首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Influenza antiviral high-throughput screens have been extensive, and yet no approved influenza antivirals have been identified through high-throughput screening. This underscores the idea that development of successful screens should focus on the exploitation of the underrepresented viral targets and novel, therapeutic host targets. AREAS COVERED: The authors review conventional screening applications and emerging technologies with the potential to enhance influenza antiviral discovery. Real-world examples from the authors' work in biocontained environments are also provided. Future innovations are discussed, including the use of targeted libraries, multiplexed assays, proximity-based endpoint methods, non-laboratory-adapted virus strains, and primary cells, for immediate physiological relevance and translational applications. EXPERT OPINION: The lack of successful anti-influenza drug discovery using high-throughput screening should not deter future efforts. Increased understanding of the functions of viral targets and host-pathogen interactions has broadened the target reservoir. Future screening efforts should focus on identifying new drugs against unexploited viral and host targets using currently developed assays, and on the development of novel, innovative assays to discover new drugs with novel mechanisms. Innovative screens must be designed to identify compounds that specifically inhibit protein-protein or protein-RNA interactions or other virus/host factor interactions that are crucial for viral replication. Finally, the use of recent viral isolates, increased biocontainment (for highly-pathogenic strains), primary cell lines, and targeted compound libraries must converge in efficient high-throughput primary screens to generate high-content, physiologically-relevant data on compounds with robust antiviral activity.  相似文献   

2.
ABSTRACT

Introduction: Amyotrophic lateral sclerosis (ALS) is a rapid adult-onset neurodegenerative disorder characterised by the progressive loss of upper and lower motor neurons. Current treatment options are limited for ALS, with very modest effects on survival. Therefore, there is a unmet need for novel therapeutics to treat ALS.

Areas covered: This review highlights the many diverse high-throughput screening platforms that have been implemented in ALS drug discovery. The authors discuss cell free assays including in silico and protein interaction models. The review also covers classical in vitro cell studies and new cell technologies, such as patient derived cell lines. Finally, the review looks at novel in vivo models and their use in high-throughput ALS drug discovery

Expert opinion: Greater use of patient-derived in vitro cell models and development of better animal models of ALS will improve translation of lead compounds into clinic. Furthermore, AI technology is being developed to digest and interpret obtained data and to make ‘hidden knowledge’ usable to researchers. As a result, AI will improve target selection for high-throughput drug screening (HTDS) and aid lead compound optimisation. Furthermore, with greater genetic characterisation of ALS patients recruited to clinical trials, AI may help identify responsive genetic subtypes of patients from clinical trials.  相似文献   

3.
Background: In the current situation of weak drug pipelines, impending patent expiration of several blockbuster drugs, industry consolidation and changing business models that target special diseases like cancer, diabetes, Alzheimer's and obesity, the pharmaceutical industry is under intense pressure to generate a strong drug pipeline distinguished by better productivity, diversity and cost effectiveness. The goal is discovering high-quality leads in the initial stages of the development cycle, to minimize the costs associated with failures at later ones. Objective: Thus, there is a great amount of interest in further developing and optimizing high-throughput screening and in silico screening, the two methods responsible for generating most of the lead compounds. Although high-throughput screening is the predominant starting point for discovery programs, in silico methods have gradually made inroads by their more rational approach, to expedite the drug discovery and development process. Conclusion: Modern drug discovery strategies include both methods in tandem or in an iterative way. This review primarily provides a succinct overview and comparison of experimental and in silico screening techniques, selected case studies where both methods were used in concert to investigate their performance and complementary nature and a statement on the developments in experimental and in silico approaches in the near future.  相似文献   

4.
ABSTRACT

Introduction: Combinatorial chemistry provides a cost-effective method for rapid discovery of drug hits/leads. The one-bead-one-compound (OBOC) library method is in principle ideally suited for this application, because it permits a large number of structurally diverse compounds to be rapidly synthesized and simultaneously screened for binding to a target of interest. However, application of OBOC libraries in drug discovery has encountered significant technical challenges.

Areas covered: This Special Report covers the challenges associated with first-generation OBOC libraries (difficulty in structural identification of non-peptidic hits, screening biases and high false positive rates, and poor scalability). It also covers the many strategies developed over the past two decades to overcome these challenges.

Expert opinion: With most of the technical challenges now overcome and the advent of powerful intracellular delivery technologies, OBOC libraries of metabolically stable and conformationally rigidified molecules (macrocyclic peptides and peptidomimetics, rigidified acyclic oligomers, and D-peptides) can be routinely synthesized and screened to discover initial hits against previously undruggable targets such as intracellular protein-protein interactions. On the other hand, further developments are still needed to expand the utility of the OBOC method to non-peptidic chemical scaffolds.  相似文献   

5.
ABSTRACT

Introduction: DNA-encoded chemical libraries (DELs) have come of age and emerged to become a powerful technology platform for ligand discovery in biomedical research and drug discovery. Today, DELs have been widely adopted in the pharmaceutical industry and employed in drug discovery programs worldwide. DELs are capable of interrogating drug targets with an extremely large number of compounds highly efficiently.

Area covered: In this review, the authors introduce the history of DELs and provide an overview of the major technological components, including encoding methods, library synthesis, chemistry, selection methods, hit deconvolution strategy, and post-selection data analysis. A brief update on the hit compounds recently discovered from DEL selections against drug targets is also provided. Finally, the authors discuss their views on the present challenges and future directions for the development and application of DELs in drug discovery.

Expert opinion: DELs have provided great opportunities for lead compound discovery at an unprecedented scale and efficiency in drug discovery. The key to the future success of DELs as true discovery modalities, rather than just ‘a way to make many compounds,’ is to go beyond physical binding to functional or even phenotypic assays with the capability to probe the biological system.  相似文献   

6.
Introduction: The emergence of the highly pathogenic avian influenza (HPAI) H5N1 virus and the recent global circulation of H1N1 swine-origin influenza virus in 2009 have highlighted the need for new anti-influenza therapies. This has been made all the more important with the emergence of antiviral-resistant strains. Recent progress in achieving three-dimensional (3D) crystal structures of influenza viral proteins and efficient tools available for pharmacophore-based virtual screening are aiding us in the discovery and design of new antiviral compounds.

Areas covered: This review discusses pharmacophore modeling as a potential cost-effective and time-saving technology for new drug discovery as an alternative to high-throughput screening. Based on this technical platform, the authors discuss current progress and future prospects for developing novel influenza antivirals against pre-existing or emerging novel targets.

Expert opinion: Although it might be at an infant stage of development, the availability of the 3D crystal structures of influenza viral proteins is expected to accelerate the application of structure-based drug design (SBDD) and pharmacophore modeling. Furthermore, the neuraminidase inhibitor, one of the most successful examples of a SBDD, still receives great attention because of its superb antiviral activities and the resistance of influenza strains to oseltamivir. However, despite much success, pharmacophore-based virtual screening exhibits limited predictive power in hit identification. Further improvements in pharmacophore detection algorithms, proper combinations of in silico methods as well as judicious choosing of compounds are expected to improve the hit rate. With the help of these technologies, the discovery of anti-influenza agents will be accelerated.  相似文献   

7.
Introduction: Neural stem cells catalyze strong interests for the development of systems to screen for effective drugs to treat neurodegenerative conditions and/or improve neurogenesis, fields where the classical approaches have so far failed in discovering successful drugs.

Areas covered: The authors review the known biology of NSCs, their normal function in development, the adult brain, and in vitro culture systems. The authors also discuss the scientific and technological progress which will aid wider applications of NSCs for drug screening/development purposes. The authors base this article on literature searches performed through PubMed and Google Scholar.

Expert opinion: NSC systems present unique opportunities that are starting to be successfully explored for genetic and chemical screening. These systems provide the possibility of identifying and optimizing molecules/drugs that could lead to the tighter control in self-renewal and lineage specification of NSCs as well as their functional maturation. This could be crucial in moving forward NSC-based therapies. It is expected that recent advances in the method of producing NSCs from patient-specific human induced pluripotent stem (iPS) cells and in the technologies to grow them in vitro, while preserving their full developmental potential, will allow a full exploitation of NSCs both in drug discovery programs and in predictive toxicology studies.  相似文献   

8.
The rapid development of drug discovery today is inseparable from the interaction of advanced particle technologies and new drug synthesis protocols. Quantum dots (QDs) are regarded as a unique class of fluorescent labels, with unique optical properties such as high brightness and long-term colloidal and optical stability; these are suitable for optical imaging, drug delivery and optical tracking, fluorescence immunoassay and other medicinal applications. More importantly, QD possesses a rich surface chemistry property that is useful for incorporating various drug molecules, targeting ligands, and additional contrast agents (e.g., MRI, PET, etc.) onto the nanoparticle surface for achieving targeted and traceable drug delivery therapy at both cellular and systemic levels. In recent times, the advancement of QD technology has promoted the use of functionalized nanocrystals for in vivo applications. Such research is paving the way for drug discovery using various bioconjugated QD formulations. In this editorial, the authors highlight the current research progress and future applications of QDs in drug discovery.  相似文献   

9.
Introduction: The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries.

Areas covered: This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs.

Expert opinion: Caenorhabditis elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer's disease. In addition, high-throughput techniques for screening chemical libraries can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway.  相似文献   

10.
Introduction: The Ebola 2014/2015 outbreak has had devastating effects on the people living in West Africa. The spread of the disease in endemic countries and the potential introduction of sporadic cases in other continents points out the global health threat of Ebola virus disease (EVD). Despite the urgent need for treating EVD, there are no approved treatments. Given the lack of treatments available, alternative therapeutic strategies have had to be used.

Areas covered: This article summarizes the unregistered therapeutics that were used to treat patients during the Ebola 2014/2015 outbreak, in addition to approaches used for the selection of candidate drugs. The article also proposes potential theoretical criterion for use in virtual screening of molecular libraries for candidate Ebola drugs.

Expert opinion: In the absence of approved therapeutics for EVD, experimental drugs have had to be used. The repurposing of approved drugs for the treatment of EVD, as an alternative therapeutic strategy, has also been suggested. Screening in vitro- and in silico-approved drugs revealed several promising candidates but further testing is required to test their efficacy. All these therapeutic approaches are, however, only short-term solutions and there is still an urgent need for the development of specific drugs for the current and future outbreaks.  相似文献   

11.
Introduction: Mycobacterium tuberculosis kills more people than any other bacterial pathogen. New drugs are required to shorten the treatment time and provide a viable therapy for drug-resistant and latent forms of tuberculosis. The tuberculosis field has advanced considerably since the publication of the M. tuberculosis genome sequence. Today, researchers can build a high definition map of the pathogen's traits and behavior and select individual targets for chemical disruption.

Areas covered: This review examines the discovery of current clinical and candidate tuberculosis drugs. It outlines recent developments in the selection of molecular targets for the discovery of new anti-mycobacterial agents. It appraises techniques that incorporate target knowledge into the screening protocol. These techniques include in silico, in vitro enzyme-based, differential antisense sensitivity and gene expression screening systems. The review also looks ahead to further techniques that may be applied in tuberculosis drug discovery.

Expert opinion: The adoption of an ‘either/or’ approach to targeted or random tuberculosis drug screening is not expected. The historical success of random screening in providing the tuberculosis drugs currently in clinical use is likely to ensure that non-targeted protocols retain an important role in drug screening. However, a number of M. tuberculosis inhibitors in lead optimization and preclinical development have been discovered using targeted methods. Realization of the first clinically-approved tuberculosis drugs derived from targeted screening and continued refinements in targeted screening technologies are likely to increase the adoption of targeted approaches in the future.  相似文献   

12.
ABSTRACT

Introduction: Chagas disease affects 8–10 million people worldwide, mainly in Latin America. The current therapy for Chagas disease is limited to nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease but with severe side effects. Therefore, there is an unmet need for new drugs and for the exploration of innovative approaches which may lead to the discovery of new effective and safe drugs for its treatment.

Areas covered: The authors report and discuss recent approaches including structure-based design that have led to the discovery of new promising small molecule candidates for Chagas disease which affect prime targets that intervene in the sterol pathway of T. cruzi. Other trypanosome targets, phenotypic screening, the use of artificial intelligence and the challenges with Chagas disease drug discovery are also discussed.

Expert opinion: The application of recent scientific innovations to the field of Chagas disease have led to the discovery of new promising drug candidates for Chagas disease. Phenotypic screening brought new hits and opportunities for drug discovery. Artificial intelligence also has the potential to accelerate drug discovery in Chagas disease and further research into this is warranted.  相似文献   

13.
14.
Introduction: The discovery and domestication of biomolecules that respond to light has taken a light of its own, providing new molecular tools with incredible spatio-temporal resolution to manipulate cellular behavior.

Areas covered: The authors herein analyze the current optogenetic tools in light of their current, and potential, uses in cancer drug discovery, biosafety and cancer biology.

Expert opinion: The pipeline from drug discovery to the clinic is plagued with drawbacks, where most drugs fail in either efficacy or safety. These issues require the redesign of the pipeline and the development of more controllable/personalized therapies. Light is, aside from inexpensive, almost harmless if used appropriately, can be directed to single cells or organs with controllable penetration, and comes in a variety of wavelengths. Light-responsive systems can activate, inhibit or compensate cell signaling pathways or specific cellular events, allowing the specific control of the genome and epigenome, and modulate cell fate and transformation. These synthetic molecular tools have the potential to revolutionize drug discovery and cancer research.  相似文献   


15.
16.
Introduction: Inkjet-dispensing printing is a promising additive manufacturing method for pharmaceutical applications such as drug discovery. The unique advantages of this technology, including low cost, programmability, high resolution, high throughput, high speed, and biocompatibility, may reduce the financial resources needed to discover new drug candidates. Sophisticated and miniaturized assays have been developed to accomplish drug discovery and drug screening using modern inkjet dispensing printers.

Areas covered: This paper reviews recent advancements in the field of inkjet printer technology for drug discovery. Various types of inkjet printers and their recent use for the drug discovery are summarized; physical and biological limitations of this technology are also examined. Furthermore, typical inks used in the inkjet printing technology are introduced.

Expert opinion: Inkjet bioprinting technology is a promising tool for many biological and pharmaceutical applications. Several bottlenecks associated with this technology need to be addressed before commercialization. For example, sophisticated inks need to be synthesized to meet both biological and engineering restrictions. Further progress of parallel technologies will enhance the performance and functionality of the printers. It is also worth emphasizing that inkjet printing technologies must meet the requirement of regulatory agencies (e.g. the US Food & Drug Administration) for commercialization by the pharmaceutical industry.  相似文献   


17.
高通量筛选药动学模型的研究进展   总被引:2,自引:0,他引:2  
高通量筛选体系在创新药物药动学筛选中的应用是当前新药开发研究的一个重要领域。建立合理的药动学筛选模型不仅可以降低新药开发的成本,并且可以在新药研究早期对其作出正确的评价。本文对当前常用的高通量筛选药动学模型作了简单的回顾,指出了合理的药动学筛选模型在寻找新药过程中的重要性,以及建立药动学筛选模型的紧迫性。  相似文献   

18.
The last decade showed a further upsurge in screening technology advance and innovation. Notably, the establishment of ultra high-throughput screening facilities led to an explosion of screening capacities. However, in the last 2 years, a turning point in screening philosophy can be observed worldwide. Increasingly more companies are reducing the size of screening campaigns, while increasing the emphasis on data quality and relevance. This article tries to investigate how screening technologies will develop in the ever-changing landscape of drug discovery.  相似文献   

19.
Introduction: Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein–ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery.

Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets.

Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号