首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.  相似文献   

2.
Introduction: Epithelial-to-mesenchymal transition (EMT) is a pathological phenomenon of cancer that confers tumor cells with increased cell motility, invasive and metastatic abilities with the acquisition of ‘cancer stem-like cell’ (CSC) phenotype. EMT endows tumor cells with intrinsic/acquired resistant phenotype at achievable doses of anticancer drugs and leads to tumor recurrence and progression. Besides the complex network of signaling pathways, microRNAs (miRNAs) are being evolved as a new player in the induction and regulation of EMT.

Areas covered: In this review article, the author has searched the PubMed and Google Scholar electronic databases for original research and review articles to gather current information on the association of EMT-induced CSCs with therapeutic resistance, tumor growth and metastasis, which are believed to be regulated by certain miRNAs.

Expert opinion: This review outlines not only the perspective on selective targeting of EMT-induced CSCs through altered expression of novel miRNAs and/or the use of conventional drugs that affect the levels of critical miRNAs but also the strategies on overcoming the drug resistance by interfering with EMT and modulating its associated pathways in CSCs that can be considered as potential therapeutic approaches toward eradicating the tumor recurrence and metastasis.  相似文献   

3.
ABSTRACT

Introduction: Several reports have suggested that a population of undifferentiated cells known as cancer stem cells (CSCs), is responsible for cancer formation and maintenance. In the last decade, the presence of CSCs in solid cancers have been reported.

Areas covered: This review summarizes the main approaches for targeting CSCs drug resistance. It is indeed known that CSCs may contribute to resistance to conventional chemotherapy, radiotherapy and targeted agents. Among the mechanisms by which CSCs escape anticancer therapies, removal of therapeutic agents by drug efflux pumps, enhanced DNA damage repair, activation of mitogenic/anti-apoptotic pathways; the main features of CSCs, stemness and EMT, are involved, as well as the capability to evade immune response.

Expert opinion: Different approaches are suitable to target CSCs mediated drug resistance. Some of them are currently under clinical evaluation in different cancer types. A better understanding of CSC biology, as well as more accurate study design, may maximize the therapeutic effects of these agents. In this respect, it is important to establish: (i) which molecules should be targeted; (ii) what drug combinations may be suitable; (iii) which patient settings will CSC targeting offer the highest clinical benefit; and (iv) how to integrate therapeutic approaches targeting CSCs with standard cancer therapy.  相似文献   

4.
Introduction: Resistance to chemotherapy is a major obstacle in the successful amelioration of tumors in many cancer patients. Resistance is either intrinsic or acquired, involving mechanisms such as genetic aberrations, decreased influx and increased efflux of drugs. Strategies for the reversal of resistance involve the alteration of enzymes responsible for drug resistance, the modulation of proteins regulating apoptosis mechanisms and improving the uptake of drugs using nanotechnology. Novel strides in the reversal of drug resistance are emerging, involving the use of nanotechnology, targeting stem cells, etc.

Areas covered: This paper reviews the most recent cancer drug reversal strategies involving nanotechnology for targeting cancer cells and cancer stem cells (CSCs), for enhanced uptake of micro- and macromolecular inhibitors.

Expert opinion: Nanotechnology used in conjunction with existing therapies, such as gene therapy and P-glycoprotein inhibition, has been shown to improve the reversal of drug resistance; the mechanisms involved in this include specific targeting of drugs and nucleotide therapeutics, enhanced cellular uptake of drugs and improved bioavailability of drugs with poor physicochemical characteristics. Important strategies in the reversal of drug resistance include: a multifunctional nanoparticulate system housing a targeting moiety; therapeutics to kill resistant cancer cells and CSCs; cytotoxic drugs and a tumor microenvironment stimuli-responsive element, to release the encapsulated therapeutics.  相似文献   

5.
Introduction: Cancer stem cells (CSCs) are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance and therapeutic resistance. Restoring wild-type (WT) p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target CSCs.

Areas covered: This review covers the therapeutic approaches to restore the function of WT p53, cancer and normal stem cell biology in relation to p53 and the downstream effects of p53 on CSCs.

Expert opinion: The restoration of WT p53 function by targeting p53 directly, its interacting proteins or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and CSCs based on the current evidence linking p53 signaling with these populations.  相似文献   

6.
Importance of the field: Significant improvements in breast cancer treatments have resulted in a significant decrease in mortality. However, current breast cancer therapies, for example, chemotherapy, often result in high toxicity and nonspecific side effects. Other treatments, such as hormonal and antiangiogenic therapies, often have low treatment efficacy if used alone. In addition, acquired drug resistance decreases further the treatment efficacy of these therapies. Intra-tumor heterogeneity of the tumor tissue may be a major reason for the low treatment efficacy and the development of chemoresistance. Therefore, targeted multi-drug therapy is a valuable option for addressing the multiple mechanisms that may be responsible for reduced efficacy of current therapies.

Areas covered in this review: In this article, different classes of drugs for treating breast cancer, the possible reasons for the drug resistance in breast cancer, as well as different targeted drug delivery systems are summarized. The current targeting strategies used in cancer treatment are discussed.

What the reader will gain: This article considers the current state of breast cancer therapy and the possible future directions in targeted multi-drug delivery for treating breast cancer.

Take home message: A better understanding of tumor biology and physiological responses to nanoparticles, as well as advanced nanoparticle design, are needed to improve the therapeutic outcomes for treating breast cancer using nanoparticle-based targeted drug delivery systems. Moreover, selective delivery of multi-drugs to tumor tissue using targeted drug delivery systems may reduce systemic toxicity further, overcome drug resistances, and improve therapeutic efficacy in treating breast cancer.  相似文献   

7.
Introduction: Hedgehog (Hh) signaling pathway plays key roles in embryonic development, formation and maintenance of cancer stem cells (CSCs) and acquisition of epithelial-to-mesenchymal transition (EMT). Since CSCs and EMT are important biological factors responsible for cancer cell invasion, metastasis, drug resistance and tumor recurrence, the Hh signaling pathway is believed to be an important target for cancer therapy.

Areas covered: In recent years, small-molecule inhibitors of Hh signaling have been synthesized for cancer treatment. Clinical trials using these inhibitors are being conducted to determine their toxicity profiles and efficacies. In addition, nutraceuticals (such as isoflavones, curcumin, vitamin D, etc) have been shown to inhibit cancer growth through downregulation of Hh signaling.

Expert opinion: Inhibition of Hh signaling is important for suppression of cancer growth, invasion, metastasis and recurrence in cancer therapy. However, targeting only one molecule in Hh signaling may not be sufficient to kill cancer cells because cancers show deregulation of multiple signals. Therefore, utilizing new technologies to determine alterations in Hh and other signals for individuals and designing combination strategies with small-molecule Hh inhibitors, nutraceuticals and other chemotherapeutics in targeted personalized therapy could have a significant effect on improving the overall survival of patients with cancers.  相似文献   

8.
Introduction: Advances in cancer therapeutics, namely more effective and less toxic treatments, will occur with targeting strategies that enhance the tumor biodistribution and thwart normal tissue exposure of the drug. This review focuses on cancer drug targeting approaches that exploit the expression of the cell-surface proteoglycan family, CD44, on the tumor cell surface followed by some form of ligand binding and induced CD44 internalization and intracellular drug release: in effect using this as a ‘Trojan Horse’ to more selectively access tumor cells.

Areas covered: This review defines the origins of evidence for a linkage between CD44 expression and malignancy, and invokes contemporary views of the importance of putative CD44+ cancer stem cells in disease resistance. Although the primary emphasis is on the most advanced and developed paths, those that have either made it to the clinic or are well-poised to get there, a wide scope of additional approaches at various preclinical stages is also briefly reviewed.

Expert opinion: The future should see development of drug targeting approaches that exploit CD44 expression on CSCs/TICs, including applications to cytotoxic agents currently in the clinic.  相似文献   

9.
10.
ABSTRACT

Introduction: Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy.

Areas covered: This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered.

Expert opinion: Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.  相似文献   

11.
Introduction: Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration.

Areas covered: Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated.

Expert opinion: According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.  相似文献   

12.
Importance of the field: The targeted delivery of therapeutic agents to tumour cells is a challenge because most of the chemotherapeutic agents distribute to the whole body, which results in general toxicity and poor acceptance by patients and sometimes discontinuation of the treatment. Metallic nanoparticles have been used for a huge number of applications in various areas of medical treatment. Metallic nanoparticles are emerging as new carrier and contrast agents in cancer treatment. These metallic nanoparticles have been used for imaging of tumour cells by means of active and passive targeting. Recent advances have opened the way to site-specific targeting and drug delivery by these nanoparticles.

Areas covered in this review: This review summarizes the mechanisms of passive and active targeted drug delivery by metallic nanoparticles and their potential use in cancer theranostics.

What the reader will gain: The reader will gain information on the development of tumour cells, advantages of modern methods of cancer treatment over the traditional method, targeted delivery of anticancer agents using nanoparticles, influence of nanotechnology on the quality and expectancy of life, and challenges, implications and future prospects of metallic nanoparticles as probes in cancer treatment.

Take home message: The development of metallic nanoparticles is rapid and multidirectional, and the improved practical potential of metallic nanoparticle highlights their potency as new tools for future cancer therapeutics modalities.  相似文献   

13.
ABSTRACT

Introduction: A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics.

Areas covered: Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed.

Expert opinion: Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass.  相似文献   

14.
Introduction: Angiogenesis is essential to human biology and of great clinical significance. Excessive or reduced angiogenesis can result in, or exacerbate, several disease states, including tumor formation, exudative age-related macular degeneration (AMD) and ischemia. Innovative drug delivery systems can increase the effectiveness of therapies used to treat angiogenesis-related diseases.

Areas covered: This paper reviews the basic biology of angiogenesis, including current knowledge about its disruption in diseases, with the focus on cancer and AMD. Anti- and proangiogenic drugs available for clinical use or in development are also discussed, as well as experimental drug delivery systems that can potentially improve these therapies to enhance or reduce angiogenesis in a more controlled manner.

Expert opinion: Laboratory and clinical results have shown pro- or antiangiogenic drug delivery strategies to be effective in drastically slowing disease progression. Further research in this area will increase the efficacy, specificity and duration of these therapies. Future directions with composite drug delivery systems may make possible targeting of multiple factors for synergistic effects.  相似文献   

15.
Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.

Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.

Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.  相似文献   

16.
Although chemotherapy is an important therapeutic strategy for cancer treatment, it fails to eliminate all tumor cells due to intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Emerging evidence suggests an intricate role of cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT)-type cells in anticancer drug resistance. Recent studies also demonstrated that microRNAs (miRNAs) play critical roles in the regulation of drug resistance. Here we will discuss current knowledge regarding CSCs, EMT and the role of regulation by miRNAs in the context of drug resistance, tumor recurrence and metastasis. A better understanding of the molecular intricacies of drug-resistant cells will help to design novel therapeutic strategies by selective targeting of CSCs and EMT-phenotypic cells through alterations in the expression of specific miRNAs towards eradicating tumor recurrence and metastasis. A particular promising lead is the potential synergistic combination of natural compounds that affect critical miRNAs, such as curcumin or epigallocatechin-3-gallate (EGCG) with chemotherapeutic agents.  相似文献   

17.
ABSTRACT

Introduction: Proteins and peptides are prominent therapeutic agents, which are effective in number of ailments. Long-term delivery of protein and peptide therapeutics requires polymeric encapsulation to protect from degradation and for its sustained release. However, results from encapsulation of protein macromolecules in dynamic delivery systems report unreliable clinical outcome, indicating ease of degradation, low permeability, and serious immune responses. A specifically targeted delivery system as tumor or cancer theranostics may surpass these limitations.

Areas covered: This review covers recent advancements in approaches involving conjugated protein nano-formulations as targeting delivery technology for various ailments encompassing mostly cancer treatment options. Progressions in targeted chemotherapeutics, protein nanoparticles, peptide nanoparticles, lipidation, and antibody drug-conjugates are discussed.

Expert opinion: Significant expansions have been made in forming new generation of antitumor-recombinant proteins, which proves a milestone of advancements for more potent and explicit cancer therapies. However, transformation of biologics from laboratory to clinical trials is an immense challenge, because of drop in efficiency of drug-loading, poor reproducibility of nanoparticles, inadequate information regarding long-term toxicity and insufficient pharmacokinetics data. Hence, early stage tumor diagnosis with précised drug delivery to tumor site is crucial for protein- and peptide- based therapeutics for cancer.  相似文献   

18.
Introduction: Mesenchymal stem cells (MSCs) are one subgroup of adult stem cells and possess a proliferative potential and ability to differentiate into various ceells.

Areas covered: Emerging evidence suggests that MSCs can reprogram toward cancer stem cells (CSCs), due to alterations of intrinsic and extrinsic microenvironments, leading to tumorigenesis. The CSC concept has fundamental clinical implications because of its involvement in cell migration/invasion, metastasis, and treatment resistance. Therefore, targeting CSCs provides a novel therapeutic strategy for cancer treatment. However, the origin of CSCs and its molecular connections are not fully understood. Emerging evidence suggests the existence of an inter-relationship between CSCs and epithelial-to-mesenchymal transition (EMT) phenotypic cells, in the context of inflammation and hypoxia, as well as the potential role of miRNAs.

Expert opinion: We suggest that targeting CSC signatures along with EMT, inflammation, and hypoxia will provide a more effective therapeutic approach for the elimination of CSCs. To that end, curcumin especially its synthetic novel analog CDF have been shown to attenuate CSC characteristics along with the deregulation of multiple pathways and miRNAs, leading to the inhibition of human tumor growth in vivo, suggesting the potential role of CDF as an anti-tumor agent for the prevention/treatment of tumor progression.  相似文献   

19.
Today, intratumoural heterogeneity has been recognised as one of the main causes of cancer treatment failure and drug resistance development through which multiple mechanisms are simultaneously involved. From the broad diversity of cells presented in tumour microenvironment, owing to their proliferative potential and longevity, cancer stem cells (CSCs), are the main cell subpopulation involved in tumour development, propagation, metastatic dissemination and induction of intratumoural heterogeneity. Accordingly, selective targeting and eradication of CSCs may represent a promising approach for cancer therapy and evading drug resistance development. Nanotechnology is an attractive outgrowing field in medicine due to its promising capabilities in solving several obstacles associated with conventional chemotherapy agents including poor solubility, lack of selectivity and high systemic toxicity. Accordingly, multiple types of nanocarriers have been successfully developed for improving selective delivery and reducing non-selective toxicities of CSC-specific chemotherapy agents. In Current review, we mostly focus on examining the role of CSCs in development of intratumoral heterogeneity and introducing recently developed nano delivery systems for more efficient targeting and eradication of them.  相似文献   

20.
Introduction: The Fas/FasL system plays a significant role in tumorigenesis. Research has shown that its impairment in cancer cells may lead to apoptosis resistance and contribute to tumor progression. Thus, the development of effective therapies targeting the Fas/FasL system may play an important role in the fight against cancer.

Areas covered: In this review the recent literature on targeting the Fas/FasL system for therapeutic exploitation at different levels is reviewed. Promising pre-clinical approaches and various exceptions are highlighted. The potential of combined therapies is also explored, whereby tumor sensitivity to Fas-mediated apoptosis is restored, before an effective targeted therapy is employed.

Expert opinion: The success of the Fas/FasL system targeting for therapeutics will require a better understanding of the alterations conferring resistance, in order to use the most appropriate sensitizing chemotherapeutic or radiotherapeutic agents in combination with effective targeted therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号