NMDLA), also produced strong excitatory effects but was approximately three times less potent than kainate or quisqualate. On one occasion, we encountered a ganglion cell that was depolarized by kainate, but hyperpolarized by NMDLA. The glutamate antagonist alpha-methyl glutamate and the aspartate antagonist alpha-amino adipate effectively blocked the responses of amacrine and ganglion cells. However, on any one cell, one antagonist was always clearly more potent than the other. We examined the actions of the glutamate analogue 2-amino-4-phosphonobutyrate (APB) on the responses of inner retinal neurons and found that it selectively abolished all "on" activity in the inner retina. Together with our finding that APB selectively abolishes on-bipolar cell responses (see Ref. 6), these data support the hypothesis that on-bipolar cells subserve the "on" activity of amacrine and ganglion cells. Our data suggest that aspartate and glutamate are excitatory transmitters in the inner retina, possibly being released from bipolar cell axon terminals in the inner plexiform layer.  相似文献   

6.
Voltage-gated sodium channels (Na(v) channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Na(v) channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (approximately 3 microm) alone, 3-6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 microm) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N-methyl-D-aspartate (NMDA, 100-200 microm) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod-cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod-cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Na(v) channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Na(v) channel function. These findings indicate that activation of Na(v) channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function.  相似文献   

7.
Pharmacological modulation of the rod pathway in the cat retina   总被引:6,自引:0,他引:6  
1. In the intact cat eye, the responses of ganglion cells to light stimulation were recorded extracellularly and the actions of iontophoretically applied 2-amino-4-phosphonobutyrate (APB), a potent agonist at ON-bipolars, and of strychnine, a glycine antagonist, were investigated. 2. Under light-adapted conditions, the activity of ON-center ganglion cells is decreased by APB but is increased by strychnine. APB and strychnine act independently of one another. 3. The activity of light-adapted OFF-center ganglion cells is increased by APB and by strychnine. The light response remains clearly modulated. Strychnine blocks the action of simultaneously applied APB. The results are in agreement with the action of a push-pull mechanism, according to which ON-cone-bipolars provide a glycinergic input into OFF-center ganglion cells. 4. Under dark-adapted conditions, APB blocks the light responses of both ON-center and OFF-center ganglion cells. The discharge rate of ON-center ganglion cells is completely suppressed; OFF-center ganglion cells show a high maintained discharge. 5. Strychnine blocks the scotopic light response of OFF-center ganglion cells and blocks the action of simultaneously applied APB. The light response of ON-center ganglion cells is hardly affected by strychnine. 6. The effects of strychnine on OFF-center ganglion cells are in agreement with the hypothesis that the glycinergic AII amacrine cells modulate the activity of the scotopic OFF-channel. 7. Intravitreally applied APB abolished the scotopic b-wave of the electroretinogram at concentrations of 100 microM. 8. Our data suggest that as in rabbit (10) the rod bipolars in cat retina are depolarizing (ON) bipolar cells.  相似文献   

8.
Light-evoked currents in depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) were recorded under voltage-clamp conditions in living retinal slices of the larval tiger salamander. Responses to illumination at the center of the DBCs' and HBCs' receptive fields were mediated by two postsynaptic currents: DeltaI(C), a glutamate-gated cation current with a reversal potential near 0 mV, and DeltaI(Cl), a chloride current with a reversal potential near -60 mV. In DBCs DeltaI(C) was suppressed by L-2-amino-4-phosphonobutyric acid (L-AP4), and in HBCs it was suppressed by 6,7-dinitroquinoxaline-2,3-dione (DNQX). In both DBCs and HBCs DeltaI(Cl) was suppressed by imidazole-4-acetic acid (I4AA), a GABA receptor agonist and GABA(C) receptor antagonist. In all DBCs and HBCs examined, 10 microM I4AA eliminated DeltaI(Cl) and the light-evoked current became predominately mediated by DeltaI(C). The addition of 20 microM L-AP4 to the DBCs or 50 microM DNQX to HBCs completely abolished DeltaI(C). Focal application of glutamate at the inner plexiform layer elicited chloride currents in bipolar cells by depolarizing amacrine cells that release GABA at synapses on bipolar cell axon terminals, and such glutamate-induced chloride currents in DBCs and HBCs could be reversibly blocked by 10 microM I4AA. These experiments suggest that the light-evoked, I4AA-sensitive chloride currents (DeltaI(Cl)) in DBCs and HBCs are mediated by narrow field GABAergic amacrine cells that activate GABA(C) receptors on bipolar cell axon terminals. Picrotoxin (200 microM) or (1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid (TPMPA) (2 other GABA(C) receptor antagonists) did not block (but enhanced and broadened) the light-evoked DeltaI(Cl), although they decreased the chloride current induced by puff application of GABA or glutamate. The light response of narrow field amacrine cells were not affected by I4AA, but were substantially enhanced and broadened by picrotoxin. These results suggest that there are at least two types of GABA(C) receptors in bipolar cells: one exhibits stronger I4AA sensitivity than the other, but both can be partially blocked by picrotoxin. The GABA receptors in narrow field amacrine cells are I4AA insensitive and picrotoxin sensitive. The light-evoked DeltaI(Cl) in bipolar cells are mediated by the more strongly I4AA-sensitive GABA(C) receptors. Picrotoxin, although acting as a partial GABA(C) receptor antagonist in bipolar cells, does not suppress DeltaI(Cl) because its presynaptic effects on amacrine cell light responses override its antagonistic postsynaptic actions.  相似文献   

9.
Rod bipolar cells relay visual signals evoked by dim illumination from the outer to the inner retina. GABAergic and glycinergic amacrine cells contact rod bipolar cell terminals, where they modulate transmitter release and contribute to the receptive field properties of third order neurones. However, it is not known how these distinct inhibitory inputs affect rod bipolar cell output and subsequent retinal processing. To determine whether GABAA, GABAC and glycine receptors made different contributions to light-evoked inhibition, we recorded light-evoked inhibitory postsynaptic currents (L-IPSCs) from rod bipolar cells mediated by each pharmacologically isolated receptor. All three receptors contributed to L-IPSCs, but their relative roles differed; GABAC receptors transferred significantly more charge than GABAA and glycine receptors. We determined how these distinct inhibitory inputs affected rod bipolar cell output by recording light-evoked excitatory postsynaptic currents (L-EPSCs) from postsynaptic AII and A17 amacrine cells. Consistent with their relative contributions to L-IPSCs, GABAC receptor activation most effectively reduced the L-EPSCs, while glycine and GABAA receptor activation reduced the L-EPSCs to a lesser extent. We also found that GABAergic L-IPSCs in rod bipolar cells were limited by GABAA receptor-mediated inhibition between amacrine cells. We show that GABAA, GABAC and glycine receptors mediate functionally distinct inhibition to rod bipolar cells, which differentially modulated light-evoked rod bipolar cell output. Our findings suggest that modulating the relative proportions of these inhibitory inputs could change the characteristics of rod bipolar cell output.  相似文献   

10.
Extracellular and whole-cell light-evoked responses of mouse retinal ganglion cells were recorded in the presence of the mGluR8 selective agonist, (S)-3,4-dicarboxy-phenylglycine (DCPG). Off-light responses were reversibly reduced in the presence of DCPG in wild-type but not in mGluR8-deficient retinas. On-responses were only marginally modulated by DCPG. During Off-responses, DCPG suppressed both excitatory and inhibitory synaptic conductances suggesting that mGluR8 receptor activity reduces glutamate release from bipolar cell terminals and possibly also the release of an inhibitory neurotransmitter from amacrine cell processes.  相似文献   

11.
Cholinergic amacrine cells of the chicken retina were detected by immunohistochemistry using an antiserum against affinity-purified chicken choline acetyltransferase. Three populations of cells were detected: type I cholinergic amacrine cells had cell bodies on the border of the inner nuclear and inner plexiform layers and formed a prominent laminar band in sublamina 2 of the inner plexiform layer, while type II cholinergic amacrine cells had cell bodies in the ganglion cell layer, and formed a prominent laminar band in sublamina 4 of the inner plexiform layer. Type III cholinergic amacrine cell bodies were located towards the middle of the inner nuclear layer, and their processes were more diffusely distributed in sublaminas 1 and 3-5 of the inner plexiform layer. Type I and type II cells were present at densities of over 7000 cells/mm2 in central areas declining to less than 2000 cells/mm2 in the temporal retinal periphery. The cells were organized locally in a non-random mosaic, with regularity indices ranging from 3 peripherally to over 5 centrally. Neither at the light nor electron microscopic levels was a lattice of cholinergic dendrites of the kind reported by Tauchi and Masland [J. Neurosci. 5, 2494-2501 (1985)] detectable. Within the two prominent dendritic plexuses, a major feature of the synaptic interactions of the type I and type II cholinergic cells was extensive synaptic interaction between cholinergic processes. Apart from this, there was little, if any, input to cholinergic processes from non-cholinergic amacrine cells, but there was input from bipolar cells. Output from the cholinergic amacrine cell processes was directed towards non-cholinergic amacrine cells as well as other cholinergic amacrine cells, and ganglion cells.  相似文献   

12.
1. The synaptic inputs to sustained OFF-center ganglion cells of the mudpuppy retina were studied using a superfused retina-eye-cup preparation. Intra- and extracellular electrophysiological recording techniques were carried out during bath application of 2-amino-4-phosphonobutyrate (APB), a glutamate analog that selectively blocks the light responses of ON-bipolars but has minor effects on OFF-bipolar or horizontal cells. 2. The use of APB reduced ganglion cell inputs to those arising from the OFF-bipolar channel. In this way, the existence and polarity (depolarizing vs. hyperpolarizing) of direct or indirect bipolar connections to ganglion cells was determined. 3. Cobalt application was used to block synaptic transmission and demonstrate that APB does not have a direct excitatory action on ganglion cells. 4. Intracellular recording experiments included the use of pulsatile and sustained current injection to evaluate the input resistance changes associated with light, the action of APB, and the excitatory, inhibitory, or disafacilitory nature of the postsynaptic potentials. 5. Some intracellularly recorded cells were stained with horseradish peroxidase (HRP) to verify the ganglion cell origin of the recordings. 6. The OFF-ganglion cell population of the mudpuppy appears to be a heterogeneous group of cells. Sustained OFF-ganglion cells can receive dominant inputs through either the ON- or OFF-bipolar cell pathway or through a mixture of the two. 7. Based on the analysis of this study, we divided sustained OFF-ganglion cells into three subclasses. For one class, light causes the removal of a sustained excitatory input which originates from the OFF-bipolar channel (i.e., a light-evoked disfacilitation); a second class of cells is almost entirely driven by the ON-bipolar channel through a sustained light-evoked inhibitory input; and a third class receives both a light-evoked sustained disfacilitory input from the OFF-bipolar channel and a sustained inhibitory input through the ON-bipolar pathway. Thus the retina appears to use a variety of mechanisms that result in a common response to flashing light stimuli. 8. The results of this study show that APB can be a powerful tool for pharmacologically deciphering the functional connections that exist between outer and inner retinal neurons.  相似文献   

13.
We investigated the expression of the substance P (SP) receptor (the neurokinin 1 receptor, NK1 receptor) and SP functional effects in developing rabbit retinas. NK1 receptors in adult retinas were in a population of cone bipolar cells and in dopaminergic amacrine cells, as previously described. In contrast, at birth and at postnatal day (PND) 6, NK1 receptors were exclusively expressed by cholinergic amacrine and displaced amacrine cells. NK1 receptor expression in cholinergic cells was still observed at PND10 (eye opening), while at PND21 it was confined to cholinergic cells of the inner nuclear layer. Starting at PND10, NK1 receptors were also in bipolar cells and in dopaminergic amacrine cells. A fully mature NK1 receptor expression pattern was observed at PND35. Dopamine release was assessed in isolated retinas in the presence of SP, the NK1 receptor agonist GR73632 or the NK1 receptor antagonist GR82334. At PND35, extracellular dopamine was significantly increased by 10 microM SP or 0.01-100 microM GR73632, and it was decreased by 0.01-10 microM GR82334. No effects were detected in developing retinas up to PND21. Ca2+ imaging experiments were performed in single cholinergic cells identified by their "starburst" morphology in perinatal retinas. Intracellular Ca2+ levels were significantly increased by 1 microM SP or GR73632. This effect was reversibly inhibited by 1 microM GR82334. These data demonstrate that both NK1 receptor expression and SP physiological actions are developmentally regulated in the retina. SP neurotransmission in the immature retina may subserve developmental events, and SP is likely to represent an important developmental factor for the maturation of retinal neurons and circuitries.  相似文献   

14.
In the visual system, optimal light stimulation sometimes generates gamma-range (ca. 20 approximately 80 Hz) synchronous oscillatory spike discharges. This phenomenon is assumed to be related to perceptual integration. Applying a planar multi-electrode array to the isolated frog retina, Ishikane et al. demonstrated that dimming detectors, off-sustained type ganglion cells, generate synchronous oscillatory spike discharges in response to diffuse dimming illumination. In the present study, applying the whole cell current-clamp technique to the isolated frog retina, we examined how light-evoked oscillatory spike discharges were generated in dimming detectors. Light-evoked oscillatory ( approximately 30 Hz) spike discharges were triggered by rhythmic ( approximately 30 Hz) fluctuations superimposed on a depolarizing plateau potential. When a suprathreshold steady depolarizing current was injected into a dimming detector, only a few spikes were evoked at the stimulus onset. However, repetitive spikes were triggered by a gamma-range sinusoidal current superimposed on the steady depolarizing current. Thus the light-evoked rhythmic fluctuations are likely to be generated presynaptically. The light-evoked rhythmic fluctuations were suppressed not by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl)triethylammonium bromide (QX-314), a Na(+) channel blocker, to the whole cell clamped dimming detector but by bath-application of tetrodotoxin to the retina. The light-evoked rhythmic fluctuations were suppressed by a GABA(A) receptor antagonist but potentiated by a GABA(C) receptor antagonist, whereas these fluctuations were little affected by a glycine receptor antagonist. Because amacrine cells are spiking neurons and because GABA is one of the main transmitters released from amacrine cells, amacrine cells may participate in generating rhythmically fluctuated synaptic input to dimming detectors.  相似文献   

15.
The light-evoked electrical responses of a large number of amacrine cells in the roach retina have been observed by intracellular recording. Examination of response profiles suggests that amacrine cell responses possess a number of common features: combinations of sustained and transient components, light-dependent membrane noise and oscillations, afterpotentials. From these and other observations taken together, a unified view of light-evoked amacrine cell responses is presented, whereby response profiles are thought to reflect synaptic organizations rather than differences in inherent membrane properties.  相似文献   

16.
We investigated the effects of beta-amyloid (Abeta) peptides on cholinergic synaptosomes isolated from the electric organ of the Japanese marine ray Narke japonica. Fresh and pre-incubated solutions of Abeta(1-42) inhibited acetylcholine (ACh) release from the synaptosomes evoked by high [K+] depolarization when incubated with synaptosomes for 10 min before the depolarizing stimulus. A freshly prepared solution of Abeta(1-40) did not inhibit the evoked ACh release, but prolonged pre-incubation of Abeta(1-40) solution caused the inhibition. Abeta(1-15) neither in fresh nor pre-incubated solution inhibited. These results have demonstrated that Abeta peptides can acutely inhibit the depolarization-evoked release of ACh by acting directly on cholinergic presynaptic nerve endings. The electrophoresis analysis showed a strong correlation between Abeta aggregation and its inhibition for ACh release.  相似文献   

17.
Xu HP  Zhao JW  Yang XL 《Neuroscience》2003,118(3):763-768
Immunofluorescence labeling was performed to study the expression of high voltage-activated Ca(2+) channel subunits on rat retinal cholinergic and dopaminergic amacrine cells, which were double labeled with antibodies against choline acetyltransferase and tyrosine hydroxylase, respectively. The alpha(1A) subunit was predominantly expressed on the processes but not on the somata of cholinergic amacrine cells, whereas staining for alpha(1B) and alpha(1E) was observed in both structures of the cells. Immunoreactivity of alpha(1C) and alpha(1D) was not found in the cholinergic amacrine cells. Dopaminergic amacrine cells, on the other hand, exhibited a differential expression pattern of the Ca(2+) channel subunits, with alpha(1A), alpha(1C) and alpha(1E) being expressed on both somata and processes and alpha(1B) predominantly on the processes of the cells. No alpha(1D) labeling was seen. These results suggest that Ca(2+) channel subunits differentially expressed on the cholinergic and dopaminergic amacrine cells may endow these two cell types with different physiological properties.  相似文献   

18.
Recovery of light sensitivity in horizontal and amacrine cells, following desensitization of photoreceptors by localized brief laser flashes (647.1 or 488 nm) in isolated retinae of roach has been studied in a comparative approach. Spectrally matching laser irradiation suppressed light-evoked horizontal cell responses for minutes, cells only recovering on average less than 10% of their pre-irradiation response levels. In contrast, transient depolarizing responses in on-off amacrine cells recovered 80% or more of their light sensitivity within 10-20 s following laser irradiation of either wavelength. Possible neural basis of the sensitization phenomenon in amacrine cells is discussed in relation to known mechanisms of synaptic transmission in the retina.  相似文献   

19.
We tested the characteristics of acetylcholine (ACh) release from cultured rat septal cells. The spontaneous release was inhibited by treatment with tetrodotoxin (TTX) and omega-conotoxin (GVIA), indicating that the release was elicited by synaptic activity. The release was also inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor blocker, in both the absence and presence of nerve growth factor (NGF), suggesting that endogenously released glutamate produced the ACh release by stimulating AMPA receptors.This is the first report of detection of the release of ACh by endogenous spontaneous synaptic activity conducted by glutamate AMPA receptor activation in cultured septal cells. This in vitro experimental system is useful for the study of cholinergic functions.  相似文献   

20.
This study sought to establish whether cholinergic neurons in the medial septum/vertical limb of the diagonal band (ms/vdB) release endogenous acetylcholine (ACh) locally, and whether the release was modulated by presynaptic feedback mechanisms. Release of ACh from slices of the ms/vdB was assessed by gas chromatography-mass spectrometry (GC-MS). Potassium depolarization resulted in a 20- to 25-fold increase in ACh release above spontaneous levels. Omission of Ca2+ from the incubation medium decreased this release by 91%. In the presence of 4 microM atropine, potassium-induced ACh release was enhanced by 48%. These results indicate that ACh is released in the ms/vdB by a Ca2+-dependent and atropine-sensitive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号