首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Introduction: Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic–inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate.

Areas covered: This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE.

Expert opinion: One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.  相似文献   

2.
Introduction: Bisphosphonates (BPs) are widely used to manage a variety of bone disorders, including osteoporosis, metastatic bone disease and myeloma bone disease. The nitrogen-containing BPs (NBPs) target osteoclast activity by disrupting protein prenylation via inhibition of farnesyl diphosphate synthase (FDPS).

Areas covered: This review summarizes the recent advances in BPs with a focus on the latest patents (2015–2018). Patents involving novel BPs, new modes of BP delivery, as well as use of BPs to deliver other drugs to bone are discussed. A review of phosphonate-based drugs targeting geranylgeranyl diphosphate synthase (GGDPS) or geranylgeranyl transferase II (GGTase II) as alternative strategies to disrupt protein geranylgeranylation is provided.

Expert opinion: While the NBPs remain the mainstay of treatment for most bone disorders, further understanding of their pharmacological properties could lead to further refinement of their chemical structures and optimization of efficacy and safety profiles. In addition, the development of NBP analogs or drug delivery mechanisms that allow for nonbone tissue exposure could allow for the use of these drugs as direct anticancer agents. The development of GGDPS and GGTase II inhibitors represents alternative heterocycle phosphonate-based strategies to disrupt protein geranylgeranylation and may have potential as anticancer agents and/or as bone-targeted therapies.  相似文献   


3.
Introduction: Farnesyl pyrophosphate synthase (FPPS, also known as farnesyl diphosphate synthase (FDPS)) is one of the key enzymes involved in the mevalonate pathway and as such is widely expressed. FPPS modulators, specifically FPPS inhibitors, are useful in treating a number of diseases, including bone-related disorders characterized by excessive bone resorption, for example, osteoporosis, cancer metathesis to bone and infectious diseases caused by certain parasites.

Areas covered: This review covers structures and applications of novel FPPS modulators described in the patent literature from 2006 to 2010. Patents disclosing new formulations and uses of existing FPPS inhibitors are also reviewed. Thirty-three patents retrieved from the USPTO, EP and WIPO databases are examined with the goal of defining current trends in drug discovery related to FPPS inhibition, and its therapeutic effects.

Expert opinion: Bisphosphonates (BPs) continue to dominate in this area, although other types of modulators are making their appearance. Remarkable for their high bone mineral affinity, BPs are structural mimics of the dimethylallyl pyrophosphate substrate of FPPS, and constitute the major type of FPPS inhibitor currently used in the clinic for treatment of bone-related diseases. Lipophilic BPs and new classes of non-BP FPPS inhibitors (salicylic acid and quinoline derivatives) have been introduced as possible alternatives for treatment of soft tissue diseases, such as some cancers. Novel formulations, fluorescent diagnostic probes and new therapeutic applications of existing FPPS inhibitors are also areas of significant patent activity, demonstrating growing recognition of the versatility and underdeveloped potential of these drugs.  相似文献   

4.
Introduction : Growth factors and other bioactive molecules play a crucial role in the creation of functional engineered tissues from dissociated cells.

Areas covered : This review discusses the delivery of bioactive molecules – particularly growth factors – to affect cellular function in the context of tissue engineering. We discuss the primary biological themes that are addressed by delivering bioactives, the types of molecules that are to be delivered, the major materials used in producing scaffolds and/or drug delivery systems, and the principal drug delivery strategies.

Expert opinion : Drug delivery systems have allowed the sustained release of bioactive molecules to engineered tissues, with marked effects on tissue function. Sophisticated drug delivery techniques will allow precise recapitulation of developmental milestones by providing temporally distinct patterns of release of multiple bioactives. High-resolution patterning techniques will allow tissue constructs to be designed with precisely defined areas where bioactives can act. New biological discoveries, just as the development of small molecules with potent effects on cell differentiation, will likely have a marked impact on the field.  相似文献   

5.
Introduction: Osteoporosis (OP) is a major disease in elderly people; its complications and prevalence are rapidly increasing worldwide. It is associated with high fragility fracture mainly of hip, wrist and spine. With the rising lifespan worldwide, the number of hip fractures throughout globe will rise from 1.66 million in 1990 to 6.26 million by 2050. So there is a major problem in our society related to the bone diseases which needs to be addressed.

Areas covered: This review gives knowledge about OP, its symptoms and problems associated with the existing therapies. It gives idea about various drug delivery systems for bone targeting. This review also gives a comprehensive compilation of the various in vitro and in vivo studies conducted till date and US FDA approved drugs for the treatment of OP.

Expert opinion: Various drug delivery systems reduce the adverse effects of drugs and increase the availability of drugs to the target site mainly bones. Active researches are going on to improve the OP treatment, whose high prevalence and considerable functional and socioeconomic impact will raise formidable challenges in the near future. We should work on different targets rather than conventional therapies which will improve the overall treatment strategies.  相似文献   

6.
Introduction: Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery.

Areas covered: The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies.

Expert opinion: These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.  相似文献   

7.
ABSTRACT

Introduction: The unique structure of bone and cartilage makes the systemic delivery of free drugs to those connective tissues very challenging. Consequently, effective and targeted delivery for bone and cartilage is of utmost importance. Engineered biodegradable polymers enable designing carriers for a targeted and temporal controlled release of one or more drugs in concentrations within the therapeutic range. Also, tissue engineering strategies can allow drug delivery to advantageously promote the in situ tissue repair.

Areas covered: This review article highlights various drug delivery systems (DDS) based on biodegradable biomaterials to treat bone and/or cartilage diseases. We will review their applications in osteoporosis, inflammatory arthritis (namely osteoarthritis and rheumatoid arthritis), cancer and bone and cartilage tissue engineering.

Expert opinion: The increased knowledge about biomaterials science and of the pathophysiology of diseases, biomarkers, and targets as well as the development of innovative tools has led to the design of high value-added DDS. However, some challenges persist and are mainly related to an appropriate residence time and a controlled and sustained release over a prolonged period of time of the therapeutic agents. Additionally, the poor prediction value of some preclinical animal models hinders the translation of many formulations into the clinical practice.  相似文献   

8.
Introduction: Advances in the treatment of interstitial cystitis or bladder pain syndrome (IC/BPS) depend on a good understanding of its pathogenesis. Presently, oral medicine and intravesical drug instillations may be the most popular therapies in daily practice. To improve the efficacy of intravesical drug delivery, the system requires modulation through coupling them to novel carriers. Numerous investigators have attempted alternative reconstructive procedures for bladder replacement/repair using scaffolds. These scaffolds include acellular extracellular matrix grafts or tissue-derived cell-seeded extracellular matrix grafts as well as the transplantation of mesenchymal progenitor cells into the damaged bladder.

Areas covered: This review focuses on the current available IC/BPS treatments and the different strategies employing nanotechnology or tissue engineering in the discovery of novel IC/BPS therapies.

Expert opinion: Current studies in the discovery of novel IC/BPS therapies are still imperfect, with novel approaches that use biocompatible nanomaterials or tissue engineering still ongoing. These nanoformulations give the benefit of protecting easily degradable molecules and enhance targeted delivery. Tissue engineering holds the promise of regenerating damaged tissues and organs by replacing damaged tissue and/or by stimulating the body's own repair mechanisms to heal previously irreparable tissues and organs. For these reasons, nanotechnology and tissue engineering could play key roles in the discovery of novel painful bladder syndrome therapies.  相似文献   

9.
Introduction: Delivery of therapeutic agents to bone is crucial for the treatment of bone metastasis and other bone diseases. The present invention patent relates to bone- and metal-targeted polymeric nanoparticles for targeting delivery of therapeutic molecules to the pathological tissues in bone or the surgical metal implant-bone tissue interface.

Areas covered: The nanoparticles for drug delivery were fabricated via the assembly of amphiphilic polymers, in which the hydrophilic outer layer was minimal to prolong the circulation time, and the hydrophobic insider core was biodegradable and loaded with therapeutic agents. Bone-targeted elements were conjugated on the nanoparticle surface to enhance their affinity to bone and/or metal implant surface.

Expert opinion: A prolonged, sustained release of therapeutic agents was observed by using the delivery system targeting to bone. The described invention provides a bone-targeted vector to deliver diverse therapeutic agents to bone.  相似文献   

10.
Importance of the field: Anabolic therapy, or stimulating the function of bone-forming osteoblasts, is the preferred pharmacological intervention for osteoporosis.

Areas covered in this review: We reviewed bone anabolic agents currently under active investigation. The bone anabolic potential of IGF-I and parathyroid hormone-related protein is discussed in the light of animal data and human studies. We also discuss the use of antagonists of the calcium-sensing receptor (calcilytics) as orally administered small molecules capable of transiently elevating serum parathyroid hormone (PTH). Further, we reviewed novel anabolic agents targeting members of the wingless tail (Wnt) signaling family that regulate bone formation including DKK-1, sclerostin, Thp1, and glycogen synthase kinase 3β. We have also followed up on the promise shown by β-blockers in modulating the activity of sympathetic nervous system, thus affecting bone anabolism. We give critical consideration to neutralizing the activity of activin A, a negative regulator of bone mass by soluble activin receptor IIA, as a strategy to promote bone formation.

What the reader will gain: Update on various strategies to promote osteoblast function currently under evaluation.

Take home message: In spite of favorable results in experimental models, none of these strategies has yet achieved the ultimate goal of providing an alternative to injectable PTH, the sole anabolic therapy in clinical use.  相似文献   

11.
Introduction: Tissue defects, sustained through disease or trauma, present enormous challenges in regenerative medicine. Modern tissue engineering (TE) aims at replacing or repairing these defects through a combined approach of biodegradable scaffolds, suitable cell sources and appropriate environmental cues, such as biomolecules presented on scaffold surfaces or sustainably released from within.

Areas covered: This review provides a brief overview of the various drugs and bioactive molecules of interest to TE, as well as a selection of materials that have been proposed for TE scaffolds and matrices in the past. It then proceeds to discuss encapsulation, immobilization and controlled release strategies for bioactive proteins, before discussing recent advances in this area with a special focus on soft TE.

Expert opinion: Overall, minimal clinical success has been achieved so far in using growth factor, morphogen, or adhesion factor modified scaffolds and matrices; only one growth factor delivery system (Regranex Gel), has been approved by the FDA for clinical use, with only a handful of other growth factors being approved for human use so far. However, many more growth factors are currently in clinical Phase I – II or preclinical trials and many delivery systems utilize materials already approved by the FDA for other purposes. With respect to drug delivery in soft TE, a combination of increased research efforts in hydrogel and support material development as well as growth factor development is needed before clinical success is realized.  相似文献   

12.
Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.

Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.

Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.  相似文献   

13.
Introduction: Chemotherapy remains the major form of treatment for cancer. However, chemotherapy often fails due to a variety of barriers, resulting in a limited intratumoral drug disposition. Recently, lipid nanoparticles (LNs, i.e., solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)) have been shown to provide a favorable means for efficiently delivering drugs to tumor sites, while minimizing their side effects.

Areas covered: The delivery of drugs to tumors is restricted by a series of barriers, including the tumor abnormalities, strong adverse effects and poor specificity of cytotoxic drugs, and the induction of multidrug resistance (MDR). The present review summarizes the strategies using SLNs and/or NLCs to improve the anticancer efficacy of cytotoxic drugs, including passive targeting, active targeting, long circulating and MDR reversing. Specifically, the most significant in vitro and in vivo results on the use of SLNs and/or NLCs are highlighted.

Expert opinion: The future success of SLNs and NLCs for administration of cytotoxic drugs will depend on their ability to efficiently encapsulate and release drugs, the possibility for large-scale production, selective tumor cells targeting and increased antitumor efficacy with reduced tissue toxicity.  相似文献   

14.
Introduction: Bone marrow-targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow.

Area covered: This review focuses on a bone marrow-specific liposome formulation labeled with technetium-99 m. Interspecies differences in bone marrow distribution of the bone marrow-targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested.

Expert opinion: It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present bone marrow-targeted liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow mononuclear phagocyte system are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes.  相似文献   

15.
Introduction: Osteoprotegerin (OPG) acts as a soluble decoy receptor for the bone marrow stroma cell-derived and osteoblast-derived receptor activator of nuclear factor-kB ligand (RANKL), thus regulating the RANK-mediated osteoclastogenesis and osteoclast-mediated bone resorption at the metastatic niche of cancer in skeleton.

Areas covered: This article discusses the ‘key' role of OPG expression during the early events of cancer cell invasion into the bone matrix and the subsequent events underlying the formation of osteoblastic metastasis, a unique event observed in human prostate cancer biology.

Expert opinion: Understanding the cellular and molecular events implicated in bone metastasis can facilitate designing new therapeutic strategies for targeting early and/or late events in the metastasis processes. The RANKL/RANK/OPG pathway is a key regulator of pathological bone metabolism in metastatic sites. Targeted manipulation of these molecules may provide sustainable antitumor responses.  相似文献   

16.
ABSTRACT

Introduction: Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks.

Areas covered: Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite–polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown.

Expert opinion: We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.  相似文献   

17.
Introduction: Many drug candidates with high therapeutic efficacy have low water solubility, which limits the administration and transport across physiological barriers, for example, the tumor tissue barrier. Therefore, strategies are needed to permeabilize the physiological barriers safely so that hydrophobic drugs may be delivered efficiently.

Areas covered: This review focuses on prospects for therapeutic application of lipid-based drug delivery carriers that increase hydrophobic drugs to improve their solubility, bioavailability, drug release, targeting and absorption. Moreover, novel techniques to prepare for lipid-based drug delivery to extend pharmaceuticals with poor bioavailability such as surface modifications of lipid-based drug delivery are presented. Industrial developments of several drug candidates employing these strategies are discussed, as well as applications and clinical trials.

Expert opinion: Overall, hydrophobic drugs can be encapsulated in the lipid-based drug delivery systems, represent a relatively safe and promising strategy to extend drug retention, lengthen the lifetime in the circulation, and allow active targeting to specific tissues and controllable drug release in the desirable sites. However, there are still noticeable gaps that need to be filled before the theoretical advantage of these formulations may truly be realized such as investigation on the use of lipid-based drug delivery for administration routes. This research may provide further interest within the area of lipid-based systems, both in industry and in the clinic.  相似文献   

18.
Introduction: Resistance to chemotherapy is a major obstacle in the successful amelioration of tumors in many cancer patients. Resistance is either intrinsic or acquired, involving mechanisms such as genetic aberrations, decreased influx and increased efflux of drugs. Strategies for the reversal of resistance involve the alteration of enzymes responsible for drug resistance, the modulation of proteins regulating apoptosis mechanisms and improving the uptake of drugs using nanotechnology. Novel strides in the reversal of drug resistance are emerging, involving the use of nanotechnology, targeting stem cells, etc.

Areas covered: This paper reviews the most recent cancer drug reversal strategies involving nanotechnology for targeting cancer cells and cancer stem cells (CSCs), for enhanced uptake of micro- and macromolecular inhibitors.

Expert opinion: Nanotechnology used in conjunction with existing therapies, such as gene therapy and P-glycoprotein inhibition, has been shown to improve the reversal of drug resistance; the mechanisms involved in this include specific targeting of drugs and nucleotide therapeutics, enhanced cellular uptake of drugs and improved bioavailability of drugs with poor physicochemical characteristics. Important strategies in the reversal of drug resistance include: a multifunctional nanoparticulate system housing a targeting moiety; therapeutics to kill resistant cancer cells and CSCs; cytotoxic drugs and a tumor microenvironment stimuli-responsive element, to release the encapsulated therapeutics.  相似文献   

19.
ABSTRACT

Introduction: Delivery of macromolecular drugs is an important field in medical research. However, macromolecules are usually unable to cross the cell membrane without the assistance of a delivery system. Cell penetrating peptides (CPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into the cytosol or nucleus. In addition to macromolecular delivery, CPPs have been used to deliver smaller bioactive molecules. Therefore CPPs have become an intensive field of research for medical treatment.

Areas covered: In this review, we highlight studies that include CPP in vivo disease models. We review different strategies and approaches that have been used, with specific attention on recent publications. The approaches that have been used include CPP–cargo covalent conjugation strategies and nanoparticle strategies. Various additional strategies have been used to achieve disease targeting, including active targeting, passive targeting, and combined active/passive strategies. As a result, delivery of various types of molecule has been achieved, including small drug molecules, proteins and nucleic acid-based macromolecules (e.g. siRNA, antisense nucleotides and plasmid DNA).

Expert Opinion: Despite recent advances in the field, confusions surrounding CPP internalization mechanisms and intracellular trafficking are hindering the development of new and more efficient vectors. Nevertheless, the recent increase in the number of publications containing in vivo CPP utilization looks promising that the number of clinical trials would also increase in the near future.  相似文献   

20.
Introduction: Over the past 20 years, the idea that white adipose tissue (WAT) is simply an energy depot organ has been radically changed. Indeed, present understanding suggests WAT to be an endocrine organ capable of producing and secreting a wide variety of proteins termed adipokines. These adipokines appear to be relevant factors involved in a number of different functions, including metabolism, immune response, inflammation and bone metabolism.

Areas covered: In this review, the authors focus on the effects of several adipose tissue-derived factors in bone pathophysiology. They also consider how the modification of the adipokine network could potentially lead to promising treatment options for bone diseases.

Expert opinion: There are currently substantial developments being made in the understanding of the interplay between bone metabolism and the metabolic system. These insights could potentially lead to the development of new treatment strategies and interventions with the aim of successful outcomes in many people affected by bone disorders. Specifically, future research should look into the intimate mechanisms regulating peripheral and central activity of adipokines as it has potential for novel drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号