首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lipopolysaccharide (LPS) is an integral structural component of the outer membrane of Gram-negative bacteria and the principal active agent in the pathogenesis of endotoxin shock. LPS is a potent inducer of a variety of cytokines and inflammatory agents that lead to a profound alteration of gene expression patterns in cells and organs. The gene coding for the inducible nitric oxide synthase (iNOS) is highly responsive to LPS in vitro and in vivo and accounts for the production of nitric oxide (NO). The Janus kinase (JAK) family member tyrosine kinase 2 (TYK2) is a constituent of the interferon (IFN) type I response pathway and an important effector in the progression of endotoxin shock. Macrophages deficient for IFNalphabeta receptor chain 1 (IFNAR1) or TYK2 were shown to have an impaired LPS-induced iNOS expression. Here we determined the contribution of IFNAR1 and TYK2 to iNOS expression in vivo in a lethal LPS challenge model. TYK2 and IFNAR1 were found to be crucial for the LPS-induced iNOS mRNA and protein expression in spleen and lung that could be attributed to the Mac3-positive population. In liver LPS-induced iNOS mRNA expression was only partially impaired in TYK2-deficient mice and was unimpaired in IFNAR1-deficient mice, indicating organ specificity. TYK2(-/-) and IFNAR1(-/-) mice also differ with respect to IFNgamma production upon LPS challenge in that TYK2(-/-) mice show a defect while IFNAR1(-/-) mice do not. Our data suggest that iNOS is induced through IFNAR1 and TYK2 in Mac3-positive cells which are the main source of iNOS in spleen and lung. The LPS-induced iNOS expression in liver is independent of IFNAR1 and partially dependent on TYK2, which is most likely due to the lack of IFNgamma production in the absence of TYK2.  相似文献   

3.
Interferon (IFN) is an important effector of the innate immune response, induced by different viral or bacterial components through Toll-like receptor-dependent and -independent mechanisms. In human macrophages and macrophage-activated killer cells, we demonstrate that (i) the type I IFN response to lipopolysaccharide (LPS) is weak compared to the host response to virus infection; (ii) there is a temporal difference in the induction of tank-binding kinase-1 (TBK1) and IkappaB kinase (IKK)-related kinase epsilon (IKKepsilon) kinase activities in response to LPS, with TBK1 activated early and IKKepsilon induced in the late phase of IFN induction; and (iii) interferon regulatory factor (IRF)-7 is induced following LPS treatment, but there is no evidence that IRF-7 becomes activated by phosphorylation in vivo. Specifically, TBK1 kinase activity is rapidly increased after LPS stimulation (15 min) whereas IKKepsilon activation occurs at 8 h. RNA interference-mediated inhibition of TBK1 and IKKepsilon expression in macrophages interfere with IFNB and IRF7 gene expression following LPS activation. Macrophage priming with rIFN-alpha increased IRF-7 expression, led to a sharp up-regulation of the IFNB gene and to a rapid induction of IFNA2 upon LPS stimulation. These data support a differential role of TBK1 and IKKepsilon in the downstream response mediated by IRF-3 and IRF-7 to LPS in primary human macrophages.  相似文献   

4.
Human rhinovirus (HRV)-induced respiratory infections are associated with elevated levels of IFN-gamma-inducible protein 10 (IP-10), which is an enhancer of T lymphocyte chemotaxis and correlates with symptom severity and T lymphocyte number. Increased IP-10 expression is exhibited by airway epithelial cells following ex vivo HRV challenge and requires intracellular viral replication; however, there are conflicting reports regarding the necessity of type I IFN receptor ligation for IP-10 expression. Furthermore, the involvement of resident airway immune cells, predominantly bronchoalveolar macrophages, in contributing to HRV-stimulated IP-10 elaboration remains unclear. In this regard, our findings demonstrate that ex vivo exposure of human peripheral blood monocytes and bronchoalveolar macrophages (monocytic cells) to native or replication-defective HRV serotype 16 (HRV16) resulted in similarly robust levels of IP-10 release, which occurred in a time- and dose-dependent manner. Furthermore, HRV16 induced a significant increase in type I IFN (IFN-alpha) release and STAT1 phosphorylation in monocytes. Neutralization of the type I IFN receptor and inhibition of JAK or p38 kinase activity strongly attenuated HRV16-stimulated STAT1 phosphorylation and IP-10 release. Thus, this work supports a model, wherein HRV16-induced IP-10 release by monocytic cells is modulated via autocrine/paracrine action of type I IFNs and subsequent JAK/STAT pathway activity. Our findings demonstrating robust activation of monocytic cells in response to native and/or replication-defective HRV16 challenge represent the first evidence indicating a mechanistic disparity in the activation of macrophages when compared with epithelial cells and suggest that macrophages likely contribute to cytokine elaboration following HRV challenge in vivo.  相似文献   

5.
The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals   总被引:6,自引:0,他引:6  
Mice lacking Tyk2, Stat1 or Stat4, which are members of the Jak-Stat signaling cascade, were resistant to LPS-induced endotoxin shock. Interestingly, Tyk2-deficient mice had higher resistance to LPS challenge than mice lacking either Stat1 or Stat4. The activation of MAPK and NF-kappaB by LPS, and the production of TNF-alpha and IL-12 after LPS injection, were not abrogated by the absence of Tyk2, Stat1 or Stat4. In Stat1-deficient mice, the induction of IFN-beta by LPS in macrophages was severely reduced, although the serum level of IFN-gamma was elevated after LPS injection. In contrast, in Stat-4 deficient mice, the induction of IFN-beta by LPS was normal, but the serum level of IFN-gamma remained low after LPS injection. Interestingly, the induction of both IFN-beta and IFN-gamma by LPS was severely reduced in Tyk2-deficient mice. Therefore, Stat1 and Stat4 independently play substantial roles in the susceptibility to LPS. Tyk2 is essential for LPS-induced endotoxin shock, and this signaling pathway is transduced by the activation of Stat1 and Stat4.  相似文献   

6.
Because the induction of interleukin-1beta (IL-1beta) is critical to antibacterial host defenses and its excessive generation is a prominent component of sepsis, regulation of this proinflammatory cytokine is a critical factor in the immune response to lipopolysaccharide (LPS). We previously showed that LPS-induced IL-1beta expression was regulated by a Stat1-dependent, nitric oxide (NO)-mediated mechanism. Subsequent in vivo studies showed that whereas Stat1 had a role in the downregulation of IL-1beta expression, it had a more significant effect on its initial induction. Although both interferon-beta (IFN-beta) and IFN-gamma activate Stat1, the early appearance of IFN-beta in the circulation after LPS administration suggested its pivotal role in Stat1-mediated IL-1beta expression in vivo. Further in vitro analysis of peritoneal macrophages from IFN-beta (/), Stat1(/), and caspase-1(/) mice and their wild-type controls following LPS stimulation demonstrated that IL-1beta mRNA was expressed in these mice but not in macrophages from MyD88(/) mice. Despite the presence of IL-1beta mRNA, IL-1beta protein was markedly reduced in the absence of Stat1 activation in macrophages derived from IFN-beta (/) and Stat1(/) mice or in the absence of caspase-1 activity, which itself was dependent on Stat1 activation. These studies support the hypothesis that the expression of IL-1beta requires both the MyD88-dependent induction of IL-1beta mRNA and pro-IL-1beta as well as the MyD88-independent, Stat1-mediated processing of that gene product into active cytokine.  相似文献   

7.
Lipopolysaccharide (LPS) is an integral structural component of the outer membrane of Gram-negative bacteria and the principal active agent in the pathogenesis of endotoxin shock. LPS is a potent inducer of a variety of cytokines and inflammatory agents that lead to a profound alteration of gene expression patterns in cells and organs. The gene coding for the inducible nitric oxide synthase (iNOS) is highly responsive to LPS in vitro and in vivo and accounts for the production of nitric oxide (NO). The Janus kinase (JAK) family member tyrosine kinase 2 (TYK2) is a constituent of the interferon (IFN) type I response pathway and an important effector in the progression of endotoxin shock. Macrophages deficient for IFNβ receptor chain 1 (IFNAR1) or TYK2 were shown to have an impaired LPS-induced iNOS expression. Here we determined the contribution of IFNAR1 and TYK2 to iNOS expression in vivo in a lethal LPS challenge model. TYK2 and IFNAR1 were found to be crucial for the LPS-induced iNOS mRNA and protein expression in spleen and lung that could be attributed to the Mac3-positive population. In liver LPS-induced iNOS mRNA expression was only partially impaired in TYK2-deficient mice and was unimpaired in IFNAR1-deficient mice, indicating organ specificity. TYK2−/− and IFNAR1−/− mice also differ with respect to IFNγ production upon LPS challenge in that TYK2−/− mice show a defect while IFNAR1−/− mice do not. Our data suggest that iNOS is induced through IFNAR1 and TYK2 in Mac3-positive cells which are the main source of iNOS in spleen and lung. The LPS-induced iNOS expression in liver is independent of IFNAR1 and partially dependent on TYK2, which is most likely due to the lack of IFNγ production in the absence of TYK2.  相似文献   

8.
9.
Heme oxygenase-1 (HO-1) is induced under infectious diseases in macrophages. We performed experiments using various gene deficient mouse-derived macrophages to determine a detailed induction mechanism of HO-1 by lipopolysaccharide (LPS) and the functional role of HO-1 induction in macrophages. LPS (1 microg/mL) maximally induced inducible nitric oxide synthase (iNOS) and HO-1 mRNAs in wild-type (WT) macrophages at 6h and 12h after treatment, respectively, and liberated tumor necrosis factor alpha (TNFalpha) from WT macrophages. LPS also induced iNOS and HO-1 in TNFalpha(-/-) macrophages, but not in iNOS(-/-) macrophages. Interestingly, although LPS strongly induced iNOS, it failed to induce HO-1 almost completely in nuclear-factor erythroid 2-related factor 2 (Nrf2)(-/-) macrophages. The LPS-induced iNOS gene expression was suppressed by pretreatment with HO-1 inducers, hemin and Co-protoporphyrin (CoPP), but not with HO-1 inhibitor, Sn-protoporphyrin in WT macrophages. In the Nrf2(-/-) macrophages, the ability of CoPP to induce HO-1 and its inhibitory effect on the LPS-induced iNOS gene expression were lower than seen in WT macrophages. The present findings suggest that HO-1 is induced via NO-induced nuclear translocation of Nrf2, and the enzymatic function of HO-1 inhibits the overproduction of NO in macrophages.  相似文献   

10.
11.
12.
13.
14.
Immune response in Stat2 knockout mice   总被引:14,自引:0,他引:14  
Park C  Li S  Cha E  Schindler C 《Immunity》2000,13(6):795-804
  相似文献   

15.
16.
目的:研究SARS冠状病毒S蛋白诱导呼吸道上皮细胞合成释放IP-10(interferon-gamma inducible protein 10)的信号分子机制。方法:通过基因芯片检测SARS冠状病毒的S蛋白作用于人支气管上皮细胞16HBE后信号通路基因表达谱的变化;采纳RT-PCR、EMSA、Western blotting等方法进一步分析JAK-STAT通路中信号分子的磷酸化、IRF-1和IP-10基因表达的变化及其相应信号分子抑制剂对表达水平的影响。结果:S蛋白作用于人支气管上皮细胞16HBE诱导了JAK-STAT信号通路涉及的重要转录因子基因IRF-1的表达,该信号通路的转录因子STAT1在刺激后15 min发生磷酸化,2 h即可检出IP-10基因的表达, IP-10的表达可以完全被STAT1、JAK2抑制剂阻断。EMSA显示:支气管上皮细胞在S蛋白的作用下,其核蛋白能够特异性与ISRE和GAS DNA基序相结合,而不能与NF-κB的 DNA基序相结合。结论: SARS-CoV的S蛋白通过激活JAK-STAT信号转导通路诱导IP-10在宿主细胞的生成。提示病毒诱导的JAK-STAT信号通路激活在病毒感染相关的急性肺损伤发生中具有重要地位。  相似文献   

17.
18.
19.
20.
IFN-γ up-regulates MHC class I expression and antigen processing and presentation on cells, since IFN-γ can induce multiple gene expressions that are related to MHC class I antigen processing and presentation. MHC class I antigen presentation-associated gene expression is initiated by IRF-1. IRF-1 expression is initiated by phosphorylated STAT1. IFN-γ binds to IFN receptors, and then activates JAK1/JAK2/STAT1 signal transduction via phosphorylation of JAK and STAT1 in cells. IFN-γ up-regulates MHC class I antigen presentation via activation of JAK/STAT1 signal transduction pathway. Mechanisms of IFN-γ to enhance MHC class I antigen processing and presentation were summarized in this literature review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号