首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ABSTRACT

Introduction: The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities.

Areas covered: This review focuses on the recent developments in systemic therapy for metastatic cancer. Firstly, the strategies employed to improve the efficacy of conventional chemotherapeutics by ‘passively’ and ‘actively’ targeting them to tumors are discussed. Secondly, recent advances in the use of biologics to better target cancer and to instigate anti-tumor immunity are reviewed. Under the label of ‘biologics’, antibody-therapies, T cell engaging therapies, oncolytic virotherapies and cell-based therapies are examined and evaluated.

Expert opinion: Improving specificity of action, and engaging the immune system appear to be key goals in the development of novel or reformulated anti-cancer agents for the treatment of metastatic cancer. One of the largest areas of opportunity in this field will be the identification of robust predictive biomarkers for use in conjunction with these agents. Treatment regimens that combine an agent to elicit an immune response (such as an oncolytic virus), and an agent to potentiate/mediate that immune response (such as immune checkpoint inhibitors) are predicted to be more effective than treatment with either agent alone.  相似文献   

2.
3.
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.  相似文献   

4.
Abstract

Currently, with the rapid development of nanotechnology, novel drug delivery systems (DDSs) have made rapid progress, in which nanocarriers play an important role in the tumour treatment. In view of the conventional chemotherapeutic drugs with many restrictions such as nonspecific systemic toxicity, short half-life and low concentration in the tumour sites, stimuli-responsive DDSs can deliver anti-tumour drugs targeting to the specific sites of tumours. Owing to precise stimuli response, stimuli-responsive DDSs can control drug release, so as to improve the curative effects, reduce the damage of normal tissues and organs, and decrease the side effects of traditional anticancer drugs. At present, according to the physicochemical properties and structures of nanomaterials, they can be divided into three categories: (1) endogenous stimuli-responsive materials, including pH, enzyme and redox responsive materials; (2) exogenous stimuli-responsive materials, such as temperature, light, ultrasound and magnetic field responsive materials; (3) multi-stimuli responsive materials. This review mainly focuses on the researches and developments of these novel stimuli-responsive DDSs based on above-mentioned nanomaterials and their clinical applications.  相似文献   

5.
Introduction: Oncolytic virotherapy is a selective and powerful tool for cancer treatment. Studies proving the ability of oncolytic viruses (OVs) to target and rapidly kill cancer cells have led to approval of H101 and Imlygic®. Both these OVs are restricted to intratumoral administration into cancer lesions. Despite promising preclinical results, systemic delivery of OV has shown limited success in patients due to a knockdown in infectivity, as a result of rapid immune-mediated neutralization, and poor penetration into tumors.

Areas covered: This review catalogs the techniques used to enhance OV delivery. Firstly, insights from clinical trials of OV provide evidence of the need for enhanced delivery strategies. Secondly, the techniques applied to overcome the challenges highlighted by clinical trial data (i.e. suboptimal pharmacokinetics, antiviral immune responses, and poor penetration into solid tumors) are reviewed.

Expert opinion: For OV to gain traction and convert potential into value, researchers focussed on showing clinical and commercial viability following intratumoral injection. For the technology to mature and become applicable across a wider range of patients/cancer indications, amenability to systemic delivery is required. This may be achieved using strategies that modulate the OV by genetic or chemical means and/or that alter the physiology of target tumors.  相似文献   


6.
Importance of the field: Cancer is both a major health concern and a care-cost issue in the US and the rest of the world. It is estimated that there will be a total of 1,479,350 new cancer cases and 562,340 cancer deaths in 2009 within the US alone. One of the major obstacles in cancer therapy is the ability to target specifically cancer cells. Most existing chemotherapies and other routine therapies (such as radiation therapy and hormonal manipulation) use indiscriminate approaches in which both cancer cells and non-cancerous surrounding cells are treated equally by the toxic treatment. As a result, either the cancer cell escapes the toxic dosage necessary for cell death and consequently resumes replication, or an adequate lethal dose that kills the cancer cell also causes the cancer patient to perish. Owing to this dilemma, cancer- or organ/tissue-specific targeting is greatly desired for effective cancer treatment and the reduction of side effect cytotoxicity within the patient.

Areas covered in this review: In this review, the strategies of targeted cancer therapy are discussed, with an emphasis on viral-based gene delivery and regulated gene expression.

What the reader will gain: Numerous approaches and updates in this field are presented for several common cancer types.

Take home message: A summary of existing challenges and future directions is also included.  相似文献   

7.
癌症是威胁人类生存的恶性疾病之一。近年来,利用纳米技术将药物靶向递送到肿瘤部位,可以增加疗效并降低毒性,为癌症治疗带来了新希望。壳聚糖是自然界唯一存在的碱性多糖,具有良好的生物相容性和生物可降解性。此外,其反应位点多,可制成不同性质的衍生物,广泛用于药物递送系统和组织工程支架,在生物医药领域具有重要的应用价值。本综述对近年来壳聚糖纳米粒在抗癌药物递送方面的研究进展进行介绍,重点介绍了壳聚糖纳米粒的制备、被动靶向、主动靶向和刺激-响应药物递送系统方面的研究进展。  相似文献   

8.
Abstract

Based on exceptional advantages of aptamers, increasing attention has been presented in the utilise of them as targeted ligands for cancer drug delivery. Recently, the progress of aptamer-targeted nanoparticles has presented new therapeutic systems for several types of cancer with decreased toxicity and improved efficacy. We highlight some of the promising formulations of aptamer-conjugated polymeric nanoparticles for specific targeted drug delivery to cancer cells. This review paper focuses on the current progresses in the use of the novel strategies to aptamer-targeted drug delivery for chemotherapy. An extensive literature review was performed using internet database, mainly PubMed based on MeSH keywords. The searches included full-text publications written in English without any limitation in date. The abstracts, reviews, books as well as studies without obvious relating of aptamers as targeted ligands for cancer drug delivery were excluded from the study. The reviewed literature revealed that aptamers with ability to modify and conjugate to various molecules can be used as targeted cancer therapy agents. However, development of aptamers unique to each individual’s tumour to the development of personalised medicine seems to be needed.  相似文献   

9.
Introduction: Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery.

Areas covered: The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies.

Expert opinion: These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.  相似文献   

10.
Introduction: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels.

Areas covered: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration.

Expert opinion: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

11.
Head and neck cancer (HNC) is among the most common malignancy that has a profound impact on human health and life quality. The treatment for HNC, especially for the advanced cancer is stage-dependent and in need of combined therapies. Various forms of adjuvant treatments such as chemotherapy, phototherapy, hyperthermia, gene therapy have been included in the HNC therapy. However, there are still restrictions with traditional administration such as limited in situ therapeutic effect, systemic toxicity, drug resistance, etc. In recent years, stimuli-responsive drug delivery systems (DDSs) have attracted the great attention in HNC therapy. These intelligent DDSs could respond to unique tumor microenvironment, external triggers or dual/multi stimulus with more specific drug delivery and release, leading to enhanced treatment efficiency and less reduced side effects. In this article, recent studies on stimuli-responsive DDSs for HNC therapy were summarized, which could respond to endogenous and exogenous triggers including pH, matrix metalloproteinases (MMPs), reactive oxygen species (ROS), redox condition, light, magnetic field and multi stimuli. Their therapeutic remarks, current limits and future prospect for these intelligent DDSs were discussed. Furthermore, multifunctional stimuli-responsive DDSs have also been reviewed. With the modification of drug carriers or co-loading with therapeutic agents. Those intelligent DDSs showed more biofunctions such as combined therapeutic effects or integration of diagnosis and treatment for HNC. It is believed that stimuli-responsive drug delivery systems showed great potential for future clinic translation and application for the treatment of HNC.  相似文献   

12.
Background: Gas-filled microbubbles have been used as ultrasound contrast agents for some decades. More recently, such microbubbles have evolved as experimental tools for organ- and tissue-specific drug and gene delivery. When sonified with ultrasound near their resonance frequency, microbubbles oscillate. With higher ultrasound energies, oscillation amplitudes increase, leading to microbubble destruction. This phenomenon can be used to deliver a substance into a target organ, if microbubbles are co-administered loaded with drugs or gene therapy vectors before i.v. injection. Objective: This review focuses on different experimental applications of microbubbles as tools for drug and gene delivery. Different organ systems and different classes of bioactive substances that have been used in previous studies will be discussed. Methods: All the available literature was reviewed to highlight the potential of this non-invasive, organ-specific delivery system. Conclusion: Ultrasound targeted microbubble destruction has been used in various organ systems and in tumours to successfully deliver drugs, proteins, gene therapy vectors and gene silencing constructs. Many proof of principle studies have demonstrated its potential as a non-invasive delivery tool. However, too few large animal studies and studies with therapeutic aims have been performed to see a clinical application of this technique in the near future. Nevertheless, there is great hope that preclinical large animal studies will confirm the successful results already obtained in small animals.  相似文献   

13.
14.
15.
Abstract

Nowadays, magnetic nanoparticles (MNPs) have been rapidly investigated and attracted worldwide attention due to their great potential as mediators of heat for treating hyperthermia and their possibility to deliver drugs at specific locations, which can thereby limit systematic effects. Cancer therapy via MNPs proposes novel properties rather than normal methods such as almost zero side effects and a high-efficiency rate of effectiveness. The key aim of targeted drug delivery is to reduce side effects of the main cancer treatment that other usual chemotherapies will attend to the body, and thus controlling the effectiveness of the drug on a specific location that tumoral tissue exist. Herein, the high potential of MNPs has been studied, and different examples of their effectiveness on drug delivery and hypothermia therapy have been provided.  相似文献   

16.
The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catogen the involution phase and telogen is the resting phase. The follicle offers many potential therapeutic targets. Hoffman and colleagues have pioneered hair-follicle-specific targeting using liposomes to deliver small and large molecules, including genes. They have also pioneered ex vivo hair-follicle targeting with continued expression of the introduced gene following transplantation. Recently, it has been discovered that hair follicle stem cells are highly pluripotent and can form neurons, glial cells and other cell types, and this has suggested that hair follicle stem cells may serve as gene therapy targets for regenerative medicine.  相似文献   

17.
Bladder cancer is the ninth most common malignancy in the world featuring very high gender variability in occurrence. Current options for bladder cancer therapy include surgery, immunotherapy, chemotherapy and radiotherapy with a trend towards multimodal treatments. However, successful management remains a challenge for urologists and oncologists because of the high risk for recurrence and progression. Particularly in the field of bladder cancer chemotherapy, efficacy of treatment might be improved by advanced drug delivery strategies aimed at prolonged residence time within the bladder cavity and increased permeability of the bladder wall during intravesical instillation. Moreover, a deeper understanding of the biology of bladder carcinogenesis and malignant progression stimulated the development of a new generation of anticancer drugs for targeted therapies that might result in increased treatment specificity together with lower toxic potential and higher therapeutic indices. This review discusses the available strategies for ‘targeted therapy’, focusing on molecular targets, and for ‘controlled delivery’, comprising all other approaches towards improved drug delivery.  相似文献   

18.
《药学学报(英文版)》2022,12(11):4098-4121
Nano-drug delivery strategies have been highlighted in cancer treatment, and much effort has been made in the optimization of bioavailability, biocompatibility, pharmacokinetics profiles, and in vivo distributions of anticancer nano-drug delivery systems. However, problems still exist in the delicate balance between improved anticancer efficacy and reduced toxicity to normal tissues, and opportunities arise along with the development of smart stimuli-responsive delivery strategies. By on-demand responsiveness towards exogenous or endogenous stimulus, these smart delivery systems hold promise for advanced tumor-specificity as well as controllable release behavior in a spatial-temporal manner. Meanwhile, the blossom of nanotechnology, material sciences, and biomedical sciences has shed light on the diverse modern drug delivery systems with smart characteristics, versatile functions, and modification possibilities. This review summarizes the current progress in various strategies for smart drug delivery systems against malignancies and introduces the representative endogenous and exogenous stimuli-responsive smart delivery systems. It may provide references for researchers in the fields of drug delivery, biomaterials, and nanotechnology.  相似文献   

19.
Introduction: Progressive breakthroughs in nanomedicine have been instrumental for the clinical translation of actively targeted drug-delivery approaches. Besides storing large payloads of drugs within the nanoparticle core, the conjugation of targeting moieties confers specific targeting ability to the nanoplatforms. In this respect, clinical results suggest that actively targeted nanocarriers can exhibit an overall improved antitumor efficacy, minimizing off-target toxicity.

Areas covered: This review article summarizes the advances in active targeting of nanocarriers to cancer cells. Specifically, we discuss the various types of nanocarriers, describe the receptors that are frequently overexpressed in solid tumors, and discuss how this approach can be used to improve clinical outcomes. We particularly focus on ongoing clinical trials of actively targeted nanoparticles that are yet to be clinically approved.

Expert opinion: Further investment in active targeting will likely pose clinical benefits. We envisage a future requiring the use of longitudinal measures in the clinical setting to profile the patients that are likely to benefit from actively targeted nanocarriers. At the preclinical stage, a complete picture of intratumoral barriers combined with a quantitative approach of the intratumoral fate of nanomaterials will be instrumental in defining more effective strategies to improve their clinical translation.  相似文献   


20.
Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure–performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer–drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号