首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
Nucleic acid-based therapeutics have gained a lot of interest for the treatment of diverse ophthalmic pathologies. The first to enter in clinic has been an oligonucleotide, Vitravene® for the treatment of cytomegalovirus infection. More recently, research on aptamers for the treatment of age related macular degeneration has led to the development of Macugen®. Despite intense potential, effective ocular delivery of nucleic acids is a major challenge since therapeutic targets for nucleic acid-based drugs are mainly located in the posterior eye segment, requiring repeated invasive administration. Of late, nanotechnology-based nano-vectors have been developed in order to overcome the drawbacks of viral and other non-viral vectors. The diversity of nano-vectors allows for ease of use, flexibility in application, low-cost of production, higher transfection efficiency and enhanced genomic safety. Using nano-vector strategies, nucleic acids can be delivered either encapsulated or complexed with cationic lipids, polymers or peptides forming sustained release systems, which can be tailored according to the ocular tissue being targeted. The present review focuses on developments and advances in various nano-vectors for the ocular delivery of nucleic acid-based therapeutics, the barriers that such delivery systems face and methods to overcome them.  相似文献   

2.
3.
Despite significant advances that have been made in recent years, there is still an urgent need for novel, more effective and less toxic therapeutics for human cancer. Among many new molecular therapeutics being explored for cancer therapy, antisense oligonucleotides are a promising nucleic acid-based approach, with numerous antisense agents being evaluated in preclinical studies and several anticancer antisense drugs in clinical trials. Although there are still a few problems facing the development of antisense strategies for cancer therapy, with progress made in chemical modifications, target selection and drug delivery systems, antisense oligonucleotides are emerging as a novel approach to cancer therapy used alone or in combination with conventional treatments such as chemotherapy and radiation therapy.  相似文献   

4.
An increasing number of kinase inhibitor candidates are entering clinical development, representing an important change in the pharmaceutical industry; notably, the development of small-molecule kinase inhibitors for signal transduction therapies. Today, kinase inhibitors garner substantial attention in cancer research. Over the last few years, three distinct small-molecule kinase inhibitors reached the market for treatment of chronic myeloid leukaemia, gastrointestinal stromal tumours, and non-small cell lung cancers. These three drugs, imatinib, gefitinib and erlotinib, act on a distinct subset of dysregulated, and often cancer-relevant kinases. Imatinib, gefitinib and erlotinib are considered the front-runners of targeted kinase inhibitor drugs. The entire research field gains tremendous insights through the ongoing research and clinical trials with these three drugs and with fast following first-generation kinase inhibitors, many of which are in different phases of clinical development. In addition, novel chemogenomic and chemoproteomic technologies are emanating from the current kinase research area, focussing efforts on the generation of spectrum-selective inhibitors for anticancer therapies as opposed to the monospecific inhibitors for the remaining therapeutic areas.  相似文献   

5.
An increasing number of kinase inhibitor candidates are entering clinical development, representing an important change in the pharmaceutical industry; notably, the development of small-molecule kinase inhibitors for signal transduction therapies. Today, kinase inhibitors garner substantial attention in cancer research. Over the last few years, three distinct small-molecule kinase inhibitors reached the market for treatment of chronic myeloid leukaemia, gastrointestinal stromal tumours, and non-small cell lung cancers. These three drugs, imatinib, gefitinib and erlotinib, act on a distinct subset of dysregulated, and often cancer-relevant kinases. Imatinib, gefitinib and erlotinib are considered the front-runners of targeted kinase inhibitor drugs. The entire research field gains tremendous insights through the ongoing research and clinical trials with these three drugs and with fast following first-generation kinase inhibitors, many of which are in different phases of clinical development. In addition, novel chemogenomic and chemoproteomic technologies are emanating from the current kinase research area, focussing efforts on the generation of spectrum-selective inhibitors for anticancer therapies as opposed to the monospecific inhibitors for the remaining therapeutic areas.  相似文献   

6.
The ability to deliver nucleic acids (e.g., plasmid DNA, antisense oligonucleotides, siRNA) offers the potential to develop potent vaccines and novel therapeutics. However, nucleic acid-based therapeutics are still in their early stages as a new category of biologics. The efficacy of nucleic acids requires that these molecules be delivered to the interior of the target cell, which greatly complicates delivery strategies and compromises efficiency. Due to the safety concerns of viral vectors, synthetic vectors such as liposomes and polymers are preferred for the delivery of nucleic acid-based therapeutics. Yet, delivery efficiencies of synthetic vectors in the clinic are still too low to obtain therapeutic levels of gene expression. In this review, we focus on some key issues in the field of nucleic acid delivery such as PEGylation, encapsulation and targeted delivery and provide some perspectives for consideration in the development of improved synthetic vectors.  相似文献   

7.
Despite significant advances that have been made in recent years, there is still an urgent need for novel, more effective and less toxic therapeutics for human cancer. Among many new molecular therapeutics being explored for cancer therapy, antisense oligonucleotides are a promising nucleic acid-based approach, with numerous antisense agents being evaluated in preclinical studies and several anticancer antisense drugs in clinical trials. Although there are still a few problems facing the development of antisense strategies for cancer therapy, with progress made in chemical modifications, target selection and drug delivery systems, antisense oligonucleotides are emerging as a novel approach to cancer therapy used alone or in combination with conventional treatments such as chemotherapy and radiation therapy.  相似文献   

8.
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.  相似文献   

9.
With the rapid development of high-throughput techniques for identifying novel specific molecular targets in human cancer over the past few years, attention to targeted cancer therapy has dramatically increased. The term "targeted cancer therapy" refers to a new generation of drugs designed to interfere with a specific molecular target that is believed to play a critical role in tumor growth or progression, is not expressed significantly in normal cells, and is correlated with clinical outcome. There has been a rapid increase in the identification of targets that have potential therapeutic application. The clinical success of the small-molecule kinase inhibitor imatinib mesylate in chronic myeloid leukemia and gastrointestinal stromal tumors has accelerated the development of a new era of molecular targeted cancer therapy. The number of agents under preclinical and clinical investigation has grown accordingly. This emphasis on molecular biology and genetics has also resulted in significant changes in the treatment of gynecologic cancers. Several promising drugs targeting tyrosine kinases (EGFR and Her-2/Neu), mTOR, Raf kinase, proteasome, and histone deacetylases, as well as drugs affecting apoptosis and mitosis, are under development for clinical application. However, some clinical trials of p53 gene therapies and farnesyl transferase inhibitors have had limited success. In this review, we will focus on potential novel targets in gynecologic cancer and the development of targeted therapy and its clinical applications in gynecologic cancer.  相似文献   

10.
Encapsulation of Nucleic Acids and Opportunities for Cancer Treatment   总被引:1,自引:0,他引:1  
The development of nucleic acid drugs for the treatment of various cancers has shown great promise in recent years. However, efficient delivery of these drugs to target cells remains a significant challenge towards the successful development of such therapies. This review provides a comprehensive overview of encapsulation technologies being developed for the delivery of nucleic acid-based anti-cancer agents. Both micro and nanoparticles systems are discussed along with their use in delivering plasmid DNA as well as oligonucleotides. The majority of the systems discussed have used DNA immunotherapy as the potential mode of anticancer therapy, which requires targeting to antigen presenting cells. Other applications, including those with oligonucleotides, focus on targeting tumor cells directly. The results obtained so far show the excellent promise of encapsulation as an efficient means of delivering therapeutic nucleic acids.  相似文献   

11.
Breast cancer is a common cause of tumors in women. The development of effective adjuvant therapies using drugs such as anthracyclines, taxanes, and aromatase inhibitors has improved the survival of breast cancer patients. Molecular cancer therapeutics are also attracting attention, and targeted molecular therapies, such as trastuzumab, have already contributed to effective new treatments for breast cancer. Other candidate targeted molecular therapies for breast cancer, including erlotinib, gefitinib, lapatinib, bevacizumab, and celecoxib, are currently undergoing clinical evaluation, and promising results are expected. The current review provides an up-to-date summary of the preclinical and clinical development of these drugs for breast cancer. In particular, we focus on therapies targeting protein kinase C (PKC) signaling, the putative metastasis-suppressor gene Cap43/N-myc downstream-regulated gene 1 (NDRG1)/differentiation-related gene-1 (Drg-1), and the Y-box binding protein-1 (YB-1). The PKC signaling pathway is widely considered to be a promising target for the development of novel therapeutics. Cap43 expression is significantly modulated by estrogen and/or anti-estrogens in breast cancer cells that are positive for estrogen receptor-alpha (ER-alpha). Cap43 is therefore of particular interest as a molecular indicator of the therapeutic efficacy of anti-estrogenic agents in breast cancer. The nuclear expression of YB-1 plays an essential role in the acquisition of malignant characteristics by breast cancer cells, through epidermal growth factor receptor 2 (HER2)-Akt-dependent pathways. Basic research investigating the key selective molecular changes that sustain breast cancer growth and progression, as demonstrated for PKC, Cap43, and YB-1, is allowing the development of specific targeted molecular diagnostics and therapeutics.  相似文献   

12.
Receptor tyrosine kinases play a significant role in carcinogenesis and have been successfully targeted with monoclonal antibodies and small-molecule inhibitors. There have been recent developments in the understanding of receptor tyrosine kinase signal transduction which have enabled better drug development. The use of receptor tyrosine kinase inhibitors in clinical practice has expanded the knowledge on cancer biology, in particular the understanding of resistant mutations and strategies to overcome such resistance. This has driven drug development from single kinase inhibitors to multi-kinase inhibitors and high-affinity kinase inhibitors. Finally, as the use of receptor tyrosine kinase inhibitors grows in clinical practice, more is learned about appropriate patient selection for such therapies. This is an exciting time in cancer therapeutics, highlighted by the advent of effective targeted therapy with receptor tyrosine kinase inhibitors.  相似文献   

13.
Receptor tyrosine kinases play a significant role in carcinogenesis and have been successfully targeted with monoclonal antibodies and small-molecule inhibitors. There have been recent developments in the understanding of receptor tyrosine kinase signal transduction which have enabled better drug development. The use of receptor tyrosine kinase inhibitors in clinical practice has expanded the knowledge on cancer biology, in particular the understanding of resistant mutations and strategies to overcome such resistance. This has driven drug development from single kinase inhibitors to multi-kinase inhibitors and high-affinity kinase inhibitors. Finally, as the use of receptor tyrosine kinase inhibitors grows in clinical practice, more is learned about appropriate patient selection for such therapies. This is an exciting time in cancer therapeutics, highlighted by the advent of effective targeted therapy with receptor tyrosine kinase inhibitors.  相似文献   

14.
Over the past 30 years, a relatively simple growth factor and its cognate receptor have provided seminal insights into the understanding of the genetic basis of cancer, as well as growth factor signalling. The epidermal growth factor (EGF), its cognate receptor (EGFR) and related family members have been shown to be important in normal, as well as the malignant growth of many cell types including: glioblastomata, astrocytomas, medulloblastomata, non-small cell lung carcinoma (NSCLC) and breast cancer. This review summarises the history of the EGFR gene and the v-ErbB oncogene, as well as diverse approaches developed to inhibit EGFR activity. The two most advanced therapies use either small-molecule cell membrane permeable kinase inhibitors or antibodies which prevent receptor activation. Recent clinical trials indicate that certain NSCLC patients have mutations in the EGFR gene which makes them more responsive to kinase inhibitors. These mutations appear to enhance the ability of the ligand to activate EGFR activity and also prolong the binding of the EGFR inhibitor to the kinase domain. Evidence to date suggests that these EGFR mutations in NSCLC occur more frequently in Japan than in the western hemisphere. Although these mutations are correlated with enhanced efficacy to the inhibitors in NSCLC, they can not explain or predict the sensitivity of many other cancer patients to the beneficial effects of the EGFR kinase inhibitors or antibody mediated therapy. As with as other small-molecule kinase inhibitors and susceptible diseases (e.g., imatinib and chronic myeloid leukaemia), resistance to EGFR inhibitors has been reported recently, documenting the requirement for development of multi-pronged therapeutic approaches. EGFR kinase inhibitors are also being evaluated as adjuvants in hormonal therapy of breast cancer - especially those which overexpress EGFR. Genetically engineered antibodies specific for the EGFR family member ErbB2 have been developed which show efficacy in the treatment of primary, and prevent the relapse of, breast cancer. Clearly, the EGF/EGFR signalling cascade has, and continues to play, an important role in the development of novel anticancer targeted therapies.  相似文献   

15.
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.  相似文献   

16.
Although chemotherapy has improved the treatment of metastatic bladder cancer, resection and continual surveillance remain the modalities used for treatment of organ-confined disease. More targeted therapies are needed to address the shortcomings of existing treatments. The authors recently became aware of the overexpression of tyrosine kinase growth factor receptors in a variety of malignancies. These receptor tyrosine kinases are coupled to several proliferative and antiapoptotic pathways that drive cancer cell growth. Targeted small-molecule therapies, including monoclonal antibodies and tyrosine kinase inhibitors, directed at these receptors have proven effective against a variety of tumor models. In this report, the authors summarize the results of several such studies and discuss the rationale and potential use of novel targeted drugs in the treatment of bladder cancer.  相似文献   

17.
The development of resistance and the inability of currently approved antiretroviral drugs to completely eradicate HIV-1 have led to increased focus on therapies other than small molecules. Although nucleic acid-based intervention requires complex tasks involving intracellular delivery and/or stable expression in target cells, recent advances in gene therapy methods combined with continued progress in stem cell approaches have made nucleic acid-based compounds excellent candidates for effectively inhibiting intracellular targets. Consequently, multiple nucleic acid-based therapies are being developed. These include antisense nucleic acids, peptide nucleic acids and RNA decoys, which can interfere with HIV-1 replication. More recently, RNA interference, which exploits a novel cellular pathway, has been shown to effectively reduce viral titers in cell culture and promises to be a potential candidate for suppressing HIV replication in vivo. A promising candidate in the midst of these emerging approaches is the aptamer approach, which involves the use of a class of small nucleic acid molecules isolated from combinatorial libraries by an in vitro evolution protocol termed SELEX. Aptamers exhibit exquisite specificity, high affinity and the virtual lack of immunogenicity, features that make them exceptionally well-suited to combat HIV without affecting the host. The powerful nature of these specific antagonists of protein function could lead to the development of an effective anti-HIV therapy. Several highly specific, nucleic acid aptamers targeting select HIV proteins have been described. Investigations with anti-HIV RNA aptamers have shown an effective block to viral replication. This review summarizes the existing nucleic-acid based approaches to block HIV replication and attempts to chart the current progress in the development of aptamers against HIV, their use in inhibiting the virus replication, prospects for their use in the clinic and potential drawbacks.  相似文献   

18.
Genomic analyses from patients with cancer have improved the understanding of the genetic elements that drive the disease, provided new targets for treating this relentless disease, and offered criteria for stratifying patient populations that will benefit most from treatments. In the last decade, several new targeted therapies have been approved by the FDA based on these omics findings, leading to significantly improved survival and quality of life for select patient populations. However, many of these precision medicines, e.g., nucleic acid-based therapies and antibodies, suffer from poor plasma stability, suboptimal pharmacokinetic properties, and immunological toxicities that prohibit their clinical translation. Nanotechnology is being explored as a delivery platform that can enable the successful delivery of these precision medicine treatments without these limitations. These precision nanomedicines are able to protect the cargo from degradation or premature/burst release prior to accumulation at the tumor site and improve the selectivity to cancer cells by incorporating ligands that can target receptors overexpressed on the cancer cell surface. Here, we review the development of several precision nanomedicines based on genomic analysis of clinical samples, actively targeted nanoparticle delivery systems in the clinic, and the pathophysiological barriers of the tumor microenvironment. Successful translation of these precision nanomedicine initiatives will require an effective collaboration between basic and clinical investigators to match the right patient with the right therapies and to deliver them at therapeutic concentrations which will improve overall treatment responses.  相似文献   

19.
Although chemotherapy has improved the treatment of metastatic bladder cancer, resection and continual surveillance remain the modalities used for treatment of organ-confined disease. More targeted therapies are needed to address the shortcomings of existing treatments. The authors recently became aware of the overexpression of tyrosine kinase growth factor receptors in a variety of malignancies. These receptor tyrosine kinases are coupled to several proliferative and antiapoptotic pathways that drive cancer cell growth. Targeted small-molecule therapies, including monoclonal antibodies and tyrosine kinase inhibitors, directed at these receptors have proven effective against a variety of tumor models. In this report, the authors summarize the results of several such studies and discuss the rationale and potential use of novel targeted drugs in the treatment of bladder cancer.  相似文献   

20.
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号